Skip to main content

Advertisement

Log in

Epigenetic Therapeutics in Autoimmune Disease

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Several lines of evidence suggest the involvement of disturbance in epigenetic processes in autoimmune disease. Most noteworthy is the global DNA hypomethylation seen in lupus. Epigenetic states in difference from genetic lesions are potentially reversible and hence candidates for pharmacological intervention. Potential targets for drug development are histone modification and DNA methylating and demethylating enzymes. The most advanced set of drugs in clinical development are histone deacetylase (HDAC) inhibitors. However, the prevalence of DNA hypomethylation in lupus suggests that we should shift our attention from HDAC inhibitors to DNA demethylation inhibitors. MBD2 was recently proposed to be involved in demethylation in T cells in lupus and is, therefore, a candidate target. Although this field is at its infancy, it carries great promise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Q, Kaplan M, Ray D et al (2002) Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 46:1282–1291

    PubMed  CAS  Google Scholar 

  2. Mi XB, Zeng FQ (2008) Hypomethylation of interleukin-4 and -6 promoters in T cells from systemic lupus erythematosus patients. Acta Pharmacol Sin 29:105–112

    PubMed  CAS  Google Scholar 

  3. Aoki K, Sato N, Yamaguchi A, Kaminuma O, Hosozawa T, Miyatake S (2009) Regulation of DNA demethylation during maturation of CD4+ naive T cells by the conserved noncoding sequence 1. J Immunol 182:7698–7707

    PubMed  CAS  Google Scholar 

  4. Richardson B (2003) DNA methylation and autoimmune disease. Clin Immunol 109:72–79

    PubMed  CAS  Google Scholar 

  5. White GP, Hollams EM, Yerkovich ST et al (2006) CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol 17:557–564

    PubMed  Google Scholar 

  6. Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA (2007) Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 85:2006–2016

    PubMed  CAS  Google Scholar 

  7. Hu N, Qiu X, Luo Y et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35:804–810

    PubMed  CAS  Google Scholar 

  8. Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    PubMed  CAS  Google Scholar 

  9. Ateeq B, Unterberger A, Szyf M, Rabbani SA (2008) Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10:266–278

    PubMed  CAS  Google Scholar 

  10. Razin A (1998) CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J 17:4905–4908

    PubMed  CAS  Google Scholar 

  11. Groudine M, Eisenman R, Gelinas R, Weintraub H (1983) Developmental aspects of chromatin structure and gene expression. Prog Clin Biol Res 134:159–182

    PubMed  CAS  Google Scholar 

  12. Marks PA, Sheffery M, Rifkind RA (1985) Modulation of gene expression during terminal cell differentiation. Prog Clin Biol Res 191:185–203

    PubMed  CAS  Google Scholar 

  13. Ramain P, Bourouis M, Dretzen G, Richards G, Sobkowiak A, Bellard M (1986) Changes in the chromatin structure of Drosophila glue genes accompany developmental cessation of transcription in wild type and transformed strains. Cell 45:545–553

    PubMed  CAS  Google Scholar 

  14. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    PubMed  CAS  Google Scholar 

  15. Varga-Weisz PD, Becker PB (2006) Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 16:151–156

    PubMed  CAS  Google Scholar 

  16. Kwon SH, Workman JL (2008) The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol Cell 26:217–227

    CAS  Google Scholar 

  17. Bergmann A, Lane ME (2003) HIDden targets of microRNAs for growth control. Trends Biochem Sci 28:461–463

    PubMed  CAS  Google Scholar 

  18. Zhang B, Pan X, Cobb GP, Anderson TA (2007) MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    PubMed  CAS  Google Scholar 

  19. Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36

    PubMed  CAS  Google Scholar 

  20. Pauley KM, Cha S, Chan EK (2009) MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 32:189–194

    PubMed  CAS  Google Scholar 

  21. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA (2008) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205:1983–1991

