Skip to main content

Advertisement

Log in

Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine – Review

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Dipeptidyl peptidase IV (DPP4) is a ubiquitous protease that can be found in membrane-anchored or soluble form. Incretins are one of the main DPP4 substrates. These hormones regulate glucose levels, by stimulating insulin secretion and decreasing glucagon production. Because DPP4 levels are high in diabetes, DPP4 inhibitor (DPP4i) drugs derived from gliptin are widespread used as hypoglycemic agents for its treatment. However, as DPP4 recognizes other substrates such as chemokines, growth factors and neuropeptides, pleiotropic effects have been observed in patients treated with DPP4i. Several of these substrates are part of the stem-cell niche. Thus, they may affect different physiological aspects of mesenchymal stem-cells (MSC). They include viability, differentiation, mobilization and immune response. MSC are involved in tissue homeostasis and regeneration under both physiological and pathological conditions. Therefore, such cells and their secretomes have a high clinical potential in regenerative medicine. In this context, DPP4 activity may modulate different aspects of MSC regenerative capacity. Therefore, the aim of this review is to analyze the effect of different DPP4 substrates on MSC. Likewise, how the regulation of DPP4 activity by DPP4i can be applied in regenerative medicine. That includes treatment of cardiovascular and bone pathologies, cutaneous ulcers, organ transplantation and pancreatic beta-cell regeneration, among others. Thus, DPP4i has an important clinical potential as a complement to therapeutic strategies in regenerative medicine. They involve enhancing the differentiation, immunomodulation and mobilization capacity of MSC for regenerative purposes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Hopsu-Havu, V. K., & Glenner, G. G. (1966). A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide. Histochemie, 7(3), 197–201. https://doi.org/10.1007/BF00577838

    Article  CAS  PubMed  Google Scholar 

  2. Röhrborn, D., Wronkowitz, N., & Eckel, J. (2015). DPP4 in diabetes. Frontiers in Immunology, 6, 1–20. https://doi.org/10.3389/fimmu.2015.00386.

    Article  CAS  Google Scholar 

  3. Zhong, J., Rao, X., & Rajagopalan, S. (2013). An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: Potential implications in cardiovascular disease. Atherosclerosis, 226(2), 305–314. https://doi.org/10.1016/j.atherosclerosis.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  4. Rosmaninho-Salgado, J., Marques, A. P., Estrada, M., Santana, M., Cortez, V., Grouzmann, E., & Cavadas, C. (2012). Dipeptidyl-peptidase-IV by cleaving neuropeptide y induces lipid accumulation and PPAR-γ expression. Peptides, 37(1), 49–54. https://doi.org/10.1016/j.peptides.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  5. Drucker, D. J. (2006). The biology of incretin hormones. Cell Metabolism, 3(3), 153–165. https://doi.org/10.1016/j.cmet.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  6. Davies, M. J., D’Alessio, D. A., Fradkin, J., Kernan, W. N., Mathieu, C., Mingrone, G., Rossing, P., Tsapas, A., Wexler, D. J., & Buse, J. B. (2018). Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care, 41(12), 2669–2701. https://doi.org/10.2337/dci18-0033

    Article  PubMed  PubMed Central  Google Scholar 

  7. Avogaro, A., & Fadini, G. P. (2018). The pleiotropic cardiovascular effects of dipeptidyl peptidase-4 inhibitors. British Journal of Clinical Pharmacology, 84(8), 1686–1695. https://doi.org/10.1111/bcp.13611

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu, H., Guo, L., Xing, J., Li, P., Sang, H., Hu, X., Du, Y., Zhao, L., Song, R., & Gu, H. (2020). The protective role of DPP4 inhibitors in atherosclerosis. European Journal of Pharmacology, 875(1), 173037. https://doi.org/10.1016/j.ejphar.2020.173037

    Article  CAS  PubMed  Google Scholar 

  9. Nicotera, R., Casarella, A., Longhitano, E., Bolignano, D., Andreucci, M., De Sarro, G., et al. (2020). Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacological Research, 159, 105019. https://doi.org/10.1016/j.phrs.2020.105019.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y., Zhao, C., Liang, J., Yu, M., & Qu, X. (2017). Effect of dipeptidyl peptidase-4 inhibitors on bone metabolism and the possible underlying mechanisms. Frontiers in Pharmacology, 8, 1–9. https://doi.org/10.3389/fphar.2017.00487.

