Skip to main content

Advertisement

Log in

A Cellular Viewpoint of Anti-FVIII Immune Response in Hemophilia A

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

A large proportion of hemophilia A patients who receive replacement therapy, develop an immune response toward the infused factor VIII (FVIII). In this review, we discuss recent progress in several aspects of the anti-FVIII immune response, focusing on the sites of FVIII endocytosis (marginal zone of the spleen and bleeding site), the type of antigen-presenting cells (dendritic cells, macrophages and B cells) and endocytic receptors, implicated in FVIII presentation to T cells during primary and secondary immune response. Although it is becoming increasingly clear that regulatory T cells are involved in FVIII tolerance in healthy subjects and potentially in patients without inhibitors, we would like to demonstrate that little is known about the different T cells subsets and the cytokines network, which are also crucial for the development of allo- and autoimmune diseases. As more information on these issues becomes available, a better understanding of the role of each immune cells compartment in promoting FVIII tolerance or inhibitors development might lead to new strategies to promote FVIII tolerance in hemophilia A patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hoyer LW (1994) Hemophilia A. N Engl J Med. 330:38–47

    Article  PubMed  CAS  Google Scholar 

  2. Dasgupta S, Bayry J, Andre S, Dimitrov JD, Kaveri SV, Lacroix-Desmazes S (2008) Auditing protein therapeutics management by professional APCs: toward prevention of immune responses against therapeutic proteins. J Immunol 181:1609–1615

    PubMed  CAS  Google Scholar 

  3. Kadar JG, Schuster J, Hunzelmann N (2007) IgE-mediated anaphylactic reaction to purified and recombinant factor VIII in a patient with severe haemophilia A. Haemophilia 13:104–105

    Article  PubMed  CAS  Google Scholar 

  4. Tsuchiya H, Shima M, Yoshioka A (1998) Anaphylactic response to factor VIII preparations in a haemophilic child with an inhibitor of high titre during the tolerance induction. Eur J Pediatr 157:85

    Article  PubMed  CAS  Google Scholar 

  5. Shopnick RI, Kazemi M, Brettler DB et al (1996) Anaphylaxis after treatment with recombinant factor VIII. Transfusion 36:358–361

    Article  PubMed  CAS  Google Scholar 

  6. Gringeri A, Santagostino E, Tradati F, Giangrande PL, Mannucci PM (1991) Adverse effects of treatment with porcine factor VIII. Thromb Haemost 65:245–247

    PubMed  CAS  Google Scholar 

  7. Gringeri A, Mantovani LG, Scalone L, Mannucci PM (2003) Cost of care and quality of life for patients with hemophilia complicated by inhibitors: The COCIS Study Group. Blood 102:2358–2363

    Article  PubMed  CAS  Google Scholar 

  8. Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99:1053–1059

    Article  PubMed  CAS  Google Scholar 

  9. van der Poll T, de Jonge E, Levi M (2001) Regulatory role of cytokines in disseminated intravascular coagulation. Semin Thromb Hemost 27:639–651

    Article  PubMed  Google Scholar 

  10. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    Article  PubMed  CAS  Google Scholar 

  11. Dasgupta S, Navarrete AM, Bayry J et al (2007) A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proc Natl Acad Sci U S A 104:8965–8970

    Article  PubMed  CAS  Google Scholar 

  12. Dasgupta S, Navarrete AM, Andre S et al (2008) Factor VIII bypasses CD91/LRP for endocytosis by dendritic cells leading to T-cell activation. Haematologica 93:83–89

    Article  PubMed  CAS  Google Scholar 

  13. Goudemand J, Rothschild C, Demiguel V et al (2006) Influence of the type of factor VIII concentrate on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A. Blood 107:46–51

    Article  PubMed  CAS  Google Scholar 

  14. Gouw SC, van den Berg HM, le Cessie S, van der Bom JG (2007) Treatment characteristics and the risk of inhibitor development: a multicenter cohort study among previously untreated patients with severe hemophilia A. J Thromb Haemost 5:1383–1390