    PubMed  CAS  Google Scholar 

  22. Lau NC, Seto AG, Kim J et al (2006) Characterization of the piRNA complex from rat testes. Science 313:363–367

    PubMed  CAS  Google Scholar 

  23. Vu TH, Jirtle RL, Hoffman AR (2006) Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene. Cytogenet Genome Res 113:202–208

    PubMed  CAS  Google Scholar 

  24. Lee JT, Strauss WM, Dausman JA, Jaenisch R (1996) A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86:83–94

    PubMed  CAS  Google Scholar 

  25. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540

    PubMed  CAS  Google Scholar 

  26. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  27. Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222

    PubMed  CAS  Google Scholar 

  28. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29R

    PubMed  CAS  Google Scholar 

  29. Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L (2009) Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol 53:245–257

    PubMed  CAS  Google Scholar 

  30. Hawkins PG, Santoso S, Adams C, Anest V, Morris KV (2009) Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 37:2984–2995

    PubMed  CAS  Google Scholar 

  31. Camelo S, Iglesias AH, Hwang D et al (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 164:10–21

    PubMed  CAS  Google Scholar 

  32. Halili MA, Andrews MR, Sweet MJ, Fairlie DP (2009) Histone deacetylase inhibitors in inflammatory disease. Curr Top Med Chem 9:309–319

    PubMed  CAS  Google Scholar 

  33. Finch JT, Lutter LC, Rhodes D et al (1977) Structure of nucleosome core particles of chromatin. Nature 269:29–36

    PubMed  CAS  Google Scholar 

  34. Sarma K, Reinberg D (2005) Histone variants meet their match. Nat Rev Mol Cell Biol 6:139–149

    PubMed  CAS  Google Scholar 

  35. Jenuwein T (2001) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 11:266–273

    PubMed  CAS  Google Scholar 

  36. Wade PA, Pruss D, Wolffe AP (1997) Histone acetylation: chromatin in action. Trends Biochem Sci 22:128–132

    PubMed  CAS  Google Scholar 

  37. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A 100:13225–13230

    PubMed  CAS  Google Scholar 

  38. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2432:243–269

    Google Scholar 

  39. Wang Z, Zang C, Rosenfeld JA (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    PubMed  CAS  Google Scholar 

  40. Henikoff S, McKittrick E, Ahmad K (2004) Epigenetics, histone H3 variants, and the inheritance of chromatin states. Cold Spring Harb Symp Quant Biol 69:235–243

    PubMed  CAS  Google Scholar 

  41. Kusch T, Workman JL (2007) Histone variants and complexes involved in their exchange. Subcell Biochem 41:91–109

    PubMed  Google Scholar 

  42. Wolffe AP (1996) Histone deacetylase: a regulator of transcription. Science 272:371–372

    PubMed  CAS  Google Scholar 

  43. Wotton D, Lo RS, Lee S, Massague J (1999) A Smad transcriptional corepressor. Cell 97:29–39

    PubMed  CAS  Google Scholar 

  44. Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626

    PubMed  CAS  Google Scholar 

  45. Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 18:2315–2335

    PubMed  CAS  Google Scholar 

  46. Perry M, Chalkley R (1982) Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. A novel model for the biological role of histone acetylation. J Biol Chem 257:7336–7347

    PubMed  CAS  Google Scholar 

  47. Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    PubMed  CAS  Google Scholar 

  48. Sinha I, Wiren M, Ekwall K (2006) Genome-wide patterns of histone modifications in fission yeast. Chromosome Res 14:95–105

    PubMed  CAS  Google Scholar 

  49. Roh TY, Zhao K (2007) High-resolution, genome-wide mapping of chromatin modifications by GMAT. Methods Mol Biol 387:95–108

    Google Scholar 

  50. Roh TY, Zhao K (2008) High-resolution, genome-wide mapping of chromatin modifications by GMAT. Methods Mol Biol 387:95–108

    PubMed  CAS  Google Scholar 

  51. Lu ZP, Ju ZL, Shi GY, Zhang JW, Sun J (2005) Histone deacetylase inhibitor trichostatin A reduces anti-DNA autoantibody production and represses IgH gene transcription. Biochem Biophys Res Commun 330:204–209

