Skip to main content

Advertisement

Log in

Culture Protocol and Transcriptomic Analysis of Murine SVZ NPCs and OPCs

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The mammalian adult brain contains two neural stem and precursor (NPC) niches: the subventricular zone [SVZ] lining the lateral ventricles and the subgranular zone [SGZ] in the hippocampus. From these, SVZ NPCs represent the largest NPC pool. While SGZ NPCs typically only produce neurons and astrocytes, SVZ NPCs produce neurons, astrocytes and oligodendrocytes throughout life. Of particular importance is the generation and replacement of oligodendrocytes, the only myelinating cells of the central nervous system (CNS). SVZ NPCs contribute to myelination by regenerating the parenchymal oligodendrocyte precursor cell (OPC) pool and by differentiating into oligodendrocytes in the developing and demyelinated brain. The neurosphere assay has been widely adopted by the scientific community to facilitate the study of NPCs in vitro. Here, we present a streamlined protocol for culturing postnatal and adult SVZ NPCs and OPCs from primary neurosphere cells. We characterize the purity and differentiation potential as well as provide RNA-sequencing profiles of postnatal SVZ NPCs, postnatal SVZ OPCs and adult SVZ NPCs. We show that primary neurospheres cells generated from postnatal and adult SVZ differentiate into neurons, astrocytes and oligodendrocytes concurrently and at comparable levels. SVZ OPCs are generated by subjecting primary neurosphere cells to OPC growth factors fibroblast growth factor (FGF) and platelet-derived growth factor-AA (PDGF-AA). We further show SVZ OPCs can differentiate into oligodendrocytes in the absence and presence of thyroid hormone T3. Transcriptomic analysis confirmed the identities of each cell population and revealed novel immune and signalling pathways expressed in an age and cell type specific manner.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability (Data Transparency)

The datasets generated and analysed during the current study are available in the GEO repository (GSE217507).

Code availability (Software Application or Custom Code)

Open-source and publicly available software tools were used for the analysis of data herein and no custom code or tools were generated. All software tools are listed in Material & Methods. Analysis scripts are available from the corresponding author upon reasonable requests.

References

  1. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  2. Soares, R., Ribeiro, F. F., Lourenço, D. M., Rodrigues, R. S., Moreira, J. B., Sebastião, A. M., Morais, V. A., & Xapelli, S. (2021). The neurosphere assay: An effective in vitro technique to study neural stem cells. Neural regeneration research, 16, 2229–2231.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chojnacki, A., & Weiss, S. (2008). Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nature Protocols, 3, 935–940.

    Article  CAS  PubMed  Google Scholar 

  4. Levison, S. W., & Goldman, J. E. (1993). Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron, 10, 201–212.

    Article  CAS  PubMed  Google Scholar 

  5. Maki, T., Liang, A. C., Miyamoto, N., Lo, E. H., & Arai, K. (2013). Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Frontiers in cellular neuroscience, 7, 275–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capilla-Gonzalez, V., Cebrian-Silla, A., Guerrero-Cazares, H., Garcia-Verdugo, J. M., & Quiñones-Hinojosa, A. (2013). The generation of oligodendroglial cells is preserved in the rostral migratory stream during aging. Frontiers in Cellular Neuroscience, 7, 147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obernier, K., & Alvarez-Buylla, A. (2019). Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146(4), dev156059

  8. Xin, W., & Chan, J. R. (2020). Myelin plasticity: Sculpting circuits in learning and memory. Nature Reviews Neuroscience, 21, 682–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franklin, R. J., & Ffrench-Constant, C. (2008). Remyelination in the CNS: From biology to therapy. Nature Reviews Neuroscience, 9, 839–855.

    Article  CAS  PubMed  Google Scholar 

  10. Göttle, P., Förster, M., Weyers, V., Küry, P., Rejdak, K., Hartung, H. P., & Kremer, D. (2019). An unmet clinical need: Roads to remyelination in MS. Neurological research and practice, 1, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Neely, S. A., Williamson, J. M., Klingseisen, A., Zoupi, L., Early, J. J., Williams, A., & Lyons, D. A. (2022). New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nature Neuroscience, 25(4), 415–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A. E., Pluchino, S., Martino, G., & Schwartz, M. (2006). Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Molecular and Cellular Neuroscience, 31, 149–160.

