Skip to main content

Advertisement

Log in

Anti-inflammatory Therapies for Cystic Fibrosis-Related Lung Disease

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is an autosomal recessive disease affecting many organ systems. In the lung, the underlying ion transport defect in CF establishes a perpetuating cycle of impaired airway clearance, chronic endobronchial infection, and exuberant inflammation. The interrelated nature of these components of CF lung disease makes it likely that the most effective therapeutic strategies will include treatments of each of these. This chapter reviews the preclinical and clinical data focused on ways to better understand and particularly to limit inflammation in the CF airway. Anti-inflammatories are an attractive therapeutic target in CF with a proven ability to decrease the rate of decline in lung function. However, the inherent complexity of the inflammatory response combined with the obvious dependency on this response to contain infection and the side effect profiles of common anti-inflammatories have made identifying the most suitable agents challenging. Research continues to discover impairments in signaling events in CF that may contribute to the excessive inflammation seen clinically. Concurrent with these findings, promising new therapies are being evaluated to determine which agents will be most effective and well tolerated. Available data from studies commenced over the last two decades, which have generated both encouraging and disappointing results, are reviewed below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Davis PB, Drumm M, Konstan MW (1996) Cystic fibrosis. State of the art. Am J Resp Crit Care Med 154(5):1229–1256

    PubMed  CAS  Google Scholar 

  2. Chmiel JF, Konstan MW, Berger M (2002) The role of inflammation in the pathophysiology of CF lung disease. Clin Review Allergy Immunol 23(1):5–27

    Article  Google Scholar 

  3. Bedrossian CW, Greenberg SD, Singer DB et al (1976) The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol 7(2):195–204

    Article  PubMed  CAS  Google Scholar 

  4. Khan TZ, Wagener JS, Bost T et al (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151(4):1075–1082

    PubMed  CAS  Google Scholar 

  5. Bonfield TL, Panuska JR, Konstan MW et al (1995) Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 152(6 Pt 1):2111–2118 [published erratum appears in Am J Respir Crit Care Med (1996) 154(4 Pt 1):1217]

    Google Scholar 

  6. Kirchner KK, Wagener JS, Khan TZ et al (1996) Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am J Respir Crit Care Med 154(5):1426–1429

    PubMed  CAS  Google Scholar 

  7. Konstan MW, Hilliard KA, Norvell TM et al (1994) Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 150(2):448–454 [published erratum appears in Am J Respir Crit Care Med (1995) 151(1):260]

    Google Scholar 

  8. Konstan MW, Walenga RW, Hilliard KA et al (1993) Leukotriene B4 is markedly elevated in the epithelial lining fluid of patients with cystic fibrosis. Am Rev Respir Dis 148(4 Pt 1):896–901

    PubMed  CAS  Google Scholar 

  9. Birrer P, McElvaney NG, Rudeberg A et al (1994) Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 150(1):207–213

    PubMed  CAS  Google Scholar 

  10. Balough K, McCubbin M, Weinberger M et al (1995) The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 20(2):63–70

    Article  PubMed  CAS  Google Scholar 

  11. Konstan MW, Berger M (1997) Current understanding of the inflammatory process in cystic fibrosis: Onset an etiology. Pediatr Pulmonol 24:137–142

    Article  PubMed  CAS  Google Scholar 

  12. Armstrong DS, Grimwood K, Carlin JB et al (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156(4 Pt 1):1197–1204

    PubMed  CAS  Google Scholar 

  13. Noah TL, Black HR, Cheng PW et al (1997) Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 175(3):638–647

    PubMed  CAS  Google Scholar 

  14. Muhlebach MS, Stewart PW, Leigh MW et al (1999) Quantitation of inflammatory response to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160(1):186–191

    PubMed  CAS  Google Scholar 

  15. Auerbach HS, Williams M, Kirkpatrick JA et al (1985) Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 2(8457):686–688

    Article  PubMed  CAS  Google Scholar 

  16. Eigen H, Rosenstein BJ, FitzSimmons S et al (1995) A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr 126(4):515–523

    Article  PubMed  CAS  Google Scholar 

  17. Konstan MW, Byard PJ, Hoppel CL et al (1995) Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 332(13):848–854

    Article  PubMed  CAS  Google Scholar 

  18. Donati MA, Haver K, Gerson W et al (1990) Long-term alternate day prednisone therapy in cystic fibrosis. Pediatr Pulmonol 5:A322

    Google Scholar 

  19. Lands LC, Milner R, Cantin AM, Manson D, Corey M (2007) High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J Pediatr 151:228–230

    Article  Google Scholar 

  20. Konstan MW, Schluchter MD, Xeu W, Davis PB (2007) Clinical use of ibuprofen is associated with slower FEV1 decline in children with cystic fibrosis. Am J Respir Crit Care Med 176(11):1084–1089

    Article  PubMed  Google Scholar 

  21. Perez A, Issler AC, Cotton CU, Kelley TJ, Verkman AS, Davis PB (2007) CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol Lung Cell Mol Physiol 292:L383–L395

    Article  PubMed  CAS  Google Scholar 

  22. Dechecchi MC, Nicolis E, bezzerri V, Vella A, Colombatti M, Assael BM, Mettey Y, Borgatti M, Mancini I, Gambari R, Becq F, Cabrini G (2007) MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells. Am J Respir Cell Mol Biol 36:615–624