    PubMed  CAS  Google Scholar 

  52. Gray SG, Dangond F (2006) Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics 1:67–75

    PubMed  Google Scholar 

  53. Tao R, Hancock WW (2007) Regulating regulatory T cells to achieve transplant tolerance. Hepatobiliary Pancreat Dis Int 6:348–357

    PubMed  CAS  Google Scholar 

  54. Li N, Zhao D, Kirschbaum M et al (2008) HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc Natl Acad Sci U S A 105:4796–4801

    PubMed  CAS  Google Scholar 

  55. Kuwatsuka Y, Ogawa F, Iwata Y et al (2009) Decreased levels of autoantibody against histone deacetylase 3 in patients with systemic sclerosis. Autoimmunity 42:120–125

    PubMed  CAS  Google Scholar 

  56. Verdone L, Caserta M, Di Mauro E (2005) Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83:344–353

    PubMed  CAS  Google Scholar 

  57. Borrow J, Stanton VP Jr, Andresen JM et al (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14:33–41

    PubMed  CAS  Google Scholar 

  58. van Attikum H, Gasser SM (2009) Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19:207–217

    PubMed  Google Scholar 

  59. Ikura T, Ogryzko VV, Grigoriev M et al (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473

    PubMed  CAS  Google Scholar 

  60. Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102:13182–13187

    PubMed  CAS  Google Scholar 

  61. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839

    PubMed  CAS  Google Scholar 

  62. Fu M, Wang C, Zhang X, Pestell RG (2004) Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol 68:1199–1208

    PubMed  CAS  Google Scholar 

  63. Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B (1988) Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol 140:2197–2200

    PubMed  CAS  Google Scholar 

  64. Yung RL, Richardson BC (1994) Role of T cell DNA methylation in lupus syndromes. Lupus 3:487–491

    PubMed  CAS  Google Scholar 

  65. Yung RL, Quddus J, Chrisp CE, Johnson KJ, Richardson BC (1995) Mechanism of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. J Immunol 154:3025–3035

    PubMed  CAS  Google Scholar 

  66. Manzo F, Tambaro FP, Mai A, Altucci L (2009) Histone acetyltransferase inhibitors and preclinical studies. Expert Opin Ther Pat 19:761–774

    PubMed  CAS  Google Scholar 

  67. Mai A, Rotili D, Tarantino D et al (2009) Identification of 4-hydroxyquinolines inhibitors of p300/CBP histone acetyltransferases. Bioorg Med Chem Lett 19:1132–1135

    PubMed  CAS  Google Scholar 

  68. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140

    PubMed  CAS  Google Scholar 

  69. Souto JA, Conte M, Alvarez R et al (2008) Synthesis of benzamides related to anacardic acid and their histone acetyltransferase (HAT) inhibitory activities. ChemMedChem 3:1435–1442

    PubMed  CAS  Google Scholar 

  70. Arif M, Pradhan SK, Thanuja GR et al (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 52:267–277

    PubMed  CAS  Google Scholar 

  71. Lee YH, Jung MG, Kang HB et al (2008) Effect of anti-histone acetyltransferase activity from Rosa rugosa Thunb. (Rosaceae) extracts on androgen receptor-mediated transcriptional regulation. J Ethnopharmacol 118:412–417

    PubMed  CAS  Google Scholar 

  72. Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA (2008) Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105:108–120

    PubMed  CAS  Google Scholar 

  73. Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580:4353–4356

    PubMed  CAS  Google Scholar 

  74. Holbert MA, Marmorstein R (2005) Structure and activity of enzymes that remove histone modifications. Curr Opin Struct Biol 15:673–680

    PubMed  CAS  Google Scholar 

  75. Glaser KB, Li J, Staver MJ, Wei RQ, Albert DH, Davidsen SK (2003) Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun 310:529–536