    Article  CAS  PubMed  Google Scholar 

  13. Li, Y., Dittmann, N. L., Watson, A. E. S., de Almeida, M. M. A., Footz, T., & Voronova, A. (2022). Hepatoma Derived Growth Factor Enhances Oligodendrocyte Genesis from Subventricular Zone Precursor Cells. ASN Neuro, 14, 17590914221086340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watson, A. E. S., de Almeida, M. M. A., Dittmann, N. L., Li, Y., Torabi, P., Footz, T., Vetere, G., Galleguillos, D., Sipione, S., Cardona, A. E., & Voronova, A. (2021). Fractalkine signaling regulates oligodendroglial cell genesis from SVZ precursor cells. Stem Cell Reports, 16, 1968–1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Perez, O., & Alvarez-Buylla, A. (2011). Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain research reviews, 67, 147–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., & Richardson, W. D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neuroscience, 9, 173–179.

    Article  CAS  PubMed  Google Scholar 

  17. Serwanski, D. R., Rasmussen, A. L., Brunquell, C. B., Perkins, S. S., & Nishiyama, A. (2018). Sequential Contribution of Parenchymal and Neural Stem Cell-Derived Oligodendrocyte Precursor Cells toward Remyelination. Neuroglia (Basel, Switzerland), 1, 91–105.

    PubMed  Google Scholar 

  18. Menn, B., Garcia-Verdugo, J. M., Yaschine, C., Gonzalez-Perez, O., Rowitch, D., & Alvarez-Buylla, A. (2006). Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain. The Journal of Neuroscience, 26, 7907–7918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brousse, B., Magalon, K., Durbec, P., & Cayre, M. (2015). Region and dynamic specificities of adult neural stem cells and oligodendrocyte precursors in myelin regeneration in the mouse brain. Biology open, 4, 980–992.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., & Baron-Van Evercooren, A. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. European Journal of Neuroscience, 11, 4357–4366.

    Article  CAS  PubMed  Google Scholar 

  21. Nait-Oumesmar, B., Picard-Riera, N., Kerninon, C., & Baron-Van Evercooren, A. (2008). The role of SVZ-derived neural precursors in demyelinating diseases: From animal models to multiple sclerosis. Journal of the Neurological Sciences, 265, 26–31.

    Article  CAS  PubMed  Google Scholar 

  22. Jablonska, B., Aguirre, A., Raymond, M., Szabo, G., Kitabatake, Y., Sailor, K. A., Ming, G. L., Song, H., & Gallo, V. (2010). Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nature Neuroscience, 13, 541–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E. C., Tallquist, M., Li, J., & Lu, Q. R. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nature Protocols, 2, 1044.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmed, A., Isaksen, T. J., & Yamashita, T. (2021). Protocol for mouse adult neural stem cell isolation and culture. STAR protocols, 2, 100522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Franco, P. G., Pasquini, J. M., & Silvestroff, L. (2015). Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres. PLoS ONE, 10, e0121774.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vazey, E. M., Chen, K., Hughes, S. M., & Connor, B. (2006). Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Experimental Neurology, 199, 384–396.

    Article  PubMed  Google Scholar 

  27. Goldman, S. A., Zaremba, A., & Niedzwiecki, D. (1992). In vitro neurogenesis by neuronal precursor cells derived from the adult songbird brain. Journal of Neuroscience, 12, 2532–2541.

    Article  CAS  PubMed  Google Scholar 

  28. Chow, A., & Morshead, C. M. (2016). Cyclosporin A enhances neurogenesis in the dentate gyrus of the hippocampus. Stem Cell Research, 16, 79–87.

    Article  CAS  PubMed  Google Scholar 

  29. Soares, R., Ribeiro, F. F., Lourenço, D. M., Rodrigues, R. S., Moreira, J. B., Sebastião, A. M., Morais, V. A., & Xapelli, S. (2020). Isolation and expansion of neurospheres from Postnatal (P1–3) mouse neurogenic niches. Journal of Visualized Experiments 159, 10.3791/60822

  30. Smith, R. S., Barnett, S. C., & Lindsay, S. L. (2022). Generation of Rat Neural Stem Cells to Produce Different Astrocyte Phenotypes. Methods in Molecular Biology, 2429, 333–344.