    Article  CAS  Google Scholar 

  11. Wagers, A. J., & Weissman, I. L. (2004). Plasticity of Adult Stem Cells. Cell (Vol. 116). https://doi.org/10.1016/s0092-8674(04)00208-9.

  12. Huang, S., Leung, V., Peng, S., Li, L., Lu, F. J., Wang, T., Lu, W., Cheung, K. M. C., & Zhou, G. (2011). Developmental definition of MSCs: New insights into pending questions. Cellular Reprogramming, 13(6), 465–472. https://doi.org/10.1089/cell.2011.0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., & Keating, a, Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  14. Casado-Díaz, A., Quesada-Gómez, J. M., & Dorado, G. (2016). Stem cell research and molecular markers in medicine. Reference Module in Biomedical Sciences. https://doi.org/10.1016/B978-0-12-801238-3.99814-3

  15. Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q., Cao, J., Xie, N., Velletri, T., Zhang, X., Xu, C., Zhang, L., Yang, H., Hou, J., Wang, Y., & Shi, Y. (2016). Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death and Differentiation, 1–12. https://doi.org/10.1038/cdd.2015.168

  16. Sui, B. D., Hu, C. H., Zheng, C. X., & Jin, Y. (2016). Microenvironmental views on mesenchymal stem cell differentiation in aging. Journal of Dental Research, 95(12), 1333–1340. https://doi.org/10.1177/0022034516653589

    Article  CAS  PubMed  Google Scholar 

  17. Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology. https://doi.org/10.1146/annurev-physiol-030212-183653

  18. Ambrosi, T. H., Scialdone, A., Graja, A., Gohlke, S., Jank, A. M., Bocian, C., Woelk, L., Fan, H., Logan, D. W., Schürmann, A., Saraiva, L. R., & Schulz, T. J. (2017). Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell, 20(6), 771–784.e6. https://doi.org/10.1016/j.stem.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Z., Grigo, C., Steinbeck, J., Von Hörsten, S., Amann, K., & Daniel, C. (2014). Soluble DPP4 originates in part from bone marrow cells and not from the kidney. Peptides, 57, 109–117. https://doi.org/10.1016/j.peptides.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  20. Zilleßen, P., Celner, J., Kretschmann, A., Pfeifer, A., Racké, K., & Mayer, P. (2016). Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes. Scientific Reports, 6, 1–12. https://doi.org/10.1038/srep23074.

    Article  CAS  Google Scholar 

  21. Merrick, D., Sakers, A., Irgebay, Z., Okada, C., Calvert, C., Morley, M. P., Percec, I., & Seale, P. (2019). Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science, 364, 6438. https://doi.org/10.1126/science.aav2501

    Article  CAS  Google Scholar 

  22. Charoenphandhu, N., Suntornsaratoon, P., Sa-Nguanmoo, P., Tanajak, P., Teerapornpuntakit, J., Aeimlapa, R., Chattipakorn, N., & Chattipakorn, S. (2018). Dipeptidyl Peptidase-4 inhibitor, Vildagliptin, improves trabecular bone mineral density and microstructure in obese, insulin-resistant, pre-diabetic rats. Canadian Journal of Diabetes, 42(5), 545–552. https://doi.org/10.1016/j.jcjd.2018.01.006

    Article  PubMed  Google Scholar 

  23. Dong, C., Yang, H., Wang, Y., Yan, X., Li, D., Cao, Z., et al. (2020). Anagliptin stimulates osteoblastic cell differentiation and mineralization. Biomedicine and Pharmacotherapy, 129, 109796. https://doi.org/10.1016/j.biopha.2019.109796.

    Article  CAS  PubMed  Google Scholar 

  24. Glorie, L., D’Haese, P. C., & Verhulst, A. (2016). Boning up on DPP4, DPP4 substrates, and DPP4-adipokine interactions: Logical reasoning and known facts about bone related effects of DPP4 inhibitors. Bone, 92, 37–49. https://doi.org/10.1016/j.bone.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  25. Weivoda, M. M., Chew, C. K., Monroe, D. G., Farr, J. N., Atkinson, E. J., Geske, J. R., Eckhardt, B., Thicke, B., Ruan, M., Tweed, A. J., McCready, L. K., Rizza, R. A., Matveyenko, A., Kassem, M., Andersen, T. L., Vella, A., Drake, M. T., Clarke, B. L., Oursler, M. J., & Khosla, S. (2020). Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nature Communications, 11(1). https://doi.org/10.1038/S41467-019-14003-6.