    PubMed  CAS  Google Scholar 

  76. Zimmermann S, Kiefer F, Prudenziati M (2007) Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res 67:9047–9054

    PubMed  CAS  Google Scholar 

  77. Weichert W, Roske A, Niesporek S et al (2008) Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 14:1669–1677

    PubMed  CAS  Google Scholar 

  78. Nakagawa M, Oda Y, Eguchi T et al (2007) Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep 18:769–774

    PubMed  CAS  Google Scholar 

  79. Mottet D, Bellahcene A, Pirotte S et al (2007) Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 101:1237–1246

    PubMed  CAS  Google Scholar 

  80. Gan L (2007) Therapeutic potential of sirtuin-activating compounds in Alzheimer's disease. Drug News Perspect 20:233–239

    PubMed  CAS  Google Scholar 

  81. Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J (2004) Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 95:971–980

    PubMed  CAS  Google Scholar 

  82. Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307

    PubMed  CAS  Google Scholar 

  83. Gartenberg MR (2000) The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. Curr Opin Microbiol 3:132–137

    PubMed  CAS  Google Scholar 

  84. Alfred J (2000) Counting the calories to immortality. Nat Rev Genet 1:88

    PubMed  CAS  Google Scholar 

  85. Kim S, Benguria A, Lai CY, Jazwinski SM (1999) Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 10:3125–3136

    PubMed  CAS  Google Scholar 

  86. Peixoto P, Lansiaux A (2006) Histone-deacetylases inhibitors: from TSA to SAHA. Bull Cancer 93:27–36

    PubMed  CAS  Google Scholar 

  87. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019

    PubMed  CAS  Google Scholar 

  88. Santini V, Gozzini A, Ferrari G (2007) Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab 8:383–393

    PubMed  CAS  Google Scholar 

  89. Fournel M, Bonfils C, Hou Y et al (2008) MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther 7:759–768

    PubMed  CAS  Google Scholar 

  90. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    PubMed  CAS  Google Scholar 

  91. Duvic M, Vu J (2007) Vorinostat in cutaneous T-cell lymphoma. Drugs Today (Barc) 43:585–599

    CAS  Google Scholar 

  92. Siu LL, Pili R, Duran I et al (2008) Phase I study of MGCD0103 given as a three-times-per-week oral dose in patients with advanced solid tumors. J Clin Oncol 26:1940–1947

    PubMed  CAS  Google Scholar 

  93. Kell J (2007) Drug evaluation: MGCD-0103, a histone deacetylase inhibitor for the treatment of cancer. Curr Opin Investig Drugs 8:485–492

    PubMed  CAS  Google Scholar 

  94. Rasheed WK, Johnstone RW, Prince HM (2007) Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs 16:659–678

    PubMed  CAS  Google Scholar 

  95. Shankar S, Srivastava RK (2008) Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv Exp Med Biol 615:261–298

    PubMed  Google Scholar 

  96. Sambucetti LC, Fischer DD, Zabludoff S et al (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 274:34940–34947

    PubMed  CAS  Google Scholar 

  97. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 111:539–552

    PubMed  CAS  Google Scholar 

  98. Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D (2001) Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104:119–130

    PubMed  CAS  Google Scholar 

  99. Hublitz P, Kunowska N, Mayer UP et al (2005) NIR is a novel INHAT repressor that modulates the transcriptional activity of p53. Genes Dev 19:2912–2924

    PubMed  CAS  Google Scholar 

  100. Wiencke JK, Zheng S, Morrison Z, Yeh RF (2008) Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene 27:2412–2421

    PubMed  CAS  Google Scholar 

  101. Miao F, Natarajan R (2005) Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol 25:4650–4661

    PubMed  CAS  Google Scholar 

  102. Santos-Rosa H, Schneider R, Bannister AJ et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411

    PubMed  CAS  Google Scholar 

  103. Akan P, Sahlen M, Deloukas P (2009) A histone map of human chromosome 20q13.12. PLoS ONE 4:4479

    Google Scholar 

  104. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    PubMed  CAS  Google Scholar 

  105. Zhao XD, Han X, Chew JL et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298

    PubMed  CAS  Google Scholar 

  106. Rea S, Eisenhaber F, O'Carroll D et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    PubMed  CAS  Google Scholar 