    Article  PubMed  CAS  Google Scholar 

  23. Weber AJ, Soong G, Bryan R, Saba S, Prince A (2001) Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl channel function. Am J Physiol Lung Cell Mol Physiol 281:L71–L78

    PubMed  CAS  Google Scholar 

  24. Verhaeghe C, Remouchamps C, Hennuy B, Vanderplasschen A, Chariot A, Tabruyn SP, Oury C, Bours V (2007) Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 73:1982–1994

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Johnson XD, Iazvovskaia S, Tan A, Lin A, Hershenson MB (2003) Signaling intermediates required for NFκB activation and IL-8 expression in CF bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 284:L307–L315

    PubMed  CAS  Google Scholar 

  26. Escotte S, Tabary O, Dusser D, Majer-Teboul C, Puchelle E, Jacquot J (2003) Fluticasone reduces IL-6 and IL-8 production of cystic fibrosis bronchial epithelial cells via IKK-β kinase pathway. Eur Respir J 21:574–581

    Article  PubMed  CAS  Google Scholar 

  27. Ribeiro CM, Paradiso AM, Schwab U et al (2005) Chronic airway infection/inflammation induces a Ca2+i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 280:17798–17806

    Article  PubMed  CAS  Google Scholar 

  28. Balfour-Lynn IM, Laverty A, Dinwiddie R (1996) Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child 75:319–322

    PubMed  CAS  Google Scholar 

  29. Grasemann H, Michler E, Wallot M et al (1997) Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 24:173–177

    Article  PubMed  CAS  Google Scholar 

  30. Roum JH, Buhl R, McElvaney NG et al (1993) Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 75:2419–2424

    PubMed  CAS  Google Scholar 

  31. Gao L, Kim KJ, Yankaskas JR, Forman HJ (1999) Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 277:L113–L118

    PubMed  CAS  Google Scholar 

  32. Velsor LW, van Heeckeren A, Day BJ (2001) Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Physiol Lung Cell Mol Physiol 281:L31–L38

    PubMed  CAS  Google Scholar 

  33. Chen J, Shank SL, Ziady AG (2007) Dysfunction of the antioxidant response pathway in CF epithelial cells leads to increased levels of H2O2 and NF-KB activation. NACFC 2007 abstract 118. Pediatr Pulmon Suppl 30:241–242

    Google Scholar 

  34. Li Q, Engelhardt JF (2006) Interleukin-1B induction of NFkB is partially regulated by H2O2-mediated activation of NFkB-inducing kinase. J Biol Chem 281:1495–1505

    Article  PubMed  CAS  Google Scholar 

  35. Bonfield TL, Konstan MW, Berger M (1999) Altered respiratory epithelial cell cytokine production in cystic fibrosis. J Allergy Clin Immunol 104:72–78

    Article  PubMed  CAS  Google Scholar 

  36. Bonfield TL, Konstan MW, Burfeind P et al (1995) Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 13:257–261

    PubMed  CAS  Google Scholar 

  37. Moore KW, de Waal Malefyt R, Coffman RL, O, Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  38. Osika E, Cavaillon JM, Chadelat K, Boule M, Fitting C, Tournier G, Clement A (1999) Distinct sputum cytokine profiles in cystic fibrosis and other chronic inflammatory airway disease. Eur Respir J 14:339–346

    Article  PubMed  CAS  Google Scholar 

  39. Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-κB and preservation of IκBα by interleukin-10 and interleukin-13. J Clin Invest 100:2443–2448

    Article  PubMed  CAS  Google Scholar 

  40. Schottelius AJG, Mayo MW, Sartor RB, Baldwin AS Jr (1999) Interleukin-10 signaling blocks inhibitor of κB kinase activity and Nuclear Factor κB DNA binding. J Biol Chem 274:31868–31874

    Article  PubMed  CAS  Google Scholar 

  41. Andersson C, Zaman MM, Jones AB, Freedman SD (2007) Alterations in immune response and PPAR/LXR regulation in cystic fibrosis macrophages. J Cyst Fibros 7:68–78

    Article  PubMed  CAS  Google Scholar 

  42. Ollero M, Junaidi O, Zaman MM, Tzameli I, Ferrando AA, Andersson C, Blanco PG, Bialecki E, Freedman SD (2004) Decreased expression of peroxisome proliferator activated receptor gamma in cftr−/− mice. J Cell Physiol 200:235–244

    Article  PubMed  CAS  Google Scholar 

  43. Karp CL, Flick LM, Park KW, Softic S, Greer TM, Keledjian R, Yang R, Uddin J, Guggino WB, Atabani SF, Belkaid Y, Xu Y, Whitsett JA, Accurso FJ, Wills-Karp M, Petasis NA (2004) Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol 5:357–358

    Article  CAS  Google Scholar 

  44. Starosta V, Ratjen F, Rietschel E, Paul K, Griese M (2006) Anti-inflammatory cytokines in cystic fibrosis lung disease. Eur Respir J 28:581–587

    Article  PubMed  CAS  Google Scholar 

  45. Dubin PJ, McAllister F, Kolls JK (2007) Is cystic fibrosis a TH17 disease? Inflamm Res 56:221–227

    Article  PubMed  CAS  Google Scholar 

  46. Dubin PJ, Kolls JK (2007) IL-23 mediates inflammatory responses to mucoid pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 292:L519–L528

    Article  PubMed  CAS  Google Scholar 

  47. McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C, Finder JD, Pilewski JM, Carreno BM, Goldman SJ, Pirhonen J, Kolls JK (2005) Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol 175:404–412

