Skip to main content

Advertisement

Log in

The Pathogenesis of Systemic Sclerosis Revisited

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Although infectiological stimuli, environmental factors and genotypic features are known to contribute to the initiation and perpetuation of systemic sclerosis (SSc), its etiology still remains to be enigmatic, and less elusive insights are to be achieved by ongoing and future investigations. Being characterized, however, as chronic autoimmune disease with excessive collagen accumulation in skin, synovia and visceral organs such as lung, heart, and digestive tract along with obliterating angiopathy, the pathophysiology of SSc can be summarized as being based on imbalances of the cellular and humoral immune system, vascular dysfunction and activation of resident connective tissue cells. A complex interplay between these major components manages to establish and maintain the inability of the vasculature to adequately react to the need for dilatation, constriction and growth of new vessels, to cause the increased deposition of extracellular matrix constituents as well as to facilitate immunological disarrangement. Despite parallels to the chicken and egg causality dilemma, all of these account for what later clinicians observe in patients suffering from Raynaud’s phenomenon, digital ulcers, sclerodactyly, rigidity of the face, microstomia, sicca syndrome, dyspnea, dry cough, pulmonary hypertension, palpitations, syncopes, renal insufficiency, dysphagia, gastroesophageal reflux, dyspepsia, generalized arthralgias, but also dyspareunia, or erectile dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lunardi C, Dolcino M, Peterlana D et al (2006) Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med 3:e2

    Article  PubMed  CAS  Google Scholar 

  2. Kahan A, Menkes CJ, Amor B (1986) Defective Epstein–Barr virus specific suppressor T cell function in progressive systemic sclerosis. Ann Rheum Dis 45:553–560

    Article  CAS  PubMed  Google Scholar 

  3. Zakrzewska K, Corcioli F, Carlsen KM et al (2009) Human parvovirus B19 (B19V) infection in systemic sclerosis patients. Intervirology 52:279–282

    Article  PubMed  Google Scholar 

  4. Ohtsuka T, Yamazaki S (2004) Increased prevalence of human parvovirus B19 DNA in systemic sclerosis skin. Br J Dermatol 150:1091–1095

    Article  CAS  PubMed  Google Scholar 

  5. Fox RI, Kang HI (1992) Genetic and environmental factors in systemic sclerosis. Curr Opin Rheumatol 4:857–861

    CAS  PubMed  Google Scholar 

  6. Rustin MH, Bull HA, Ziegler V et al (1990) Silica-associated systemic sclerosis is clinically, serologically and immunologically indistinguishable from idiopathic systemic sclerosis. Br J Dermatol 123:725–734

    Article  CAS  PubMed  Google Scholar 

  7. Calvani N, Silvestris F, Dammacco F (2001) Familial systemic sclerosis following exposure to organic solvents and the possible implication of genetic factors. Ann Ital Med Int 16:175–178

    CAS  PubMed  Google Scholar 

  8. Garcia-Zamalloa AM, Ojeda E, Gonzalez-Beneitez C, Goni J, Garrido A (1994) Systemic sclerosis and organic solvents: early diagnosis in industry. Ann Rheum Dis 53:618

    Article  CAS  PubMed  Google Scholar 

  9. Allanore Y, Wipff J, Kahan A, Boileau C (2007) Genetic basis for systemic sclerosis. Joint Bone Spine 74:577–583

    Article  CAS  PubMed  Google Scholar 

  10. Dieude P, Guedj M, Wipff J et al (2009) STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum 60:2472–2479

    Article  CAS  PubMed  Google Scholar 

  11. Tan FK, Arnett FC (2000) Genetic factors in the etiology of systemic sclerosis and Raynaud phenomenon. Curr Opin Rheumatol 12:511–519

    Article  CAS  PubMed  Google Scholar 

  12. Fantonetti G (1838) Case of general induration of the skin. Dublin J Med Sci 13:158–159

    Google Scholar 

  13. Goetz RH (1945) The pathology of progressive systemic sclerosis (generalised scleroderma) with special reference to changes in the viscera. Clin Proc J Cape Town Postgrad Med Ass 4:337–341

    Google Scholar 

  14. LeRoy EC, Black C, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  15. Kahaleh MB (2004) Raynaud phenomenon and the vascular disease in scleroderma. Curr Opin Rheumatol 16:718–722

    Article  PubMed  Google Scholar 

  16. Scheja A, Akesson A, Geborek P et al (2001) Von Willebrand factor propeptide as a marker of disease activity in systemic sclerosis (scleroderma). Arthritis Res 3:178–182