  107. Peters AH, Schubeler D (2005) Methylation of histones: playing memory with DNA. Curr Opin Cell Biol 17:230–238

    PubMed  CAS  Google Scholar 

  108. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294

    PubMed  CAS  Google Scholar 

  109. Nguyen CT, Weisenberger DJ, Velicescu M et al (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62:6456–6461

    PubMed  CAS  Google Scholar 

  110. Coombes MM, Briggs KL, Bone JR, Clayman GL, El-Naggar AK, Dent SY (2003) Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation. Oncogene 22:8902–8911

    PubMed  CAS  Google Scholar 

  111. Meng CF, Zhu XJ, Peng G, Dai DQ (2007) Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J Gastroenterol 13:6166–6171

    PubMed  CAS  Google Scholar 

  112. Schlesinger Y, Straussman R, Keshet I et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    PubMed  CAS  Google Scholar 

  113. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145

    PubMed  CAS  Google Scholar 

  114. Kubicek S, O'Sullivan RJ, August EM et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481

    PubMed  CAS  Google Scholar 

  115. Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10:R62

    PubMed  Google Scholar 

  116. Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    PubMed  CAS  Google Scholar 

  117. Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    PubMed  CAS  Google Scholar 

  118. Klose RJ, Yamane K, Bae Y et al (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316

    PubMed  CAS  Google Scholar 

  119. Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432–435

    PubMed  CAS  Google Scholar 

  120. Wang J, Scully K, Zhu X et al (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446:882–887

    PubMed  CAS  Google Scholar 

  121. Tsukada Y, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    PubMed  CAS  Google Scholar 

  122. Huang Y, Greene E, Murray Stewart T et al (2007) Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci U S A 104:8023–8028

    PubMed  CAS  Google Scholar 

  123. Lee MG, Wynder C, Schmidt DM, McCafferty DG, Shiekhattar R (2006) Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol 13:563–567

    PubMed  CAS  Google Scholar 

  124. Lee DU, Agarwal S, Rao A (2002) Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 16:649–660

    PubMed  CAS  Google Scholar 

  125. Santangelo S, Cousins DJ, Winkelmann NE, Staynov DZ (2002) DNA methylation changes at human Th2 cytokine genes coincide with DNase I hypersensitive site formation during CD4(+) T cell differentiation. J Immunol 169:1893–1903

    PubMed  CAS  Google Scholar 

  126. Richardson B (2007) Primer: epigenetics of autoimmunity. Nat Clin Pract Rheumatol 3:521–527

    PubMed  CAS  Google Scholar 

  127. Balada E, Ordi-Ros J, Vilardell-Tarres M (2007) DNA methylation and systemic lupus erythematosus. Ann N Y Acad Sci 1108:127–136

    PubMed  CAS  Google Scholar 

  128. Quddus J, Johnson KJ, Gavalchin J et al (1993) Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 92:38–53

    PubMed  CAS  Google Scholar 

  129. Yoshida H, Yoshida M, Merino R, Shibata T, Izui S (1990) 5-Azacytidine inhibits the lpr gene-induced lymphadenopathy and acceleration of lupus-like syndrome in MRL/MpJ-lpr/lpr mice. Eur J Immunol 20:1989–1993

    PubMed  CAS  Google Scholar 

  130. Razin A, Cedar H (1977) Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci U S A 74:2725–2728

    PubMed  CAS  Google Scholar 

  131. Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases [letter]. Nat Genet 19:219–220

    PubMed  CAS  Google Scholar 

  132. Vilain A, Apiou F, Dutrillaux B, Malfoy B (1998) Assignment of candidate DNA methyltransferase gene (DNMT2) to human chromosome band 10p15.1 by in situ hybridization. Cytogenet Cell Genet 82:120

    PubMed  CAS  Google Scholar 

  133. Rai K, Chidester S, Zavala CV et al (2007) Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 21:261–266

    PubMed  CAS  Google Scholar 

  134. Goll MG, Kirpekar F, Maggert KA et al (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    PubMed  CAS  Google Scholar 