    Article  PubMed  CAS  Google Scholar 

  15. Dasgupta S, Repesse Y, Bayry J et al (2007) VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood 109:610–612

    Article  PubMed  CAS  Google Scholar 

  16. Martin F, Kearney JF (2002) Marginal-zone B cells. Nat Rev Immunol 2:323–335

    Article  PubMed  CAS  Google Scholar 

  17. van Schooten CJ, Shahbazi S, Groot E et al (2008) Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood 112:1704–1712

    Article  PubMed  CAS  Google Scholar 

  18. Constant SL (1999) B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol 162:5695–5703

    PubMed  CAS  Google Scholar 

  19. Morris SC, Lees A, Finkelman FD (1994) In vivo activation of naive T cells by antigen-presenting B cells. J Immunol 152:3777–3785

    PubMed  CAS  Google Scholar 

  20. Chan O, Shlomchik MJ (1998) A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J Immunol 160:51–59

    Article  PubMed  CAS  Google Scholar 

  21. Mamula MJ, Fatenejad S, Craft J (1994) B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol 152:1453–1461

    PubMed  CAS  Google Scholar 

  22. Silveira PA, Johnson E, Chapman HD, Bui T, Tisch RM, Serreze DV (2002) The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur J Immunol 32:3657–3666

    Article  PubMed  CAS  Google Scholar 

  23. Yan J, Harvey BP, Gee RJ, Shlomchik MJ, Mamula MJ (2006) B cells drive early T cell autoimmunity in vivo prior to dendritic cell-mediated autoantigen presentation. J Immunol 177:4481–4487

    PubMed  CAS  Google Scholar 

  24. Edwards JC, Cambridge G (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6:394–403

    Article  PubMed  CAS  Google Scholar 

  25. Hamel K, Doodes P, Cao Y et al (2008) Suppression of proteoglycan-induced arthritis by anti-CD20 B Cell depletion therapy is mediated by reduction in autoantibodies and CD4+ T cell reactivity. J Immunol 180:4994–5003

    PubMed  CAS  Google Scholar 

  26. Sfikakis PP, Boletis JN, Lionaki S et al (2005) Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum 52:501–513

    Article  PubMed  CAS  Google Scholar 

  27. Braley-Mullen H, Yu S (2000) Early requirement for B cells for development of spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J Immunol 165:7262–7269

    PubMed  CAS  Google Scholar 

  28. Chan OT, Madaio MP, Shlomchik MJ (1999) B cells are required for lupus nephritis in the polygenic, Fas-intact MRL model of systemic autoimmunity. J Immunol 163:3592–3596

    PubMed  CAS  Google Scholar 

  29. Ji H, Ohmura K, Mahmood U et al (2002) Arthritis critically dependent on innate immune system players. Immunity 16:157–168

    Article  PubMed  CAS  Google Scholar 

  30. Noorchashm H, Noorchashm N, Kern J, Rostami SY, Barker CF, Naji A (1997) B-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes 46:941–946

    Article  PubMed  CAS  Google Scholar 

  31. Saito E, Fujimoto M, Hasegawa M et al (2002) CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest 109:1453–1462

    PubMed  CAS  Google Scholar 

  32. Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM (1998) B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 161:3912–3918

    PubMed  CAS  Google Scholar 

  33. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189:1639–1648

    Article  PubMed  CAS  Google Scholar 

  34. O’Neill SK, Shlomchik MJ, Glant TT, Cao Y, Doodes PD, Finnegan A (2005) Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. J Immunol 174:3781–3788

    PubMed  Google Scholar 

  35. Yu S, Maiti PK, Dyson M, Jain R, Braley-Mullen H (2006) B cell-deficient NOD.H-2h4 mice have CD4+ CD25+ T regulatory cells that inhibit the development of spontaneous autoimmune thyroiditis. J Exp Med 203:349–358

    Article  PubMed  Google Scholar 

  36. Spencer J, Perry ME, Dunn-Walters DK (1998) Human marginal-zone B cells. Immunol Today 19:421–426

    Article  PubMed  CAS  Google Scholar 

  37. Klein U, Rajewsky K, Kuppers R (1998) Human immunoglobulin (Ig)M + IgD + peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 188:1679–1689