  26. Lee, S. Y., & Long, F. (2018). Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. Journal of Clinical Investigation, 128(12), 5573–5586. https://doi.org/10.1172/JCI96221

    Article  Google Scholar 

  27. Klemann, C., Wagner, L., Stephan, M., & von Hörsten, S. (2016). Cut to the chase: a review of CD26/dipeptidyl peptidase-4’s (DPP4) entanglement in the immune system. Clinical and Experimental Immunology, 185(1), 1–21. https://doi.org/10.1111/cei.12781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kieffer, T. J., Mc Intosh, C. H. S., & Pederson, R. A. (1995). Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase iv. Endocrinology, 136(8), 3585–3596. https://doi.org/10.1210/endo.136.8.7628397

    Article  CAS  PubMed  Google Scholar 

  29. Sanz, C., Vázquez, P., Blázquez, C., Barrio, P. A., Alvarez, M. D. M., & Blázquez, E. (2010). Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. American Journal of Physiology - Endocrinology and Metabolism, 298(3), E634–E643. https://doi.org/10.1152/ajpendo.00460.2009

    Article  CAS  PubMed  Google Scholar 

  30. Lee, H. M., Joo, B. S., Lee, C. H., Kim, H. Y., Ock, J. H., & Lee, Y. S. (2015). Effect of glucagon-like Peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes. Journal of Menopausal Medicine, 21(2), 93. https://doi.org/10.6118/jmm.2015.21.2.93

    Article  PubMed  PubMed Central  Google Scholar 

  31. Normand, E., Franco, A., Moreau, A., & Marcil, V. (2017). Dipeptidyl Peptidase-4 and adolescent idiopathic scoliosis: Expression in osteoblasts. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-03310-x

    Article  CAS  Google Scholar 

  32. De Paula, F. J. A., Horowitz, M. C., & Rosen, C. J. (2010). Novel insights into the relationship between diabetes and osteoporosis. Diabetes/Metabolism Research and Reviews. https://doi.org/10.1002/dmrr.1135

  33. Habib, H. A., Heeba, G. H., & Khalifa, M. M. A. (2021). Effect of combined therapy of mesenchymal stem cells with GLP-1 receptor agonist, exenatide, on early-onset nephropathy induced in diabetic rats. European Journal of Pharmacology, 892(October), 173721. https://doi.org/10.1016/j.ejphar.2020.173721

    Article  CAS  PubMed  Google Scholar 

  34. Wang, N., Gao, J., Jia, M., Ma, X., Lei, Z., Da, F., Yan, F., Zhang, H., Zhou, Y., Li, M., He, G., Meng, J., & Luo, X. (2018). Exendin-4 induces bone marrow stromal cells migration through bone marrow-derived macrophages polarization via PKA-STAT3 signaling pathway. Cellular Physiology and Biochemistry, 44(5), 1696–1714. https://doi.org/10.1159/000485776

    Article  CAS  Google Scholar 

  35. Zhou, H., Li, D., Shi, C., Xin, T., Yang, J., Zhou, Y., et al. (2015). Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Scientific Reports, 5, 1–14. https://doi.org/10.1038/srep12898.

    Article  CAS  Google Scholar 

  36. Deacon, C. F., Nauck, M. A., Meier, J., Hücking, K., & Holst, J. J. (2000). Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. Journal of Clinical Endocrinology and Metabolism, 85(10), 3575–3581. https://doi.org/10.1210/jc.85.10.3575

    Article  CAS  PubMed  Google Scholar 

  37. Baggio, L. L., & Drucker, D. J. (2007). Biology of Incretins: GLP-1 and GIP. Gastroenterology, 132(6), 2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054

    Article  CAS  PubMed  Google Scholar 

  38. Stensen, S., Gasbjerg, L. S., Helsted, M. M., Hartmann, B., Christensen, M. B., & Knop, F. K. (2020). GIP and the gut-bone axis – Physiological, pathophysiological and potential therapeutic implications. Peptides, 125(November 2019), 170197. https://doi.org/10.1016/j.peptides.2019.170197

    Article  CAS  PubMed  Google Scholar 

  39. Berlier, J. L., Kharroubi, I., Zhang, J., Dalla Valle, A., Rigutto, S., Mathieu, M., Gangji, V., & Rasschaert, J. (2015). Glucose-dependent Insulinotropic peptide prevents serum deprivation-induced apoptosis in human bone marrow-derived Mesenchymal stem cells and Osteoblastic cells. Stem Cell Reviews and Reports, 11(6), 841–851. https://doi.org/10.1007/s12015-015-9616-6