    Article  CAS  PubMed  Google Scholar 

  17. Matucci-Cerinic M, Pietrini U, Marabini S (1990) Local venomotor response to intravenous infusion of substance P and glyceryl trinitrate in systemic sclerosis. Clin Exp Rheumatol 8:561–565

    CAS  PubMed  Google Scholar 

  18. Cerinic MM, Valentini G, Sorano GG et al (2003) Blood coagulation, fibrinolysis, and markers of endothelial dysfunction in systemic sclerosis. Semin Arthritis Rheum 32:285–295

    Article  CAS  PubMed  Google Scholar 

  19. McHugh NJ, Distler O, Giacomelli R, Riemekasten G (2003) Non organ based laboratory markers in systemic sclerosis. Clin Exp Rheumatol 21:S32–S38

    CAS  PubMed  Google Scholar 

  20. Sgonc R, Gruschwitz MS, Dietrich H, Recheis H, Gershwin ME, Wick G (1996) Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 98:785–792

    Article  CAS  PubMed  Google Scholar 

  21. Cambrey AD, Harrison NK, Dawes KE et al (1994) Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro. Am J Respir Cell Mol Biol 11:439–445

    CAS  PubMed  Google Scholar 

  22. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567

    Article  CAS  PubMed  Google Scholar 

  23. Humbert M, Morrell NW, Archer SL et al (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  CAS  PubMed  Google Scholar 

  24. LeRoy EC (1996) Systemic sclerosis. A vascular perspective. Rheum Dis Clin North Am 22:675–694

    Article  CAS  PubMed  Google Scholar 

  25. Park JH, Sung YK, Bae SC, Song SY, Seo HS, Jun JB (2009) Ulnar artery vasculopathy in systemic sclerosis. Rheumatol Int 29:1081–1086

    Article  PubMed  Google Scholar 

  26. Cool CD, Stewart JS, Werahera P et al (1999) Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol 155:411–419

    Article  CAS  PubMed  Google Scholar 

  27. Rhew EY, Barr WG (2004) Scleroderma renal crisis: new insights and developments. Curr Rheumatol Rep 6:129–136

    Article  PubMed  Google Scholar 

  28. Distler O, Distler JH, Scheid A et al (2004) Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 95:109–116

    Article  CAS  PubMed  Google Scholar 

  29. Koch AE, Distler O (2007) Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther 9(Suppl 2):S3

    Article  PubMed  CAS  Google Scholar 

  30. Müller-Ladner U, Distler O, Ibba-Manneschi L, Neumann E, Gay S (2009) Mechanisms of vascular damage in systemic sclerosis. Autoimmunity 42:587–595

    Article  Google Scholar 

  31. Del Papa N, Quirici N, Soligo D et al (2006) Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 54:2605–2615

    Article  PubMed  CAS  Google Scholar 

  32. Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y (2004) Defective vasculogenesis in systemic sclerosis. Lancet 364:603–610

    Article  CAS  PubMed  Google Scholar 

  33. Avouac J, Juin F, Wipff J et al (2008) Circulating endothelial progenitor cells in systemic sclerosis: association with disease severity. Ann Rheum Dis 67:1455–1460

    Article  CAS  PubMed  Google Scholar 

  34. Distler JH, Allanore Y, Avouac J et al (2009) EULAR Scleroderma Trials and Research group statement and recommendations on endothelial precursor cells. Ann Rheum Dis 68:163–168

    Article  CAS  PubMed  Google Scholar 

  35. Cipriani P, Guiducci S, Miniati I et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004

    Article  CAS  PubMed  Google Scholar 

  36. D'Alessio S, Fibbi G, Cinelli M et al (2004) Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum 50:3275–3285

    Article  PubMed  CAS  Google Scholar 

  37. Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  CAS  PubMed  Google Scholar 

  38. Eklund L, Olsen BR (2006) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312:630–641

    Article  CAS  PubMed  Google Scholar 

  39. Hebbar M, Peyrat JP, Hornez L, Hatron PY, Hachulla E, Devulder B (2000) Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum 43:889–893

    Article  CAS  PubMed  Google Scholar 

  40. Distler O, Del Rosso A, Giacomelli R et al (2002) Angiogenic and angiostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res 4:R11

    Article  PubMed  Google Scholar 

  41. Yamagishi S, Imaizumi T (2005) Pericyte biology and diseases. Int J Tissue React 27:125–135

    CAS  PubMed  Google Scholar 

  42. Helmbold P, Fiedler E, Fischer M, Marsch W (2004) Hyperplasia of dermal microvascular pericytes in scleroderma. J Cutan Pathol 31:431–440