    Article  PubMed  CAS  Google Scholar 

  38. Manco-Johnson MJ, Abshire TC, Shapiro AD et al (2007) Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med 357:535–544

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez-Merchan EC (1997) Pathogenesis, early diagnosis, and prophylaxis for chronic hemophilic synovitis. Clin Orthop Relat Res 6–11

  40. Roosendaal G, Mauser-Bunschoten EP, De Kleijn P et al (1998) Synovium in haemophilic arthropathy. Haemophilia 4:502–505

    Article  PubMed  CAS  Google Scholar 

  41. Roosendaal G, Vianen ME, Wenting MJ et al (1998) Iron deposits and catabolic properties of synovial tissue from patients with haemophilia. J Bone Joint Surg Br 80:540–545

    Article  PubMed  CAS  Google Scholar 

  42. Jansen NW, Roosendaal G, Hooiveld MJ et al (2008) Interleukin-10 protects against blood-induced joint damage. Br J Haematol 142:953–961

    Article  PubMed  CAS  Google Scholar 

  43. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    Article  PubMed  CAS  Google Scholar 

  44. Jacquemin M, Benhida A, Peerlinck K et al (2000) A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor. Blood 95:156–163

    PubMed  CAS  Google Scholar 

  45. Jacquemin MG, Desqueper BG, Benhida A et al (1998) Mechanism and kinetics of factor VIII inactivation: study with an IgG4 monoclonal antibody derived from a hemophilia A patient with inhibitor. Blood 92:496–506

    PubMed  CAS  Google Scholar 

  46. van den Brink EN, Bril WS, Turenhout EA et al (2002) Two classes of germline genes both derived from the V(H)1 family direct the formation of human antibodies that recognize distinct antigenic sites in the C2 domain of factor VIII. Blood 99:2828–2834

    Article  PubMed  Google Scholar 

  47. van den Brink EN, Turenhout EA, Bank CM, Fijnvandraat K, Peters M, Voorberg J (2000) Molecular analysis of human anti-factor VIII antibodies by V gene phage display identifies a new epitope in the acidic region following the A2 domain. Blood 96:540–545

    PubMed  Google Scholar 

  48. van den Brink EN, Turenhout EA, Bovenschen N et al (2001) Multiple VH genes are used to assemble human antibodies directed toward the A3-C1 domains of factor VIII. Blood 97:966–972

    Article  PubMed  Google Scholar 

  49. van Den Brink EN, Turenhout EA, Davies J et al (2000) Human antibodies with specificity for the C2 domain of factor VIII are derived from VH1 germline genes. Blood 95:558–563

    Google Scholar 

  50. Reding MT, Lei S, Lei H, Green D, Gill J, Conti-Fine BM (2002) Distribution of Th1- and Th2-induced anti-factor VIII IgG subclasses in congenital and acquired hemophilia patients. Thromb Haemost 88:568–575

    PubMed  CAS  Google Scholar 

  51. Reding MT, Okita DK, Diethelm-Okita BM, Anderson TA, Conti-Fine BM (2003) Human CD4+ T-cell epitope repertoire on the C2 domain of coagulation factor VIII. J Thromb Haemost 1:1777–1784

    Article  PubMed  CAS  Google Scholar 

  52. Reding MT, Wu H, Krampf M et al (2000) Sensitization of CD4+ T cells to coagulation factor VIII: response in congenital and acquired hemophilia patients and in healthy subjects. Thromb Haemost 84:643–652

    PubMed  CAS  Google Scholar 

  53. Reding MT, Wu H, Krampf M et al (1999) CD4+ T cell response to factor VIII in hemophilia A, acquired hemophilia, and healthy subjects. Thromb Haemost 82:509–515

    PubMed  CAS  Google Scholar 

  54. Misra N, Bayry J, Pashov A et al (2003) Restricted BV gene usage by factor VIII-reactive CD4+ T cells in inhibitor-positive patients with severe hemophilia A. Thromb Haemost 90:813–822