  135. Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    PubMed  Google Scholar 

  136. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    PubMed  CAS  Google Scholar 

  137. Wu JC, Santi DV (1985) On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clin Biol Res 198:119–129

    PubMed  CAS  Google Scholar 

  138. Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M (1999) DNA methylation is a reversible biological signal. Proc Natl Acad Sci U S A 96:6107–6112

    PubMed  CAS  Google Scholar 

  139. Levenson JM, Roth TL, Lubin FD et al (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281:15763–15773

    PubMed  CAS  Google Scholar 

  140. Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4:235–240

    PubMed  CAS  Google Scholar 

  141. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    PubMed  CAS  Google Scholar 

  142. Vire E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    PubMed  CAS  Google Scholar 

  143. Di Croce L, Raker VA, Corsaro M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082

    PubMed  Google Scholar 

  144. Kersh EN, Fitzpatrick DR, Murali-Krishna K et al (2006) Rapid demethylation of the IFN-{gamma} gene occurs in memory but not naive CD8 T cells. J Immunol 176:4083–4093

    PubMed  CAS  Google Scholar 

  145. Gjerset RA, Martin DW Jr (1982) Presence of a DNA demethylating activity in the nucleus of murine erythroleukemic cells. J Biol Chem 257:8581–8583

    PubMed  CAS  Google Scholar 

  146. Szyf M, Theberge J, Bozovic V (1995) Ras induces a general DNA demethylation activity in mouse embryonal P19 cells. J Biol Chem 270:12690–12696

    PubMed  CAS  Google Scholar 

  147. Patra SK, Patra A, Zhao H, Dahiya R (2002) DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog 33:163–171

    PubMed  CAS  Google Scholar 

  148. Jost JP (1993) Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci U S A 90:4684–4688

    PubMed  CAS  Google Scholar 

  149. Zhu B, Zheng Y, Hess D et al (2000) 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci U S A 97:5135–5139

    PubMed  CAS  Google Scholar 

  150. Barreto G, Schafer A, Marhold J et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675

    PubMed  CAS  Google Scholar 

  151. Jin SG, Guo C, Pfeifer GP (2008) GADD45A does not promote DNA demethylation. PLoS Genet 4:e1000013

    PubMed  Google Scholar 

  152. Metivier R, Gallais R, Tiffoche C et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    PubMed  CAS  Google Scholar 

  153. Kangaspeska S, Stride B, Metivier R et al (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115

    PubMed  CAS  Google Scholar 

  154. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212

    PubMed  CAS  Google Scholar 

  155. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M (1999) A mammalian protein with specific demethylase activity for mCpG DNA [see comments]. Nature 397:579–583

    PubMed  CAS  Google Scholar 

  156. Hamm S, Just G, Lacoste N, Moitessier N, Szyf M, Mamer O (2008) On the mechanism of demethylation of 5-methylcytosine in DNA. Bioorg Med Chem Lett 18:1046–1049

    PubMed  CAS  Google Scholar 

  157. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    PubMed  CAS  Google Scholar 

  158. Ng HH, Zhang Y, Hendrich B et al (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61

    PubMed  CAS  Google Scholar 

  159. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15:710–723

    PubMed  CAS  Google Scholar 

  160. Sansom OJ, Berger J, Bishop SM, Hendrich B, Bird A, Clarke AR (2003) Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet 34:145–147

    PubMed  CAS  Google Scholar 

  161. Detich N, Theberge J, Szyf M (2002) Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem 277:35791–35794

    PubMed  CAS  Google Scholar 

  162. Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278:27586–27592

    PubMed  CAS  Google Scholar 

  163. Goel A, Mathupala SP, Pedersen PL (2003) Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type ii hexokinase gene expression. J Biol Chem 278:15333–15340