    Article  PubMed  Google Scholar 

  43. Rajkumar VS, Sundberg C, Abraham DJ, Rubin K, Black CM (1999) Activation of microvascular pericytes in autoimmune Raynaud's phenomenon and systemic sclerosis. Arthritis Rheum 42:930–941

    Article  CAS  PubMed  Google Scholar 

  44. Rajkumar VS, Howell K, Csiszar K, Denton CP, Black CM, Abraham DJ (2005) Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther 7:R1113–R1123

    Article  CAS  PubMed  Google Scholar 

  45. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  PubMed  Google Scholar 

  46. Abraham DJ, Varga J (2005) Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol 26:587–595

    Article  CAS  PubMed  Google Scholar 

  47. Whitfield ML, Finlay DR, Murray JI et al (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci USA 100:12319–12324

    Article  CAS  PubMed  Google Scholar 

  48. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K (2000) Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 165:6635–6643

    CAS  PubMed  Google Scholar 

  49. Sato S, Fujimoto M, Hasegawa M, Takehara K (2004) Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 50:1918–1927

    Article  PubMed  Google Scholar 

  50. Hasegawa M, Hamaguchi Y, Yanaba K et al (2006) B-lymphocyte depletion reduces skin fibrosis and autoimmunity in the tight-skin mouse model for systemic sclerosis. Am J Pathol 169:954–966

    Article  CAS  PubMed  Google Scholar 

  51. Harris ML, Rosen A (2003) Autoimmunity in scleroderma: the origin, pathogenetic role, and clinical significance of autoantibodies. Curr Opin Rheumatol 15:778–784

    Article  CAS  PubMed  Google Scholar 

  52. Rosenbaum J, Pottinger BE, Woo P et al (1988) Measurement and characterisation of circulating anti-endothelial cell IgG in connective tissue diseases. Clin Exp Immunol 72:450–456

    CAS  PubMed  Google Scholar 

  53. Carvalho D, Savage CO, Black CM, Pearson JD (1996) IgG antiendothelial cell autoantibodies from scleroderma patients induce leukocyte adhesion to human vascular endothelial cells in vitro. Induction of adhesion molecule expression and involvement of endothelium-derived cytokines. J Clin Invest 97:111–119

    Article  CAS  PubMed  Google Scholar 

  54. Baroni SS, Santillo M, Bevilacqua F et al (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354:2667–2676

    Article  CAS  PubMed  Google Scholar 

  55. Hasegawa M, Fujimoto M, Takehara K, Sato S (2005) Pathogenesis of systemic sclerosis: altered B cell function is the key linking systemic autoimmunity and tissue fibrosis. J Dermatol Sci 39:1–7

    Article  CAS  PubMed  Google Scholar 

  56. Stummvoll GH, Aringer M, Grisar J et al (2004) Increased transendothelial migration of scleroderma lymphocytes. Ann Rheum Dis 63:569–574

    Article  CAS  PubMed  Google Scholar 

  57. Sakkas LI, Xu B, Artlett CM, Lu S, Jimenez SA, Platsoucas CD (2002) Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol 168:3649–3659

    CAS  PubMed  Google Scholar 

  58. Artlett CM (2005) Immunology of systemic sclerosis. Front Biosci 10:1707–1719

    Article  CAS  PubMed  Google Scholar 

  59. Steen VD, Engel EE, Charley MR, Medsger TA Jr (1996) Soluble serum interleukin 2 receptors in patients with systemic sclerosis. J Rheumatol 23:646–649

    CAS  PubMed  Google Scholar 

  60. French LE, Lessin SR, Addya K et al (2001) Identification of clonal T cells in the blood of patients with systemic sclerosis: positive correlation with response to photopheresis. Arch Dermatol 137:1309–1313

    CAS  PubMed  Google Scholar 

  61. Wynn TA (2004) Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4:583–594

    Article  CAS  PubMed  Google Scholar 

  62. Wangoo A, Sparer T, Brown IN et al (2001) Contribution of Th1 and Th2 cells to protection and pathology in experimental models of granulomatous lung disease. J Immunol 166:3432–3439

    CAS  PubMed  Google Scholar 

  63. Lakos G, Melichian D, Wu M, Varga J (2006) Increased bleomycin-induced skin fibrosis in mice lacking the Th1-specific transcription factor T-bet. Pathobiology 73:224–237