    PubMed  CAS  Google Scholar 

  48. Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A (2003) IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 170:2106–2112

    PubMed  CAS  Google Scholar 

  49. Matthews WJ Jr, Williams M, Oliphint B, Geha R, Colten HR (1980) Hypogammaglobulinemia in patients with cystic fibrosis. N Engl J Med 302:245–249

    PubMed  Google Scholar 

  50. Rosenstein BJ, Eigen H (1991) Risks of alternate-day prednisone in patients with cystic fibrosis. Pediatrics 87:245–246

    PubMed  CAS  Google Scholar 

  51. Lai H-C, FitzSimmons SC, Allen DB et al (2000) Risk of persistent growth impairment after alternate-day prednisone treatment in children with cystic fibrosis. N Engl J Med 342:851–859

    Article  PubMed  CAS  Google Scholar 

  52. Donati MA, Haver K, Gerson W et al (1990) Long-term alternate day prednisone therapy in cystic fibrosis. Pediatr Pulmonol 5:A322

    Google Scholar 

  53. Bhudhikanok GS, Lim J, Marcus R et al (1996) Correlates of osteopenia in patients with cystic fibrosis. Pediatrics 97:103–111

    PubMed  CAS  Google Scholar 

  54. Conway SP, Morton AM, Oldroyd B et al (2000) Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: Prevalence and associated factors. Thorax 55:798–804

    Article  PubMed  CAS  Google Scholar 

  55. Fok J, Brown NE, Zuberbuhler P et al (2002) Low bone mineral density in cystic fibrosis patients. Can J Diet Pract Res 63:192–197

    Article  PubMed  Google Scholar 

  56. Barry SC, Gallagher CG (2003) Corticosteroids and skeletal muscle function in cystic fibrosis. J Appl Physiol 95:1379–1384

    PubMed  CAS  Google Scholar 

  57. Greally P, Hussain MJ, Vergani D et al (1994) Interleukin-1α, soluble interleukin-2 receptor, and IgG concentrations in cystic fibrosis treated with prednisolone. Arch Dis Child 71:35–39

    PubMed  CAS  Google Scholar 

  58. Escotte S, Danel C, Gaillard D et al (2002) Fluticasone propionate inhibits lipopolysaccharide-induced pro-inflammatory response in human cystic fibrosis airway grafts. J Pharmacol Exp Ther 302:1151–1157

    Article  PubMed  CAS  Google Scholar 

  59. Schiotz PO, Jorgensen M, Flensborg EW et al (1983) Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis. A longitudinal study of immune complex activity and inflammatory response sputum sol-phase of cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infections: influence of local steroid treatment. Acta Paediatr Scand 72:283–287

    Article  PubMed  CAS  Google Scholar 

  60. van Haren EHJ, Lammers J-WJ, Festen J et al (1995) The effects of the inhaled corticosteroid budesonide on lung function and bronchial hyperresponsiveness in adults patients with cystic fibrosis. Respir Med 89:209–214

    Article  PubMed  Google Scholar 

  61. Nikolaizik WH, Schoni MH (1996) Pilot study to assess the effect of inhaled corticosteroids on lung function on patients with cystic fibrosis. J Pediatr 128:271–274

    Article  PubMed  CAS  Google Scholar 

  62. Balfour-Lynn IM, Klein NJ, Dinwiddie R (1997) Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. Arch Dis Child 77:124–130

    PubMed  CAS  Google Scholar 

  63. Bisgaard H, Pedersen SS, Nielsen KG et al (1997) Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 156:1190–1196

    PubMed  CAS  Google Scholar 

  64. Dauletbaev N, Viel K, Behr J et al (1999) Effects of short-term inhaled fluticasone on oxidative burst of sputum cells in cystic fibrosis patients. Eur Respir J 14:1150–1155

    Article  PubMed  CAS  Google Scholar 

  65. Wojtczak HA, Kerby GS, Wagener JS et al (2001) Beclomethasone diproprionate reduced airway inflammation without adrenal suppression in young children with cystic fibrosis: A pilot study. Pediatr Pulmonol 32:293–302

    Article  PubMed  CAS  Google Scholar 

  66. De Boeck K, DeBaets F, Malfroot A, Desager K, Mouchet F, Proesmans M (2007) Do inhaled corticosteroids impair long-term growth in prepubertal cystic fibrosis patients? Eur J Pediatr 166:23–28

    Article  PubMed  CAS  Google Scholar 

  67. Ren CL, Pasta DJ, Konstan MW, Wagener JS, Morgan WJ (2003) Inhaled corticosteroid (ICS) use is associated with a slower rate of decline in CF lung disease. Pediatr Pulmonol Suppl 25:295

    Google Scholar 

  68. Dezateux C, Walters S, Balfour-Lynn I (2003) Inhaled corticosteroids for cystic fibrosis (Cochrane Methodology Review), issue 4. In: The Cochrane Library, Wiley, Chichester, UK

  69. Balfour-Lynn IM, Lees B, Hall P, Phillips G, Khan M, Flather M, Elborn JS (2006) Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am J Respir Crit Care Med 173:1356–1362

    Article  PubMed  CAS  Google Scholar 

  70. Parmar JS, Howell T, Kelly J et al (2002) Profound adrenal suppression secondary to treatment with low dose inhaled steroids and itraconazole in allergic bronchopulmonary aspergillosis in cystic fibrosis. Thorax 57:749–750