    PubMed  CAS  Google Scholar 

  164. Slack A, Bovenzi V, Bigey P et al (2002) Antisense MBD2 gene therapy inhibits tumorigenesis. J Gene Med 4:381–389

    PubMed  CAS  Google Scholar 

  165. Campbell PM, Bovenzi V, Szyf M (2003) Methylated DNA binding protein 2 antisense inhibitors suppress tumorigenesis of human cancer lines in vitro and in vivo. Carcinogenesis 25:499–507

    PubMed  Google Scholar 

  166. Pakneshan P, Szyf M, Rabbani SA (2004) Methylation and inhibition of uPA expression by RAS oncogene: divergence of growth control and invasion in breast cancer cells. Carcinogenesis 26:557–564

    PubMed  Google Scholar 

  167. Shukeir N, Pakneshan P, Chen G, Szyf M, Rabbani SA (2006) Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res 66:9202–9210

    PubMed  CAS  Google Scholar 

  168. Balada E, Ordi-Ros J, Serrano-Acedo S, Martinez-Lostao L, Vilardell-Tarres M (2007) Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J Leukoc Biol 81:1609–1616

    PubMed  CAS  Google Scholar 

  169. Szyf M (1994) DNA methylation properties: consequences for pharmacology. Trends Pharmacol Sci 15:233–238

    PubMed  CAS  Google Scholar 

  170. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    PubMed  CAS  Google Scholar 

  171. Kuendgen A, Lubbert M (2008) Current status of epigenetic treatment in myelodysplastic syndromes. Ann Hematol 87(8):601–611

    PubMed  CAS  Google Scholar 

  172. Cheng JC, Matsen CB, Gonzales FA et al (2003) Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95:399–409

    PubMed  CAS  Google Scholar 

  173. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    PubMed  CAS  Google Scholar 

  174. Ghoshal K, Datta J, Majumder S et al (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25:4727–4741

    PubMed  CAS  Google Scholar 

  175. Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci U S A 91:11797–11801

    PubMed  CAS  Google Scholar 

  176. Brueckner B, Boy RG, Siedlecki P et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311

    PubMed  CAS  Google Scholar 

  177. Oki Y, Aoki E, Issa JP (2007) Decitabine—bedside to bench. Crit Rev Oncol Hematol 61:140–152

    PubMed  Google Scholar 

  178. Weiss AJ, Metter GE, Nealon TF et al (1977) Phase II study of 5-azacytidine in solid tumors. Cancer Treat Rep 61:55–58

    PubMed  CAS  Google Scholar 

  179. Szyf M (2001) The role of DNA methyltransferase 1 in growth control. Front Biosci 6:D599–D609

    PubMed  CAS  Google Scholar 

  180. Scheinbart LS, Johnson MA, Gross LA, Edelstein SR, Richardson BC (1991) Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol 18:530–534

    PubMed  CAS  Google Scholar 

  181. Castellano S, Kuck D, Sala M, Novellino E, Lyko F, Sbardella G (2008) Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 51:2321–2325

    PubMed  CAS  Google Scholar 

  182. Milutinovic S, D'Alessio AC, Detich N, Szyf M (2007) Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 28:560–571

    PubMed  CAS  Google Scholar 

  183. Szyf M (2007) The dynamic epigenome and its implications in toxicology. Toxicol Sci 100:7–23

    PubMed  CAS  Google Scholar 

  184. Szyf M (2005) DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc) 70:533–549

    CAS  Google Scholar 

  185. Szyf M (2008) The role of DNA hypermethylation and demethylation in cancer and cancer therapy. Curr Oncol 15:72–75

    PubMed  CAS  Google Scholar 

  186. Campbell PM, Bovenzi V, Szyf M (2004) Methylated DNA-binding protein 2 antisense inhibitors suppress tumourigenesis of human cancer cell lines in vitro and in vivo. Carcinogenesis 25:499–507

    PubMed  CAS  Google Scholar 

  187. Pakneshan P, Szyf M, Farias-Eisner R, Rabbani SA (2004) Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279:31735–31744

    PubMed  CAS  Google Scholar 

  188. Detich N, Hamm S, Just G, Knox JD, Szyf M (2003) The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem 278:20812–20820