    Article  CAS  PubMed  Google Scholar 

  64. Tan FK, Zhou X, Mayes MD et al (2006) Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 45:694–702

    Article  CAS  Google Scholar 

  65. Mavalia C, Scaletti C, Romagnani P et al (1997) Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol 151:1751–1758

    CAS  PubMed  Google Scholar 

  66. Atamas SP, Yurovsky VV, Wise R et al (1999) Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum 42:1168–1178

    Article  CAS  PubMed  Google Scholar 

  67. Rottoli P, Magi B, Perari MG et al (2005) Cytokine profile and proteome analysis in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics 5:1423–1430

    Article  CAS  PubMed  Google Scholar 

  68. Chizzolini C, Parel Y, De Luca C et al (2003) Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor alpha. Arthritis Rheum 48:2593–2604

    Article  CAS  PubMed  Google Scholar 

  69. Matsushita T, Hasegawa M, Hamaguchi Y, Takehara K, Sato S (2006) Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J Rheumatol 33:275–284

    CAS  PubMed  Google Scholar 

  70. Giacomelli R, Cipriani P, Fulminis A et al (2001) Circulating gamma/delta T lymphocytes from systemic sclerosis (SSc) patients display a T helper (Th) 1 polarization. Clin Exp Immunol 125:310–315

    Article  CAS  PubMed  Google Scholar 

  71. Giacomelli R, Matucci-Cerinic M, Cipriani P et al (1998) Circulating Vdelta1+ T cells are activated and accumulate in the skin of systemic sclerosis patients. Arthritis Rheum 41:327–334

    Article  CAS  PubMed  Google Scholar 

  72. Chang HY, Chi JT, Dudoit S et al (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99:12877–12882

    Article  CAS  PubMed  Google Scholar 

  73. Abraham DJ, Eckes B, Rajkumar V, Krieg T (2007) New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 9:136–143

    Article  CAS  PubMed  Google Scholar 

  74. Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13:7–12

    Article  PubMed  Google Scholar 

  75. Kalluri R, Neilson EG (2003) Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    CAS  PubMed  Google Scholar 

  76. Zeisberg M, Hanai J, Sugimoto H et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  CAS  PubMed  Google Scholar 

  77. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    CAS  PubMed  Google Scholar 

  78. Cipriani P, Franca Milia A, Liakouli V et al (2006) Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: pathogenetic implications. Arthritis Rheum 54:3022–3033

    Article  CAS  PubMed  Google Scholar 

  79. Phillips RJ, Burdick MD, Hong K et al (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114:438–446

    CAS  PubMed  Google Scholar 

  80. Kuwana M, Okazaki Y, Kodama H et al (2003) Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 74:833–845

    Article  CAS  PubMed  Google Scholar 

  81. Pannu J, Trojanowska M (2004) Recent advances in fibroblast signaling and biology in scleroderma. Curr Opin Rheumatol 16:739–745

    Article  CAS  PubMed  Google Scholar 

  82. Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820

    Article  CAS  PubMed  Google Scholar 

  83. Varga J, Bashey RI (1995) Regulation of connective tissue synthesis in systemic sclerosis. Int Rev Immunol 12:187–199

    Article  CAS  PubMed  Google Scholar 

  84. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  CAS  PubMed  Google Scholar 

  85. Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118:3573–3584

    Article  CAS  PubMed  Google Scholar 

  86. Daniels CE, Wilkes MC, Edens M et al (2004) Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 114:1308–1316

    CAS  PubMed  Google Scholar 

  87. Chen SJ, Ning H, Ishida W et al (2006) The early-immediate gene EGR-1 is induced by transforming growth factor-beta and mediates stimulation of collagen gene expression. J Biol Chem 281:21183–21197

    Article  CAS  PubMed  Google Scholar 

  88. Igarashi A, Nashiro K, Kikuchi K et al (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106:729–733

    Article  CAS  PubMed  Google Scholar 

  89. Leask A (2009) Signaling in fibrosis: targeting the TGF beta, endothelin-1 and CCN2 axis in scleroderma. Front Biosci (Elite Ed) 1:115–122

    Google Scholar 

  90. Gay S, Jones RE Jr, Huang GQ, Gay RE (1989) Immunohistologic demonstration of platelet-derived growth factor (PDGF) and sis-oncogene expression in scleroderma. J Invest Dermatol 92:301–303