    PubMed  CAS  Google Scholar 

  55. Bray GL, Kroner BL, Arkin S et al (1993) Loss of high-responder inhibitors in patients with severe hemophilia A and human immunodeficiency virus type 1 infection: a report from the Multi-Center Hemophilia Cohort Study. Am J Hematol 42:375–379

    Article  PubMed  CAS  Google Scholar 

  56. Hausl C, Ahmad RU, Schwarz HP et al (2004) Preventing restimulation of memory B cells in hemophilia A: a potential new strategy for the treatment of antibody-dependent immune disorders. Blood 104:115–122

    Article  PubMed  CAS  Google Scholar 

  57. Qian J, Burkly LC, Smith EP et al (2000) Role of CD154 in the secondary immune response: the reduction of pre-existing splenic germinal centers and anti-factor VIII inhibitor titer. Eur J Immunol 30:2548–2554

    Article  PubMed  CAS  Google Scholar 

  58. Qian J, Collins M, Sharpe AH, Hoyer LW (2000) Prevention and treatment of factor VIII inhibitors in murine hemophilia A. Blood 95:1324–1329

    PubMed  CAS  Google Scholar 

  59. Rossi G, Sarkar J, Scandella D (2001) Long-term induction of immune tolerance after blockade of CD40–CD40L interaction in a mouse model of hemophilia A. Blood 97:2750–2757

    Article  PubMed  CAS  Google Scholar 

  60. Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  PubMed  CAS  Google Scholar 

  61. Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  62. Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed  CAS  Google Scholar 

  63. Astermark J, Oldenburg J, Pavlova A, Berntorp E, Lefvert AK (2006) Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A. Blood 107:3167–3172

    Article  PubMed  CAS  Google Scholar 

  64. Astermark J, Oldenburg J, Carlson J et al (2006) Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A. Blood 108:3739–3745

    Article  PubMed  CAS  Google Scholar 

  65. Bouma G, Crusius JB, Oudkerk Pool M et al (1996) Secretion of tumour necrosis factor alpha and lymphotoxin alpha in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol 43:456–463

    Article  PubMed  CAS  Google Scholar 

  66. Huang DR, Pirskanen R, Matell G, Lefvert AK (1999) Tumour necrosis factor-alpha polymorphism and secretion in myasthenia gravis. J Neuroimmunol 94:165–171

    Article  PubMed  CAS  Google Scholar 

  67. Wilson AG, di Giovine FS, Blakemore AI, Duff GW (1992) Single base polymorphism in the human tumour necrosis factor alpha (TNF alpha) gene detectable by NcoI restriction of PCR product. Hum Mol Genet 1:353

    Article  PubMed  CAS  Google Scholar 

  68. Sasgary M, Ahmad RU, Schwarz HP, Turecek PL, Reipert BM (2002) Single cell analysis of factor VIII-specific T cells in hemophilic mice after treatment with human factor VIII. Thromb Haemost 87:266–272

    PubMed  CAS  Google Scholar 

  69. Wu H, Reding M, Qian J et al (2001) Mechanism of the immune response to human factor VIII in murine hemophilia A. Thromb Haemost 85:125–133

    PubMed  CAS  Google Scholar 

  70. Hu G, Guo D, Key NS, Conti-Fine BM (2007) Cytokine production by CD4+ T cells specific for coagulation factor VIII in healthy subjects and haemophilia A patients. Thromb Haemost 97:788–794

    PubMed  CAS  Google Scholar 

  71. Liblau R, Tournier-Lasserve E, Maciazek J et al (1991) T cell response to myelin basic protein epitopes in multiple sclerosis patients and healthy subjects. Eur J Immunol 21:1391–1395