    Article  CAS  PubMed  Google Scholar 

  40. Chen, X., He, X., Guo, Y., Liu, L., Li, H., Tan, J., Feng, W., Guan, H., Cao, X., Xiao, H., & Li, Y. (2021). Glucose-dependent insulinotropic polypeptide modifies adipose plasticity and promotes beige adipogenesis of human omental adipose-derived stem cells. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 35(5), e21534. https://doi.org/10.1096/fj.201903253R

    Article  CAS  Google Scholar 

  41. Baldock, P. A., Sainsbury, A., Couzens, M., Enriquez, R. F., Thomas, G. P., Gardiner, E. M., & Herzog, H. (2002). Hypothalamic Y2 receptors regulate bone formation. Journal of Clinical Investigation, 109(7), 915–921. https://doi.org/10.1172/jci14588

    Article  CAS  Google Scholar 

  42. Zengin, A., Zhang, L., Herzog, H., Baldock, P. A., & Sainsbury, A. (2010). Neuropeptide Y and sex hormone interactions in humoral and neuronal regulation of bone and fat. Trends in Endocrinology and Metabolism. https://doi.org/10.1016/j.tem.2010.02.004

  43. Horsnell, H., & Baldock, P. A. (2016). Osteoblastic actions of the neuropeptide Y system to regulate bone and energy homeostasis. Current Osteoporosis Reports. https://doi.org/10.1007/s11914-016-0300-9

  44. Frerker, N., Wagner, L., Wolf, R., Heiser, U., Hoffmann, T., Rahfeld, J. U., Schade, J., Karl, T., Naim, H. Y., Alfalah, M., Demuth, H. U., & von Hörsten, S. (2007). Neuropeptide Y (NPY) cleaving enzymes: Structural and functional homologues of dipeptidyl peptidase 4. Peptides, 28(2), 257–268. https://doi.org/10.1016/j.peptides.2006.09.027

    Article  CAS  PubMed  Google Scholar 

  45. Gu, X., Zhang, C., Bin, X., Hu, B., Zi, Y., & Li, M. (2016). Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides, 60, 61–66. https://doi.org/10.1016/j.npep.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  46. Liu, S., Jin, D., Wu, J. q., Xu, Z. y., Fu, S., Mei, G., Zou, Z. L., & Ma, S. h. (2016). Neuropeptide Y stimulates osteoblastic differentiation and VEGF expression of bone marrow mesenchymal stem cells related to canonical Wnt signaling activating in vitro. Neuropeptides, 56, 105–113. https://doi.org/10.1016/j.npep.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  47. Wu, J., Liu, S., Meng, H., Qu, T., Fu, S., Wang, Z., Yang, J., Jin, D., & Yu, B. (2017). Neuropeptide Y enhances proliferation and prevents apoptosis in rat bone marrow stromal cells in association with activation of the Wnt/β-catenin pathway in vitro. Stem Cell Research, 21, 74–84. https://doi.org/10.1016/j.scr.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  48. Lee, N. J., Doyle, K. L., Sainsbury, A., Enriquez, R. F., Hort, Y. J., Riepler, S. J., Baldock, P. A., & Herzog, H. (2010). Critical role for Y1 receptors in mesenchymal progenitor cell differentiation and osteoblast activity. Journal of Bone and Mineral Research, 25(8), 1736–1747. https://doi.org/10.1002/jbmr.61

    Article  CAS  PubMed  Google Scholar 

  49. Shin, M. K., Choi, B., Kim, E. Y., Park, J. E., Hwang, E. S., Lee, H. J., et al. (2018). Elevated Pentraxin 3 in obese adipose tissue promotes Adipogenic differentiation by activating neuropeptide Y signaling. Frontiers in Immunology, 9, 1790. https://doi.org/10.3389/fimmu.2018.01790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, C. T., Tang, H. Y., Han, Y. S., Liu, H. P., Huang, S. F., Chien, C. H., Shyy, J., Chiu, J. J., & Chen, X. (2010). Downregulation of signaling-active IGF-1 by dipeptidyl peptidase IV (DPP-IV). International Journal of Biomedical Sciences, 6(4), 301–309.