    Article  PubMed  Google Scholar 

  31. Vancamp, P., Le Blay, K., Butruille, L., Sébillot, A., Boelen, A., Demeneix, B. A., & Remaud, S. (2022). Developmental thyroid disruption permanently affects the neuroglial output in the murine subventricular zone. Stem Cell Reports, 17, 459–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faigle, R., & Song, H. (2013). Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochimica et Biophysica Acta, 1830, 2435–2448.

    Article  CAS  PubMed  Google Scholar 

  33. Bhat, N. R., Sarlieve, L. L., Rao, G. S., & Pieringer, R. A. (1979). Investigations on myelination in vitro. Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice. Journal of Biological Chemistry, 254, 9342–9344.

    Article  CAS  PubMed  Google Scholar 

  34. Coles-Takabe, B. L., Brain, I., Purpura, K. A., Karpowicz, P., Zandstra, P. W., Morshead, C. M., & van der Kooy, D. (2008). Don’t look: Growing clonal versus nonclonal neural stem cell colonies. Stem Cells, 26, 2938–2944.

    Article  PubMed  Google Scholar 

  35. Baron, W., Metz, B., Bansal, R., Hoekstra, D., & de Vries, H. (2000). PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: Regulation of proliferation and differentiation by multiple intracellular signaling pathways. Molecular and Cellular Neuroscience, 15, 314–329.

    Article  CAS  PubMed  Google Scholar 

  36. Barres, B. A., Schmid, R., Sendnter, M., & Raff, M. C. (1993). Multiple extracellular signals are required for long-term oligodendrocyte survival. Development, 118, 283–295.

    Article  CAS  PubMed  Google Scholar 

  37. Richardson, W. D., Pringle, N., Mosley, M. J., Westermark, B., & Dubois-Dalcq, M. (1988). A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell, 53, 309–319.

    Article  CAS  PubMed  Google Scholar 

  38. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21.

    Article  CAS  PubMed  Google Scholar 

  40. Frankish, A., Diekhans, M., Jungreis, I., Lagarde, J., Loveland, J. E., Mudge, J. M., Sisu, C., Wright, J. C., Armstrong, J., Barnes, I., Berry, A., Bignell, A., Boix, C., Carbonell Sala, S., Cunningham, F., Di Domenico, T., Donaldson, S., Fiddes, I. T., García Girón, C., … Flicek, P. (2020). GENCODE 2021. Nucleic Acids Research, 49, D916–D923.

    Article  PubMed Central  Google Scholar 

  41. Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  42. Kolde, R. (2012). Pheatmap: Pretty heatmaps. R package version, 1, 726.

    Google Scholar 

  43. Smedley, D., Haider, S., Ballester, B., Holland, R., London, D., Thorisson, G., & Kasprzyk, A. (2009). BioMart–biological queries made easy. BMC Genomics, 10, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research, 50(W1), W216–W221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.

    Article  CAS  PubMed  Google Scholar 

  46. Mandelkow, R., Gumbel, D., Ahrend, H., Kaul, A., Zimmermann, U., Burchardt, M., & Stope, M. B. (2017). Detection and Quantification of Nuclear Morphology Changes in Apoptotic Cells by Fluorescence Microscopy and Subsequent Analysis of Visualized Fluorescent Signals. Anticancer Research, 37, 2239–2244.

    Article  CAS  PubMed  Google Scholar 

  47. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676–682.

    Article  CAS  PubMed  Google Scholar 

  48. Graham, V., Khudyakov, J., Ellis, P., & Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron, 39, 749–765.

    Article  CAS  PubMed  Google Scholar 

  49. Imayoshi, I., Ohtsuka, T., Metzger, D., Chambon, P., & Kageyama, R. (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44, 233–238.

    Article  CAS  PubMed  Google Scholar 

  50. Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D., & Bergles, D. E. (2010). NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron, 68, 668–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fard, M. K., van der Meer, F., Sánchez, P., Cantuti-Castelvetri, L., Mandad, S., Jäkel, S., Fornasiero, E. F., Schmitt, S., Ehrlich, M., Starost, L., Kuhlmann, T., Sergiou, C., Schultz, V., Wrzos, C., Brück, W., Urlaub, H., Dimou, L., Stadelmann, C., & Simons, M. (2017). BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Science Translational Medicine, 9(419), eaam7816

  52. Ishimoto, T., Ninomiya, K., Inoue, R., Koike, M., Uchiyama, Y., & Mori, H. (2017). Mice lacking BCAS1, a novel myelin-associated protein, display hypomyelination, schizophrenia-like abnormal behaviors, and upregulation of inflammatory genes in the brain. Glia, 65, 727–739.