    Article  PubMed  CAS  Google Scholar 

  71. Schmidt J, Davidson AGF, Seear M et al (1997) Is the acquisition of pseudomonads in cystic fibrosis patients increased by use of inhaled corticosteroids? Unexpected results from a double blind placebo controlled study. Pediatr Pulmonol Suppl 14:A318

    Google Scholar 

  72. Konstan MW, Vargo KM, Davis PB (1990) Ibuprofen attenuates the inflammatory response to Pseudomonas aeruginosa in a rat model of chronic pulmonary infection. implications for antiinflammatory therapy in cystic fibrosis. Am Rev Respir Dis 141:186–192

    PubMed  CAS  Google Scholar 

  73. Housby JN, Cahill CM, Chu B et al (1999) Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines an induce HSP70 in human monocytes. Cytokine 11:347–358

    Article  PubMed  CAS  Google Scholar 

  74. Scheuren N, Bang H, Munster T et al (1998) Modulation of transcription factor NF-kappaB by enantiomers of the nonsteroidal drug ibuprofen. Br J Pharmacol 123:645–652

    Article  PubMed  CAS  Google Scholar 

  75. Tegeder I, Niederberger E, Israr E et al (2001) Inhibition of NF-κB and AP-1 activation by R- and S-flurbiprofen. FASEB J 15:595–597

    Article  PubMed  CAS  Google Scholar 

  76. Tegeder I, Pfeilschifter, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 15:2057–2072

    Article  PubMed  CAS  Google Scholar 

  77. Konstan MW, Krenicky JE, Finney MR et al (2003) Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis. J Pharmacol Exp Ther 306:1086–1091

    Article  PubMed  CAS  Google Scholar 

  78. Saleh A, Figarella C, Kammouni W et al (1999) Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone inhibits expression of P2Y receptors in cystic fibrosis tracheal gland cells. Infect Immun 67:5076–5082

    PubMed  CAS  Google Scholar 

  79. Oermann CM, Sockrider MM, Konstan MW (1999) The use of anti-inflammatory medications in cystic fibrosis: Trends, and physician attitudes. Chest 115:1053–1058

    Article  PubMed  CAS  Google Scholar 

  80. Lands L, Stanojevic S (2007) Oral non-steroidal anti-inflammatory drug therapy for cystic fibrosis. Cochrane Database Syst Rev 17:CD001505

    Google Scholar 

  81. Flume PA, O, Sullivan BP, Robinson KA et al (2007) Cystic fibrosis pulmonary guidelines. Am J Respir Crit Care Med 176:957–969

    Article  PubMed  CAS  Google Scholar 

  82. Jaffe A, Francis J, Rosenthal M et al (1998) Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet 351:420

    Article  PubMed  CAS  Google Scholar 

  83. Wolter J, Seeney S, Bell S et al (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57:212–216

    Article  PubMed  CAS  Google Scholar 

  84. Equi A, Balfour-Lynn IM, Bush A et al (2002) Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 360:978–984

    Article  PubMed  CAS  Google Scholar 

  85. Saiman L, Marshall BC, Mayer-Hamblett N et al (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290:1749–1756

    Article  PubMed  CAS  Google Scholar 

  86. Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Hoiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(−/−) mice. Antimicrob Agents Chemother 51:3677–3687

    Article  PubMed  CAS  Google Scholar 

  87. Nguyen D, Emond MJ, Mayer-Hamblett N, Saiman L, Marshall BC, Burns JL (2007) Clinical response to azithromycin in cystic fibrosis correlates with in vitro effects on Pseudomonas aeruginosa phenotypes. Pediatr Pulmonol 42:533–541

    Article  PubMed  Google Scholar 

  88. Wagner T, Soong G, Sokol S, Saiman L, Prince A (2005) Effects of azithromycin on clinical isolates of Pseudomonas aeruginosa from cystic fibrosis patients. Chest 128:912–919

    Article  PubMed  CAS  Google Scholar 

  89. Tateda K, Comte R, Pechere JC et al (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45:1930–1933

    Article  PubMed  CAS  Google Scholar 

  90. Nagino K, Kobayashi H (1997) Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa. Clin Microbiol Infect 3:432–439

    PubMed  CAS  Google Scholar 

  91. Ichimiya T, Takeoka K, Hiramatsu K et al (1996) The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy 42:186–191

    PubMed  CAS  Google Scholar 

  92. Yamasaki T, Ichimiya T, Hirai K et al (1997) Effect of antimicrobial agents on the piliation of Pseudomonas aeruginosa and adherence to mouse tracheal epithelium. J Chemother 9:32–37

    PubMed  CAS  Google Scholar 

  93. Molinari G, Guzman CA, Pesce A et al (1993) Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother 31:681–688

    Article  PubMed  CAS  Google Scholar 

  94. Culic O, Erakovic V, Cepelak I et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–289

    Article  PubMed  CAS  Google Scholar 

  95. Suzuki H, Shimomura A, Ikeda K et al (1997) Inhibitory effect of macrolides on interleukin-8 secretion from cultured human nasal epithelial cells. Laryngoscope 107:1661–1666

    Article  PubMed  CAS  Google Scholar 

  96. Suzuki H, Asada Y, Ikeda K et al (1999) Inhibitory effect of erythromycin on interleukin-8 secretion from exudative cells in the nasal discharge of patients with chronic sinusitis. Laryngoscope 109:407–410