    Article  PubMed  CAS  Google Scholar 

  72. Link H, Olsson O, Sun J et al (1991) Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest 87:2191–2196

    Article  PubMed  CAS  Google Scholar 

  73. Sun JB, Olsson T, Wang WZ et al (1991) Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 21:1461–1468

    Article  PubMed  CAS  Google Scholar 

  74. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  75. Taams LS, Akbar AN (2005) Peripheral generation and function of CD4+ CD25+ regulatory T cells. Curr Top Microbiol Immunol 293:115–131

    Article  PubMed  CAS  Google Scholar 

  76. Singer ST, Addiego JE Jr., Reason DC, Lucas AH (1996) T lymphocyte proliferative responses induced by recombinant factor VIII in hemophilia A patients with inhibitors. Thromb Haemost 76:17–22

    PubMed  CAS  Google Scholar 

  77. Hu GL, Okita DK, Diethelm-Okita BM, Conti-Fine BM (2003) Recognition of coagulation factor VIII by CD4+ T cells of healthy humans. J Thromb Haemost 1:2159–2166

    Article  PubMed  CAS  Google Scholar 

  78. Reding MT, Okita DK, Diethelm-Okita BM, Anderson TA, Conti-Fine BM (2004) Epitope repertoire of human CD4(+) T cells on the A3 domain of coagulation factor VIII. J Thromb Haemost 2:1385–1394

    Article  PubMed  CAS  Google Scholar 

  79. Hu GL, Okita DK, Conti-Fine BM (2004) T cell recognition of the A2 domain of coagulation factor VIII in hemophilia patients and healthy subjects. J Thromb Haemost 2:1908–1917

    Article  PubMed  CAS  Google Scholar 

  80. Kamate C, Lenting PJ, van den Berg HM, Mutis T (2007) Depletion of CD4+ /CD25high regulatory T cells may enhance or uncover factor VIII-specific T-cell responses in healthy individuals. J Thromb Haemost 5:611–613

    Article  PubMed  CAS  Google Scholar 

  81. James EA, Kwok WW, Ettinger RA, Thompson AR, Pratt KP (2007) T-cell responses over time in a mild hemophilia A inhibitor subject: epitope identification and transient immunogenicity of the corresponding self-peptide. J Thromb Haemost 5:2399–2407

    Article  PubMed  CAS  Google Scholar 

  82. Peng B, Ye P, Blazar BR et al (2008) Transient blockade of the inducible costimulator pathway generates long-term tolerance to factor VIII after nonviral gene transfer into hemophilia A mice. Blood 112:1662–1672

    Article  PubMed  CAS  Google Scholar 

  83. Waters B, Qadura M, Burnett E et al (2009) Anti-CD3 prevents factor VIII inhibitor development in hemophilia A mice by a regulatory CD4+ CD25+-dependent mechanism and by shifting cytokine production to favour a Th1 response. Blood 113:193–203

    Article  PubMed  CAS  Google Scholar 

  84. Qadura M, Othman M, Waters B et al (2008) Reduction of the immune response to Factor VIII mediated through tolerogenic Factor VIII presentation by immature dendritic cells. J Thromb Haemost 6:2095–2104

    Article  PubMed  CAS  Google Scholar 

  85. Ehrenforth S, Kreuz W, Scharrer I et al (1992) Incidence of development of factor VIII and factor IX inhibitors in haemophiliacs. Lancet 339:594–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Our work is supported by research grants from Institut National de la Santé et de la Recherche Médicale, by Centre National de la Recherche Scientifique, by Université Pierre et Marie Curie, by Agence Nationale de la Recherche (ANR-05-MRAR-030, ANR-07-JCJC-0100-01, ANR-07-RIB-002-02, ANR-07-MRAR-028-01), by Grifols (Barcelona, Spain), CSL-Behring (Marburg, Germany) and LFB (Les Ulis, France). SD is the recipient of a fellowship from Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastien Lacroix-Desmazes or Suryasarathi Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, S., Meslier, Y., Dimitrov, J.D. et al. A Cellular Viewpoint of Anti-FVIII Immune Response in Hemophilia A. Clinic Rev Allerg Immunol 37, 105–113 (2009). https://doi.org/10.1007/s12016-009-8117-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8117-2

Keywords

Navigation