    Article  PubMed  Google Scholar 

  53. Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M. F., Conway, S. J., Ng, L. G., Stanley, E. R., Samokhvalov, I. M., & Merad, M. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 330, 841–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alliot, F., Godin, I., & Pessac, B. (1999). Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Research. Developmental Brain Research, 117, 145–152.

    Article  CAS  PubMed  Google Scholar 

  55. Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E. G., Wieghofer, P., Heinrich, A., Riemke, P., Hölscher, C., Müller, D. N., Luckow, B., Brocker, T., Debowski, K., Fritz, G., Opdenakker, G., Diefenbach, A., Biber, K., Heikenwalder, M., … Prinz, M. (2013). Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neuroscience, 16, 273–280.

    Article  CAS  PubMed  Google Scholar 

  56. Xing, Y. L., Röth, P. T., Stratton, J. A., Chuang, B. H., Danne, J., Ellis, S. L., Ng, S. W., Kilpatrick, T. J., & Merson, T. D. (2014). Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. Journal of Neuroscience, 34, 14128–14146.

    Article  PubMed  Google Scholar 

  57. Fernández-Castañeda, A., Chappell, M. S., Rosen, D. A., Seki, S. M., Beiter, R. M., Johanson, D. M., Liskey, D., Farber, E., Onengut-Gumuscu, S., Overall, C. C., Dupree, J. L., & Gaultier, A. (2020). The active contribution of OPCs to neuroinflammation is mediated by LRP1. Acta Neuropathologica, 139, 365–382.

    Article  PubMed  Google Scholar 

  58. Lin, S. C., & Bergles, D. E. (2004). Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neuroscience, 7, 24–32.

    Article  CAS  PubMed  Google Scholar 

  59. Bergles, D. E., Roberts, J. D., Somogyi, P., & Jahr, C. E. (2000). Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405, 187–191.

    Article  CAS  PubMed  Google Scholar 

  60. Orduz, D., Maldonado, P. P., Balia, M., Velez-Fort, M., de Sars, V., Yanagawa, Y., Emiliani, V., & Angulo, M. C. (2015) Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. Elife 4, e06953

  61. Watson, A. E. S., Goodkey, K., Footz, T., & Voronova, A. (2020). Regulation of CNS precursor function by neuronal chemokines. Neuroscience Letters, 715, 134533.

    Article  CAS  PubMed  Google Scholar 

  62. Yuzwa, S. A., Borrett, M. J., Innes, B. T., Voronova, A., Ketela, T., Kaplan, D. R., Bader, G. D., & Miller, F. D. (2017). Developmental Emergence of Adult Neural Stem Cells as Revealed by Single-Cell Transcriptional Profiling. Cell Reports, 21, 3970–3986.

    Article  CAS  PubMed  Google Scholar 

  63. Jeong, D., Lozano Casasbuenas, D., Gengatharan, A., Edwards, K., Saghatelyan, A., Kaplan, D. R., Miller, F. D., & Yuzwa, S. A. (2020). LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Reports, 33, 108257.

    Article  CAS  PubMed  Google Scholar 

  64. Nishiyama, A., Suzuki, R., & Zhu, X. (2014). NG2 cells (polydendrocytes) in brain physiology and repair. Frontiers in Neuroscience, 8, 133.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li, M., & Ransohoff, R. M. (2008). Multiple roles of chemokine CXCL12 in the central nervous system: A migration from immunology to neurobiology. Progress in Neurobiology, 84, 116–131.

    Article  CAS  PubMed  Google Scholar 

  66. Belenguer, G., Duart-Abadia, P., Jordán-Pla, A., Domingo-Muelas, A., Blasco-Chamarro, L., Ferrón, S. R., Morante-Redolat, J. M., & Fariñas, I. (2021). Adult Neural Stem Cells Are Alerted by Systemic Inflammation through TNF-α Receptor Signaling. Cell Stem Cell, 28, 285-299.e289.