    PubMed  CAS  Google Scholar 

  189. Gorelik G, Richardson B (2009) Aberrant T cell ERK pathway signaling and chromatin structure in lupus. Autoimmun Rev 8:196–198

    PubMed  CAS  Google Scholar 

  190. Carney MW, Edeh J, Bottiglieri T, Reynolds EM, Toone BK (1986) Affective illness and S-adenosyl methionine: a preliminary report. Clin Neuropharmacol 9:379–385

    Article  PubMed  CAS  Google Scholar 

  191. Gatto G, Caleri D, Michelacci S, Sicuteri F (1986) Analgesizing effect of a methyl donor (S-adenosylmethionine) in migraine: an open clinical trial. Int J Clin Pharmacol Res 6:15–17

    PubMed  CAS  Google Scholar 

  192. Williams AL, Girard C, Jui D, Sabina A, Katz DL (2005) S-adenosylmethionine (SAMe) as treatment for depression: a systematic review. Clin Invest Med 28:132–139

    PubMed  CAS  Google Scholar 

  193. Hosea Blewett HJ (2008) Exploring the mechanisms behind S-adenosylmethionine (SAMe) in the treatment of osteoarthritis. Crit Rev Food Sci Nutr 48:458–463

    PubMed  CAS  Google Scholar 

  194. D'Alessio AC, Szyf M (2006) Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol 84:463–476

    PubMed  Google Scholar 

  195. Cervoni N, Szyf M (2001) Demethylase activity is directed by histone acetylation. J Biol Chem 276:40778–40787

    PubMed  CAS  Google Scholar 

  196. Cervoni N, Detich N, Seo SB, Chakravarti D, Szyf M (2002) The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 277:25026–25031

    PubMed  CAS  Google Scholar 

  197. Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    PubMed  CAS  Google Scholar 

  198. Richardson BC (2002) Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 132:2401S–2405S

    PubMed  CAS  Google Scholar 

  199. Sekigawa I, Okada M, Ogasawara H, Kaneko H, Hishikawa T, Hashimoto H (2003) DNA methylation in systemic lupus erythematosus. Lupus 12:79–85

    PubMed  CAS  Google Scholar 

  200. Arnheim N, Calabrese P (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10:478–488

    PubMed  CAS  Google Scholar 

  201. Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408

    PubMed  CAS  Google Scholar 

  202. Figueiredo LM, Cross GA, Janzen CJ (2009) Epigenetic regulation in African trypanosomes: a new kid on the block. Nat Rev Microbiol 7:504–513

    PubMed  CAS  Google Scholar 

  203. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33:3–11

    PubMed  CAS  Google Scholar 

  204. Invernizzi P (2009) Future directions in genetic for autoimmune diseases. J Autoimmun 33:1–2

    PubMed  CAS  Google Scholar 

  205. Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M (2009) Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 33:12–16

    PubMed  CAS  Google Scholar 

  206. Larizza D, Calcaterra V, Martinetti M (2009) Autoimmune stigmata in Turner syndrome: when lacks an X chromosome. J Autoimmun 33:25–30

    PubMed  CAS  Google Scholar 

  207. Persani L, Rossetti R, Cacciatore C, Bonomi M (2009) Primary ovarian insufficiency: X chromosome defects and autoimmunity. J Autoimmun 33:35–41

    PubMed  CAS  Google Scholar 

  208. Sawalha AH, Harley JB, Scofield RH (2009) Autoimmunity and Klinefelter's syndrome: when men have two X chromosomes. J Autoimmun 33:31–34

    PubMed  CAS  Google Scholar 

  209. Wells AD (2009) New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 182:7331–7341

    PubMed  CAS  Google Scholar 

  210. Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The studies in the MS laboratory were supported by the National Cancer Institute of Canada and the Canadian Institute of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Szyf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szyf, M. Epigenetic Therapeutics in Autoimmune Disease. Clinic Rev Allerg Immunol 39, 62–77 (2010). https://doi.org/10.1007/s12016-009-8172-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8172-8

Keywords

Navigation