    Article  CAS  PubMed  Google Scholar 

  91. Ludwicka A, Ohba T, Trojanowska M et al (1995) Elevated levels of platelet derived growth factor and transforming growth factor-beta 1 in bronchoalveolar lavage fluid from patients with scleroderma. J Rheumatol 22:1876–1883

    CAS  PubMed  Google Scholar 

  92. Jinnin M, Ihn H, Yamane K, Tamaki K (2004) Interleukin-13 stimulates the transcription of the human alpha2(I) collagen gene in human dermal fibroblasts. J Biol Chem 279:41783–41791

    Article  CAS  PubMed  Google Scholar 

  93. Kaviratne M, Hesse M, Leusink M et al (2004) IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol 173:4020–4029

    CAS  PubMed  Google Scholar 

  94. Postlethwaite AE, Holness MA, Katai H, Raghow R (1992) Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest 90:1479–1485

    Article  CAS  PubMed  Google Scholar 

  95. Salmon-Ehr V, Serpier H, Nawrocki B et al (1996) Expression of interleukin-4 in scleroderma skin specimens and scleroderma fibroblast cultures. Potential role in fibrosis. Arch Dermatol 132:802–806

    Article  CAS  PubMed  Google Scholar 

  96. Hasegawa M, Fujimoto M, Kikuchi K, Takehara K (1997) Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol 24:328–332

    CAS  PubMed  Google Scholar 

  97. Tsuji-Yamada J, Nakazawa M, Minami M, Sasaki T (2001) Increased frequency of interleukin 4 producing CD4+ and CD8+ cells in peripheral blood from patients with systemic sclerosis. J Rheumatol 28:1252–1258

    CAS  PubMed  Google Scholar 

  98. Distler JH, Jungel A, Caretto D et al (2006) Monocyte chemoattractant protein 1 released from glycosaminoglycans mediates its profibrotic effects in systemic sclerosis via the release of interleukin-4 from T cells. Arthritis Rheum 54:214–225

    Article  CAS  PubMed  Google Scholar 

  99. Kodera M, Hasegawa M, Komura K, Yanaba K, Takehara K, Sato S (2005) Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis. Arthritis Rheum 52:2889–2896

    Article  CAS  PubMed  Google Scholar 

  100. Jimenez SA, Freundlich B, Rosenbloom J (1984) Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest 74:1112–1116

    Article  CAS  PubMed  Google Scholar 

  101. Ghosh AK, Yuan W, Mori Y, Chen S, Varga J (2001) Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional coactivators. J Biol Chem 276:11041–11048

    Article  CAS  PubMed  Google Scholar 

  102. Arai T, Abe K, Matsuoka H et al (2000) Introduction of the interleukin-10 gene into mice inhibited bleomycin-induced lung injury in vivo. Am J Physiol Lung Cell Mol Physiol 278:L914–L922

    CAS  PubMed  Google Scholar 

  103. Barbarin V, Xing Z, Delos M, Lison D, Huaux F (2005) Pulmonary overexpression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. Am J Physiol Lung Cell Mol Physiol 288:L841–L848

    Article  CAS  PubMed  Google Scholar 

  104. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol 112:49–57

    Article  CAS  PubMed  Google Scholar 

  105. Chen SJ, Artlett CM, Jimenez SA, Varga J (1998) Modulation of human alpha1(I) procollagen gene activity by interaction with Sp1 and Sp3 transcription factors in vitro. Gene 215:101–110

    Article  CAS  PubMed  Google Scholar 

  106. Czuwara-Ladykowska J, Sementchenko VI, Watson DK, Trojanowska M (2002) Ets1 is an effector of the transforming growth factor beta (TGF-beta ) signaling pathway and an antagonist of the profibrotic effects of TGF-beta. J Biol Chem 277:20399–20408

    Article  CAS  PubMed  Google Scholar 

  107. Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M (2001) Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem 276:20839–20848

    Article  CAS  PubMed  Google Scholar 

  108. Ghosh AK, Bhattacharyya S, Varga J (2004) The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymal cells. J Biol Chem 279:47455–47463

    Article  CAS  PubMed  Google Scholar 

  109. Ghosh AK, Bhattacharyya S, Lakos G, Chen SJ, Mori Y, Varga J (2004) Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma. Arthritis Rheum 50:1305–1318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Müller-Ladner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geyer, M., Müller-Ladner, U. The Pathogenesis of Systemic Sclerosis Revisited. Clinic Rev Allerg Immunol 40, 92–103 (2011). https://doi.org/10.1007/s12016-009-8193-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8193-3

Keywords

Navigation