    Article  PubMed  CAS  Google Scholar 

  97. Ianaro A, Ialenti A, Maffia P et al (2000) Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 292:156–163

    PubMed  CAS  Google Scholar 

  98. Feldman C, Anderson R, Theron AJ et al (1997) Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro. Inflammation 21:655–665

    Article  PubMed  CAS  Google Scholar 

  99. Rubin BK, Tamaoki J (2000) Macrolide antibiotics as biological response modifiers. Curr Opin Investig Drugs 1:169–172

    PubMed  CAS  Google Scholar 

  100. Abe S, Nakamura H, Inoue S et al (2000) Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Respir Cell Mol Biol 22:51–60

    PubMed  CAS  Google Scholar 

  101. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P (2006) Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun 350:977–982

    Article  PubMed  CAS  Google Scholar 

  102. Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP (2006) Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 61:895–902

    Article  PubMed  CAS  Google Scholar 

  103. Rahman I, Mulier B, Gilmour PS et al (2001) Oxidant-mediated lung epithelial cell tolerance: the role of intracellular glutathione and nuclear factor-B. Biochem Pharmacol 62:787–794

    Article  PubMed  CAS  Google Scholar 

  104. Kamata H, Manabe T, Oka S, Kamata K, Hirata H (2002) Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519:231–237

    Article  PubMed  CAS  Google Scholar 

  105. Jaspers I, Zhang W, Fraser A, Samet JM, Reed W (2001) Hydrogen peroxide has opposing effects on IKK activity and IkappaBalpha breakdown in airway epithelial cells. Am J Respir Cell Mol Biol 24:769–777

    PubMed  CAS  Google Scholar 

  106. Bowie AG, Moynagh PN, O, Neill LAJ (1997) Lipid peroxidation is involved in the activation of NF-κB by tumour necrosis factor but not interleukin-1 in the human endothelial cell line ECV304. J Biol Chem 272:25941–25950

    Article  PubMed  CAS  Google Scholar 

  107. Ginn-Pease ME, Whisler RL (1996) Optimal NF-κB mediated transcriptional responses in Jurkat T cells exposed to oxidative stress are dependent on intracellular glutathione and costimulatory signals. Biochem Biophys Res Commun 226:695–702

    Article  PubMed  CAS  Google Scholar 

  108. Li Q, Engelhardt JF (2006) Interleukin-1B induction of NF-κB is partially regulated by H2O2-mediated activation of NF-κB-inducing kinase. J Biol Chem 281:1495–505

    Article  PubMed  CAS  Google Scholar 

  109. Jamaluddin M, Wang S, Boldogh I, Tian B, Brasier AR (2007) TNF-alpha-induced NF-kappaB/RelA Ser(276) phosphorylation and enhanceosome formation is mediated by an ROS-dependant PKAc pathway. Cell Signal 19:1419–1433

    Article  PubMed  CAS  Google Scholar 

  110. Tirouvanziam R, Conrad CK, Bottiglieri T, Herzenberg LA, Moss RB, Herzenberg LA (2006) High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A 103:4628–4633

    Article  PubMed  CAS  Google Scholar 

  111. Roum JH, Borok Z, McElvaney NG et al (1999) Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 87:438–443

    PubMed  CAS  Google Scholar 

  112. Bishop C, Hudson VM, Hilton SC, Wilde C (2005) A pilot study of the effects of inhaled buffered reduced glutathione on the clinical status of patients with cystic fibrosis. Chest 127:308–317

    Article  PubMed  CAS  Google Scholar 

  113. Hartl D, Starosta V, Maier K et al (2005) Inhaled glutathione decreases PGE2 and increases lymphocytes in cystic fibrosis lungs. Free Radic Biol Med 39:463–472

    Article  PubMed  CAS  Google Scholar 

  114. Wood LG, Fitzgerald DA, Lee AK et al (2003) Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function. Am J Clin Nutr 77:150–159

    PubMed  CAS  Google Scholar 

  115. Winklhofer-Roob BM, Schlegel-Haueter SE, Khoschsorur G et al (1996) Neutrophil elastase/alpha 1-proteinase inhibitor complex levels decrease in plasma of cystic fibrosis patients during long-term oral beta-carotene supplementation. Pediatr Res 40:130–134

    Article  PubMed  CAS  Google Scholar 

  116. Cobanoglu N, Ozcelik U, Gocmen A et al (2002) Antioxidant effect of beta-carotene in cystic fibrosis and bronchiectasis: clinical and laboratory parameters of a pilot study. Acta Paediatr 91:793–798

    Article  PubMed  CAS  Google Scholar 

  117. Renner S, Rath R, Rust P et al (2001) Effects of beta-carotene supplementation for six months on clinical and laboratory parameters in patients with cystic fibrosis. Thorax 56:48–52

    Article  PubMed  CAS  Google Scholar 

  118. Papas KA, Sontag MK, Pardee C et al (2007) A pilot study on the safety and efficacy of a novel antioxidant rich formulation in patients with cystic fibrosis. J Cyst Fibros 7:60–67

    Article  PubMed  CAS  Google Scholar 

  119. Peters SA, Kelly FJ (1996) Vitamin E supplementation in cystic fibrosis. J Pediatr Gastroenterol Nutr 22:341–345

    Article  PubMed  CAS  Google Scholar 

  120. Winklhofer-Roob BM, Ellemunter H, Fruhwirth M et al (1997) Plasma vitamin C concentrations in patients with cystic fibrosis: evidence of associations with lung inflammation. Am J Clin Nutr 65:1858–1866