    Article  CAS  PubMed  Google Scholar 

  67. Storer, M. A., Gallagher, D., Fatt, M. P., Simonetta, J. V., Kaplan, D. R., & Miller, F. D. (2018). Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development. Stem Cell Reports, 10, 1464–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hayakawa, K., Pham, L. D., Seo, J. H., Miyamoto, N., Maki, T., Terasaki, Y., Sakadzic, S., Boas, D., van Leyen, K., Waeber, C., Kim, K. W., Arai, K., & Lo, E. H. (2016). CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. Journal of Cerebral Blood Flow and Metabolism, 36, 781–793.

    Article  CAS  PubMed  Google Scholar 

  69. Xiao, L., Yan, J., Feng, D., Ye, S., Yang, T., Wei, H., Li, T., Sun, W., & Chen, J. (2021). Critical Role of TLR4 on the Microglia Activation Induced by Maternal LPS Exposure Leading to ASD-Like Behavior of Offspring. Frontiers in cell and developmental biology, 9, 634837.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brousse, B., Mercier, O., Magalon, K., Daian, F., Durbec, P., & Cayre, M. (2021). Endogenous neural stem cells modulate microglia and protect against demyelination. Stem Cell Reports, 16, 1792–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Labandeira-Garcia, J. L., Costa-Besada, M. A., Labandeira, C. M., Villar-Cheda, B., & Rodríguez-Perez, A. I. (2017). Insulin-Like Growth Factor-1 and Neuroinflammation. Frontiers in aging neuroscience, 9, 365.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chitu, V., Biundo, F., & Stanley, E. R. (2021). Colony stimulating factors in the nervous system. Seminars in immunology, 54, 101511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Codega, P., Silva-Vargas, V., Paul, A., Maldonado-Soto, A. R., Deleo, A. M., Pastrana, E., & Doetsch, F. (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82, 545–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bouab, M., Paliouras, G. N., Aumont, A., Forest-Bérard, K., & Fernandes, K. J. (2011). Aging of the subventricular zone neural stem cell niche: Evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience, 173, 135–149.

    Article  CAS  PubMed  Google Scholar 

  75. Audesse, A. J., & Webb, A. E. (2020). Mechanisms of enhanced quiescence in neural stem cell aging. Mechanisms of ageing and development, 191, 111323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Merson, T. D. (2020). Chapter Five - Aging of the ventricular-subventricular zone neural stem cell niche. In S. Nilsson (Ed), Advances in Stem Cells and their Niches (pp. 99–125). Elsevier.

  77. Kalamakis, G., Brüne, D., Ravichandran, S., Bolz, J., Fan, W., Ziebell, F., Stiehl, T., Catalá-Martinez, F., Kupke, J., Zhao, S., Llorens-Bobadilla, E., Bauer, K., Limpert, S., Berger, B., Christen, U., Schmezer, P., Mallm, J. P., Berninger, B., Anders, S., … Martin-Villalba, A. (2019). Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell, 176, 1407-1419.e1414.

    Article  CAS  PubMed  Google Scholar 

  78. Gauthier-Fisher, A., & Miller, F. D. (2013). Environmental Cues and Signaling Pathways that Regulate Neural Precursor Development. In J. L. Rubenstein & P. Rakic (Eds.), Patterning and Cell Type Specification in the Developing CNS and PNS (pp. 355–383). Elsevier.

    Chapter  Google Scholar 

  79. Barnabe-Heider, F., Wasylnka, J. A., Fernandes, K. J., Porsche, C., Sendtner, M., Kaplan, D. R., & Miller, F. D. (2005). Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron, 48, 253–265.

    Article  CAS  PubMed  Google Scholar 

  80. Voronova, A., Yuzwa, S. A., Wang, B. S., Zahr, S., Syal, C., Wang, J., Kaplan, D. R., & Miller, F. D. (2017). Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron, 94, 500-516.e509.

    Article  CAS  PubMed  Google Scholar 

  81. Yuzwa, S. A., Yang, G., Borrett, M. J., Clarke, G., Cancino, G. I., Zahr, S. K., Zandstra, P. W., Kaplan, D. R., & Miller, F. D. (2016). Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks. Neuron, 91, 988–1004.