    PubMed  CAS  Google Scholar 

  121. Winklhofer-Roob BM, van, t Hof MA, Shmerling DH (1996) Long-term oral vitamin E supplementation in cystic fibrosis patients: RRR-alpha-tocopherol compared with all-rac-alpha-tocopheryl acetate preparations. Am J Clin Nutr 63:722–728

    PubMed  CAS  Google Scholar 

  122. Lagrange-Puget M, Durieu I, Ecochard R et al (2004) Longitudinal study of oxidative status in 312 cystic fibrosis patients in stable state and during bronchial exacerbation. Pediatr Pulmonol 38:43–49

    Article  PubMed  Google Scholar 

  123. Freedman SD, Katz MH, Parker EM et al (1999) A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr (−/−) mice. Proc Natl Acad Sci U S A 96:13995–14000

    Article  PubMed  CAS  Google Scholar 

  124. Freedman SD, Weinstein D, Blanco PG et al (2002) Characterization of LPS-induced lung inflammation in cftr−/− mice and the effect of docosahexaenoic acid. J Appl Physiol 92:2169–2176

    PubMed  CAS  Google Scholar 

  125. Coste TC, Armand M, Lebacq J, Lebecque P, Wallemacq P, Leal T (2007) An overview of monitoring and supplementation of omega 3 fatty acids in cystic fibrosis. Clin Biochem 40:511–520

    Article  PubMed  CAS  Google Scholar 

  126. Cromwell O, Walport MJ, Morris HR et al (1981) Identification of leukotrienes D and B in sputum from cystic fibrosis patients. Lancet 2:164–165

    Article  PubMed  CAS  Google Scholar 

  127. Ford-Hutchinson AW, Bray MA, Doig MV et al (1980) Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286:264–265

    Article  PubMed  CAS  Google Scholar 

  128. Hubbard RC, Fells G, Gadek J et al (1991) Neutrophil accumulation in the lung in alpha 1-antitrypsin deficiency. Spontaneous release of leukotriene B4 by alveolar macrophages. J Clin Invest 88:891–897

    Article  PubMed  CAS  Google Scholar 

  129. Liu MC, Dube LM, Lancaster J (1996) Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol 98:859–871

    Article  PubMed  CAS  Google Scholar 

  130. Birke FW, Meade CJ, Anderskewitz R et al (2001) In vitro and in vivo pharmacological characterization of BIIL 284, a novel and potent leukotriene B(4) receptor antagonist. J Pharmacol Exp Ther 297:458–466

    PubMed  CAS  Google Scholar 

  131. Konstan MW, Doring G, Lands LC, Hilliard KA, Koker P, Bhattacharya S, Staab A, Hamilton AL (2005) Results of a phase II clinical trial of BILB 248 BS (an LTB4 receptor antagonist) for the treatment of CF lung disease. Pediatr Pulmonol Suppl 28:125

    Google Scholar 

  132. Stelmach I, Korzeniewska A, Stelmach W, Majak P, Grzelewski T, Jerzynska J (2005) Effects of montelukast treatment on clinical and inflammatory variables in patients with cystic fibrosis. Ann Allergy Asthma Immunol 95:372–380

    Article  PubMed  CAS  Google Scholar 

  133. Schmitt-Grohe S, Eickmeier O, Schubert R, Bez C, Zielen S (2002) Anti-inflammatory effects of montelukast in mild cystic fibrosis. Ann Allergy Asthma Immunol 89:599–605

    PubMed  CAS  Google Scholar 

  134. Schmitt-Grohe S, Eickmeier O, Naujoks C, Schubert R, Lentze MJ, Zielen S, Rietschel E (2007) Effects of long-term treatment with montelukast in mild cystic fibrosis. Respir Med 101:684

    Article  PubMed  Google Scholar 

  135. Reimold AM (2002) TNFalpha as therapeutic target: new drugs, more applications. Curr Drug Targets Inflamm Allergy 1:377–392

    Article  PubMed  CAS  Google Scholar 

  136. Chmiel JF, Konstan MW, Saadane A et al (2002) Prolonged inflammatory response to acute pseudomonas challenge in IL-10 knockout mice. Am J Respir Crit Care Med 165:1176–1181

    PubMed  Google Scholar 

  137. Chmiel JF, Konstan MW, Knesebeck JE et al (1999) IL-10 attenuates excessive inflammation in chronic pseudomonas infection in mice. Am J Respir Crit Care Med 160:2040–2047

    PubMed  CAS  Google Scholar 

  138. Kelley TJ, Drumm ML (1998) Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest 102:1200–1207

    Article  PubMed  CAS  Google Scholar 

  139. Kelley TJ, Elmer HL (2000) In vivo alterations of IFN regulatory factor-1 and PIAS1 protein levels in cystic fibrosis epithelium. J Clin Invest 106:403–410

    Article  PubMed  CAS  Google Scholar 

  140. Steagall WK, Elmer HL, Brady KG et al (2000) Cystic fibrosis transmembrane conductance regulator-dependent regulation of epithelial inducible nitric oxide synthase expression. Am J Respir Cell Mol Biol 22:45–50