    Article  CAS  PubMed  Google Scholar 

  82. Kang, Z., Wang, C., Zepp, J., Wu, L., Sun, K., Zhao, J., Chandrasekharan, U., DiCorleto, P. E., Trapp, B. D., Ransohoff, R. M., & Li, X. (2013). Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nature Neuroscience, 16, 1401–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, S., Cao, Z., Zhu, J., Zhang, Z., Zhao, H., Zhao, L., Sun, X., & Wang, X. (2019). In Vitro Monolayer Culture of Dispersed Neural Stem Cells on the E-Cadherin-Based Substrate with Long-Term Stemness Maintenance. ACS Omega, 4, 18136–18146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ortiz, F. C., Habermacher, C., Graciarena, M., Houry, P. Y., Nishiyama, A., Nait Oumesmar, B., & Angulo, M. C. (2019) Neuronal activity in vivo enhances functional myelin repair. JCI Insight 5(9),e123434

  85. Venkatesh, H. S., Johung, T. B., Caretti, V., Noll, A., Tang, Y., Nagaraja, S., Gibson, E. M., Mount, C. W., Polepalli, J., Mitra, S. S., Woo, P. J., Malenka, R. C., Vogel, H., Bredel, M., Mallick, P., & Monje, M. (2015). Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell, 161, 803–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., Inema, I., Miller, S. E., Bieri, G., Zuchero, J. B., Barres, B. A., Woo, P. J., Vogel, H., & Monje, M. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science, 344, 1252304.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Barres, B. A., & Raff, M. C. (1993). Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature, 361, 258–260.

    Article  CAS  PubMed  Google Scholar 

  88. Spitzer, S. O., Sitnikov, S., Kamen, Y., Evans, K. A., Kronenberg-Versteeg, D., Dietmann, S., de Faria, O., Jr., Agathou, S., & Káradóttir, R. T. (2019). Oligodendrocyte Progenitor Cells Become Regionally Diverse and Heterogeneous with Age. Neuron, 101, 459-471.e455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steadman, P. E., Xia, F., Ahmed, M., Mocle, A. J., Penning, A. R. A., Geraghty, A. C., Steenland, H. W., Monje, M., Josselyn, S. A., & Frankland, P. W. (2019). Disruption of Oligodendrogenesis impairs memory consolidation in adult mice. Neuron, 105(1), 150-164.e6.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Geraghty, A. C., Gibson, E. M., Ghanem, R. A., Greene, J. J., Ocampo, A., Goldstein, A. K., Ni, L., Yang, T., Marton, R. M., Paşca, S. P., Greenberg, M. E., Longo, F. M., & Monje, M. (2019). Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment. Neuron, 103, 250-265.e258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R., & Kheirbek, M. A. (2020). Preservation of a remote fear memory requires new myelin formation. Nature Neuroscience, 23, 487–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martin, J. A., Caccamise, A., Werner, C. T., Viswanathan, R., Polanco, J. J., Stewart, A. F., Thomas, S. A., Sim, F. J., & Dietz, D. M. (2018). A Novel Role for Oligodendrocyte Precursor Cells (OPCs) and Sox10 in Mediating Cellular and Behavioral Responses to Heroin. Neuropsychopharmacology : Official publication of the American College of Neuropsychopharmacology, 43, 1385–1394.

    Article  CAS  PubMed  Google Scholar 

  93. Paul, A., Chaker, Z., & Doetsch, F. (2017). Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science, 356, 1383–1386.

    Article  CAS  PubMed  Google Scholar 

  94. Young, S. Z., Lafourcade, C. A., Platel, J. C., Lin, T. V., & Bordey, A. (2014). GABAergic striatal neurons project dendrites and axons into the postnatal subventricular zone leading to calcium activity. Frontiers in Cellular Neuroscience, 8, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lennington, J. B., Pope, S., Goodheart, A. E., Drozdowicz, L., Daniels, S. B., Salamone, J. D., & Conover, J. C. (2011). Midbrain Dopamine Neurons Associated with Reward Processing Innervate the Neurogenic Subventricular Zone. The Journal of Neuroscience, 31, 13078–13087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tong, C. K., Chen, J., Cebrián-Silla, A., Mirzadeh, Z., Obernier, K., Guinto, C. D., Tecott, L. H., García-Verdugo, J. M., Kriegstein, A., & Alvarez-Buylla, A. (2014). Axonal Control of the Adult Neural Stem Cell Niche. Cell Stem Cell, 14, 500–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Young, S. Z., Taylor, M. M., & Bordey, A. (2011). Neurotransmitters couple brain activity to subventricular zone neurogenesis. European Journal of Neuroscience, 33, 1123–1132.