    PubMed  CAS  Google Scholar 

  141. Kreiselmeier NE, Kraynack NC, Corey DA, Kelley TJ (2003) Statin-mediated correction of STAT1 signaling and inducible nitric oxide synthase expression in cystic fibrosis epithelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1286–L1295

    PubMed  CAS  Google Scholar 

  142. Kraynack NC, Corey DA, Elmer HL, Kelley TJ (2002) Mechanisms of NOS2 regulation by Rho GTPase signaling in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 283:L604–L611

    PubMed  CAS  Google Scholar 

  143. Moss RB, Mayer-Hamblett N, Wagener J, Daines C, Hale K, Ahrens R, Gibson RL, Anderson P, Retsch-Bogart G, Nasr SZ, Noth I, Waltz D, Zeitlin P, Ramsey B, Starko K (2005) Randomized, double-blind, placebo-controlled, dose-escalating study of aerosolized interferon gamma-1b in patients with mild to moderate cystic fibrosis lung disease. Pediatr Pulmonol 39:209–218

    Article  PubMed  Google Scholar 

  144. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  PubMed  CAS  Google Scholar 

  145. Teunissen MBM, Koomen CW, Malefyt RD et al (1998) Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 111:645–649

    Article  PubMed  CAS  Google Scholar 

  146. Kube D, Sontich U, Fletcher D, Davis PB (2001) Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 280:L493–L502

    PubMed  CAS  Google Scholar 

  147. Auphan N, DiDonato A, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: Inhibition of NF-κB activity through induction of IκB synthesis. Science 270:286–290

    Article  PubMed  CAS  Google Scholar 

  148. Yin MJ, Yamato Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-B. Nature 396:77–80

    Article  PubMed  CAS  Google Scholar 

  149. Shishodia S, Sethi G, Konopleva M, Andreeff M, Aggarwal BB (2006) A synthetic triterpenoid, CDDO-Me, inhibits IKB alpha Kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor KB regulated gene products in human leukemic cells. Clin Cancer Res 12:1828–1838

    Article  PubMed  CAS  Google Scholar 

  150. Ahmad R, Raina D, Meyer C, Kharbanda S, Kufe D (2006) Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J Biol Chem 281:35764–35769

    Article  PubMed  CAS  Google Scholar 

  151. Dinkova-Kostova AT, Liby KT, Stephenson KK et al (2005) Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress. PNAS 102:4584–4589

    Article  PubMed  CAS  Google Scholar 

  152. Yates MS, Tauchi M, Katsuoka F, Flanders KC, Liby KT, Honda T, Gribble GW, Johnson DA, Johnson JA, Burton NC, Guilarte TR, Yamamoto M, Sport MB, Kensler TW (2007) Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol Cancer Ther 6:154–162

    Article  PubMed  CAS  Google Scholar 

  153. Nichols D, Ziady AG, Shank S, Davis P (2007) Proteomic analysis of the anti-inflammatory effects of CDDO in models of CF pulmonary disease. NACFC 2007 abstract 259. Pediatr Pulmon Suppl 30:293

    Google Scholar 

  154. Saadane A, Masters S, DiDonato J, Li J, Berger M (2007) Parthenolide inhibits IkB kinase, NF-kB activation, and inflammatory response in cystic fibrosis cells and mice. Am J Respir Cell Mol Biol 36:728–736

    Article  PubMed  CAS  Google Scholar 

  155. Ferkol T, Cohn LA, Phillips TE et al (2003) Targeted delivery of antiprotease to the epithelial surface of human tracheal xenografts. Am J Respir Crit Care Med 167:1374–1379

    Article  PubMed  Google Scholar 

  156. Cantin AM, Woods DE (1999) Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med 160:1130–1135

    PubMed  CAS  Google Scholar 

  157. McElvaney NG, Hubbard RC, Birrer P et al (1991) Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet 337:392–394

    Article  PubMed  CAS  Google Scholar 

  158. Berger M, Konstan MW, Hilliard JB et al (1995) Aerosolized prolastin (α1-protease inhibitor) in CF. Pediatr Pulmonol 20:421

    Google Scholar 

  159. Griese M, Latzin P, Kappler M, Weckerle K, Heinzlmaier T, Bernhardt T, Hartl D (2007) alpha1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur Respir J 29:240–250

    Article  PubMed  CAS  Google Scholar 

  160. Bilton D, Elborn S, Conway S et al (1999) Phase II trial to assess the clinical efficacy of transgenic alpha-1-antitrypsin (tg-hAAT) as an effective treatment of cystic fibrosis. Pediatr Pulmonol Suppl 19:A289

    Google Scholar 

  161. Martin SL, Downey D, Bilton D, Keogan MT, Edgar J, Elborn JS (2006) Safety and efficacy of recombinant alpha(1)-antitrypsin therapy in cystic fibrosis. Pediatr Pulmonol 41:177–183

    Article  PubMed  Google Scholar 

  162. Cantin AM, Woods DE, Cloutier D et al (2002) Polyethylene glycol conjugation at Cys232 prolongs the half-life of alpha1 proteinase inhibitor. Am J Respir Cell Mol Biol 27:659–665

    PubMed  CAS  Google Scholar 

  163. McElvaney NG, Nakamura H, Birrer P et al (1992) Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest 90:1296–1301

    Article  PubMed  CAS  Google Scholar 

  164. McElvaney NG, Doujaiji B, Moan MJ et al (1993) Pharmacokinetics of recombinant secretory leukoprotease inhibitor aerosolized to normals and individuals with cystic fibrosis. Am Rev Respir Dis 148:1056–1060