    Article  PubMed  Google Scholar 

  98. Lao, C. L., Lu, C. S., & Chen, J. C. (2013). Dopamine D3 receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia, 61, 475–489.

    Article  PubMed  Google Scholar 

  99. Shi, Z., Geng, Y., Liu, J., Zhang, H., Zhou, L., Lin, Q., Yu, J., Zhang, K., Liu, J., Gao, X., Zhang, C., Yao, Y., Zhang, C., & Sun, Y. E. (2018). Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein & Cell, 9, 351–364.

    CAS  Google Scholar 

  100. Nicaise, A. M., Willis, C. M., Crocker, S. J., & Pluchino, S. (2020). Stem Cells of the Aging Brain. Frontiers in Aging Neuroscience, 12, 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moyon, S., Dubessy, A. L., Aigrot, M. S., Trotter, M., Huang, J. K., Dauphinot, L., Potier, M. C., Kerninon, C., Melik Parsadaniantz, S., Franklin, R. J., & Lubetzki, C. (2015). Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. Journal of Neuroscience, 35, 4–20.

    Article  PubMed  Google Scholar 

  102. Borrett, M. J., Innes, B. T., Tahmasian, N., Bader, G. D., Kaplan, D. R., & Miller, F. D. (2022). A shared transcriptional identity for forebrain and dentate gyrus neural stem cells from embryogenesis to adulthood. eNeuro 9(1), ENEURO.0271-21.2021

  103. Imayoshi, I., Sakamoto, M., Yamaguchi, M., Mori, K., & Kageyama, R. (2010). Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. Journal of Neuroscience, 30, 3489–3498.

    Article  CAS  PubMed  Google Scholar 

  104. Birtle, Z., & Ponting, C. P. (2006). Meisetz and the birth of the KRAB motif. Bioinformatics, 22, 2841–2845.

    Article  CAS  PubMed  Google Scholar 

  105. Angelastro, J. M., Ignatova, T. N., Kukekov, V. G., Steindler, D. A., Stengren, G. B., Mendelsohn, C., & Greene, L. A. (2003). Regulated expression of ATF5 is required for the progression of neural progenitor cells to neurons. Journal of Neuroscience, 23, 4590–4600.

    Article  CAS  PubMed  Google Scholar 

  106. Ortega-Martínez, S. (2015). A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Frontiers in Molecular Neuroscience, 8, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dibajnia, P., & Morshead, C. M. (2013). Role of neural precursor cells in promoting repair following stroke. Acta Pharmacologica Sinica, 34, 78–90.

    Article  CAS  PubMed  Google Scholar 

  108. Lin, K., Bieri, G., Gontier, G., Müller, S., Smith, L. K., Snethlage, C. E., White, C. W., 3rd., Maybury-Lewis, S. Y., & Villeda, S. A. (2021). MHC class I H2-Kb negatively regulates neural progenitor cell proliferation by inhibiting FGFR signaling. PLoS Biology, 19, e3001311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kirby, L., Jin, J., Cardona, J. G., Smith, M. D., Martin, K. A., Wang, J., Strasburger, H., Herbst, L., Alexis, M., Karnell, J., Davidson, T., Dutta, R., Goverman, J., Bergles, D., & Calabresi, P. A. (2019). Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nature Communications, 10, 3887.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Falcão, A. M., van Bruggen, D., Marques, S., Meijer, M., Jäkel, S., Agirre, E., Samudyata, H., Floriddia, E. M., Vanichkina, D. P., Ffrench-Constant, C., Williams, A., Guerreiro-Cacais, A. O., & Castelo-Branco, G. (2018). Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nature Medicine, 24, 1837–1844.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Marteyn, A., Sarrazin, N., Yan, J., Bachelin, C., Deboux, C., Santin, M. D., Gressens, P., Zujovic, V., & Baron-Van Evercooren, A. (2016). Modulation of the innate immune response by human neural precursors prevails over oligodendrocyte progenitor remyelination to rescue a severe model of Pelizaeus-Merzbacher disease. Stem Cells, 34, 984–996.