    PubMed  CAS  Google Scholar 

  165. Grimbert D, Vecellio L, Delepine P et al (2003) Characteristics of EPI-hNE4 aerosol: A new elastase inhibitor for treatment of cystic fibrosis. J Aerosol Med 16:121–129

    Article  PubMed  CAS  Google Scholar 

  166. Delacourt C, Herigault S, Delclaux C et al (2002) Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol 26:290–297

    PubMed  CAS  Google Scholar 

  167. Ballmann M, Junge S, von der Hardt H (2003) Low-dose methotrexate for advanced pulmonary disease in patients with cystic fibrosis. Respir Med 97:498–500

    Article  PubMed  CAS  Google Scholar 

  168. Oermann CM, Katz M, Wheeler C, Cumming S (2007) A pilot study evaluating the potential use of low-dose methotrexate as an anti-inflammatory therapy for cystic fibrosis lung disease. NACFC 2007 abstract 258. Pediatr Pulmonol Suppl 30:292–293

    Google Scholar 

  169. Bhal GK, Maguire SA, Bowler IM (2001) Use of cyclosporin A as a steroid sparing agent in cystic fibrosis. Arch Dis Child 84:89

    Article  PubMed  CAS  Google Scholar 

  170. Lee KS, Kim SR, Park SJ et al (2006) PPARg modulates reactive oxygen species generation and activation of nuclear NF-κB and hypoxia-inducible factor 1alpha in allergic airway disease of mice. J Allergy Clin Immunol 118:120–127

    Article  PubMed  CAS  Google Scholar 

  171. Davis PB, Gupta S, Eastman J, Konstan MW (2003) Inhibition of proinflammatory cytokine production by PPARgamma agonists in airway epithelial cells. Pediatr Pulmonol Suppl 24:268–269

    Google Scholar 

  172. Shak S, Capon DJ, Helmiss R et al (1990) Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci USA 87:9188–9192

    Article  PubMed  CAS  Google Scholar 

  173. Shah PL, Scott SF, Knight RA et al (1996) In vivo effects of recombinant human DNase I on sputum in patients with cystic fibrosis. Thorax 51:119–125

    Article  PubMed  CAS  Google Scholar 

  174. Fuchs HS, Borowitz DS, Christiansen DH et al (1994) Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med 331:637–642

    Article  PubMed  CAS  Google Scholar 

  175. Quan JM, Tiddens HA, Sy JP et al (2001) A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung abnormalities. J Pediatr 139:813–820

    Article  PubMed  CAS  Google Scholar 

  176. Konstan MW, Wagener JS, Pasta DJ et al (2006) Pulmozyme (dornase alfa) use is associated with a slower rate of lung function decline in patients with cystic fibrosis. Pediatr Pulmonol (Suppl 29):A370, 337

  177. Paul K, Rietschel E, Ballmann M et al (2004) Effect of treatment with dornase alpha on airway inflammation in patients with cystic fibrosis. Am J Respir Crit Care Med 169:719–725

    Article  PubMed  Google Scholar 

  178. Ratjen F, Paul K, van Koningsbruggen S et al (2005) DNA concentrations in BAL fluid of cystic fibrosis patients with early lung disease: influence of treatment with dornase alpha. Pediatr Pulmonol 39:1–4

    Article  PubMed  CAS  Google Scholar 

  179. Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PTP (2006) A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 354:229–240

    Article  PubMed  CAS  Google Scholar 

  180. Cianchetti S, Bacci E, Ruocco L, Bartoli ML, Ricci M, Pavia T, Dente FL, Di Franco A, Vagaggini B, Paggiaro PL (2004) Granulocyte markers in hypertonic and isotonic saline-induced sputum of asthmatic subjects. Eur Respir J 24:1018–1024

    Article  PubMed  CAS  Google Scholar 

  181. Cianchetti S, Bacci E, Bartoli ML, Ruocco L, Pavia T, Dente FL, Di Franco A, Vagaggini B, Paggiaro P (2007) Can hypertonic saline inhalation influence preformed chemokine and mediator release in induced sputum of chronic obstructive pulmonary disease patients? Comparison with isotonic saline. Clin Exp Allergy 37:1819–1826

    Article  PubMed  CAS  Google Scholar 

  182. Suri R, Marshall LJ, Wallis C, Metcalfe C, Bush A, Shute JK (2002) Effects of recombinant human DNase and hypertonic saline on airway inflammation in children with cystic fibrosis. Am J Respir Crit Care Med 166:352–355

    Article  PubMed  Google Scholar 

  183. Day BJ, Huang ME, Leitner H, Gauthier S (2007) A role for glutathione transport in the attenuation of oxidative injury by hypertonic saline. NACFC 2007 abst 147. Pediatr Pulmon Suppl 30:252

    Google Scholar 

Download references

Acknowledgment

Grant support from the National Institutes of Health Grant P30-DK27651 and the US Cystic Fibrosis Foundation, including a Leroy Matthews Physician Scientist Award for David Nichols, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Chmiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, D.P., Konstan, M.W. & Chmiel, J.F. Anti-inflammatory Therapies for Cystic Fibrosis-Related Lung Disease. Clinic Rev Allerg Immunol 35, 135–153 (2008). https://doi.org/10.1007/s12016-008-8081-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-008-8081-2

Keywords

Navigation