    Article  CAS  PubMed  Google Scholar 

  112. Pluchino, S., Gritti, A., Blezer, E., Amadio, S., Brambilla, E., Borsellino, G., Cossetti, C., Del Carro, U., Comi, G., t Hart, B., Vescovi, A., & Martino, G. (2009). Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Annals of neurology, 66, 343–354.

    Article  CAS  PubMed  Google Scholar 

  113. Peruzzotti-Jametti, L., Bernstock, J. D., Willis, C. M., Manferrari, G., Rogall, R., Fernandez-Vizarra, E., Williamson, J. C., Braga, A., van den Bosch, A., Leonardi, T., Krzak, G., Kittel, Á., Benincá, C., Vicario, N., Tan, S., Bastos, C., Bicci, I., Iraci, N., Smith, J. A., … Pluchino, S. (2021). Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biology, 19, e3001166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morton, M. C., Neckles, V. N., Seluzicki, C. M., Holmberg, J. C., & Feliciano, D. M. (2018). Neonatal Subventricular Zone Neural Stem Cells Release Extracellular Vesicles that Act as a Microglial Morphogen. Cell Reports, 23, 78–89.

    Article  CAS  PubMed  Google Scholar 

  115. Lu, Z., Elliott, M. R., Chen, Y., Walsh, J. T., Klibanov, A. L., Ravichandran, K. S., & Kipnis, J. (2011). Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nature Cell Biology, 13, 1076–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Willis, C. M., Nicaise, A. M., Krzak, G., Ionescu, R. B., Pappa, V., D’Angelo, A., Agarwal, R., Repollés-de-Dalmau, M., Peruzzotti-Jametti, L., & Pluchino, S. (2022). Soluble factors influencing the neural stem cell niche in brain physiology, inflammation, and aging. Experimental Neurology, 355, 114124.

    Article  PubMed  Google Scholar 

  117. Kirby, L., & Castelo-Branco, G. (2021). Crossing boundaries: Interplay between the immune system and oligodendrocyte lineage cells. Seminars in Cell & Developmental Biology, 116, 45–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canada Research Chairs, Natural Sciences and Engineering Research Council of Canada (NSERC) grants (232418, RGPIN-2018-04669) awarded to AV. NLD was supported by Brad Mates E Drive Studentship in Parkinson's Disease and Movement Disorders and NSERC PGS-D; PT by NSERC USRA, UAlberta Neuroscience and Mental Health Institute as well as URI studentships; and AESW by Multiple Sclerosis Society of Canada Master’s [3821], WCHRI Graduate and CIHR CGSD Scholarships. The authors wish to thank Kin Chan for the RNA-Seq service performed at the Network Biology Collaborative Centre (nbcc.lunenfeld.ca), a facility supported by grants from Canada Foundation for Innovation, the Ontarian Government, and Genome Canada and Ontario Genomics (OGI-139). We wish to thank Beatrix Wang for technical assistance and Dr. Monique de Almeida for reading the manuscript.

Funding

This work was supported by the Canada Research Chairs and Natural Sciences and Engineering Research Council of Canada (NSERC) grants (232418, RGPIN-2018–04669).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, NLD and AV.; Methodology, NLD, PT, AESW, SY, AV.; Formal analysis, NLD, PT, SY; Investigation, NLD, PT, AESW, AV; Resources, AV; Writing – original draft, NLD and AV; Writing – review & editing, NLD and AV; Supervision, AV; Funding acquisition, AV.

Corresponding author

Correspondence to Anastassia Voronova.

Ethics declarations

Conflicts of Interest/Competing Interests (include appropriate disclosures)

None.

Ethics Approval (Include Appropriate Approvals or Waivers)

All animal use was approved by University of Alberta Research Ethics Office (Animal Use Protocol AUP2527) and experiments were conducted in accordance with the Canadian Council of Animal Care Policies.

Consent to Participate (Include Appropriate Statements)

Not applicable.

Consent for Publication (Include Appropriate Statements)

We consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dittmann, N.L., Torabi, P., Watson, A.E.S. et al. Culture Protocol and Transcriptomic Analysis of Murine SVZ NPCs and OPCs. Stem Cell Rev and Rep 19, 983–1000 (2023). https://doi.org/10.1007/s12015-022-10492-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10492-z

Keywords

Navigation