    CAS  Google Scholar 

  51. Teng, C. F., Jeng, L. B., & Shyu, W. C. (2018). Role of insulin-like growth factor 1 receptor signaling in stem cell Stemness and therapeutic efficacy. Cell Transplantation, 27(9), 1313–1319. https://doi.org/10.1177/0963689718779777

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang, Y. L., Qiu, R. F., Mai, W. Y., Kuang, J., Cai, X. Y., Dong, Y. G., Hu, Y. Z., Song, Y. B., Cai, A. P., & Jiang, Z. G. (2012). Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro. Journal of Zhejiang University: Science B, 13(1), 20–28. https://doi.org/10.1631/jzus.B1100117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fritton, J. C., Kawashima, Y., Mejia, W., Courtland, H. W., Elis, S., Sun, H., Wu, Y., Rosen, C. J., Clemmons, D., & Yakar, S. (2010). The insulin-like growth factor-1 binding protein acid-labile subunit alters mesenchymal stromal cell fate. Journal of Biological Chemistry, 285(7), 4709–4714. https://doi.org/10.1074/jbc.M109.041913

    Article  CAS  Google Scholar 

  54. Li, Y., Yu, X. Y., Lin, S. G., Li, X. H., Zhang, S., & Song, Y. H. (2007). Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 356(3), 780–784. https://doi.org/10.1016/j.bbrc.2007.03.049

    Article  CAS  PubMed  Google Scholar 

  55. Kumar, S., & Ponnazhagan, S. (2012). Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone, 50(4), 1012–1018. https://doi.org/10.1016/j.bone.2012.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ponte, A. L., Marais, E., Gallay, N., Langonné, A., Delorme, B., Hérault, O., Charbord, P., & Domenech, J. (2007). The in vitro migration capacity of human bone marrow Mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25(7), 1737–1745. https://doi.org/10.1634/stemcells.2007-0054

    Article  CAS  PubMed  Google Scholar 

  57. Zlotnik, A., & Yoshie, O. (2000). Chemokines: A new classification system and their role in immunity. Journal of Cultural Heritage, 1(2), 121–127.

    Google Scholar 

  58. Mortier, A., Gouwy, M., Van Damme, J., Proost, P., & Struyf, S. (2016). CD26/dipeptidylpeptidase IV-chemokine interactions: Double-edged regulation of inflammation and tumor biology. Journal of Leukocyte Biology, 99(6), 955–969. https://doi.org/10.1189/jlb.3mr0915-401r

    Article  CAS  PubMed  Google Scholar 

  59. Cuesta-Gomez, N., Graham, G. J., & Campbell, J. D. M. (2021). Chemokines and their receptors: Predictors of the therapeutic potential of mesenchymal stromal cells. Journal of Translational Medicine, 19(1), 1–10. https://doi.org/10.1186/s12967-021-02822-5

    Article  CAS  Google Scholar 

  60. Asri, A., Sabour, J., Atashi, A., & Soleimani, M. (2016). Homing in hematopoietic stem cells: Focus on regulatory role of CXCR7 on SDF1A/CXCR4 axis. EXCLI Journal. https://doi.org/10.17179/excli2014-585

  61. Liu, X., Zhou, C., Li, Y., Ji, Y., Xu, G., Wang, X., & Yan, J. (2013). SDF-1 promotes Endochondral bone repair during fracture healing at the traumatic brain injury condition. PLoS One, 8(1), e54077. https://doi.org/10.1371/journal.pone.0054077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deng, Q. J., Xu, X. F., & Ren, J. (2018). Effects of SDF-1/CXCR4 on the repair of traumatic brain injury in rats by mediating bone marrow derived Mesenchymal stem cells. Cellular and Molecular Neurobiology, 38(2), 467–477. https://doi.org/10.1007/s10571-017-0490-4

    Article  CAS  PubMed  Google Scholar 

  63. Kowalski, K., Kołodziejczyk, A., Sikorska, M., Płaczkiewicz, J., Cichosz, P., Kowalewska, M., Stremińska, W., Jańczyk-Ilach, K., Koblowska, M., Fogtman, A., Iwanicka-Nowicka, R., Ciemerych, M. A., & Brzoska, E. (2017). Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adhesion and Migration, 11(4), 384–398. https://doi.org/10.1080/19336918.2016.1227911

    Article  CAS  PubMed  Google Scholar 

  64. Otsuru, S., Tamai, K., Yamazaki, T., Yoshikawa, H., & Kaneda, Y. (2008). Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived Factor-1 pathway. Stem Cells, 26(1), 223–234. https://doi.org/10.1634/stemcells.2007-0515

    Article  CAS  PubMed  Google Scholar 

  65. Hosogane, N., Huang, Z., Rawlins, B. A., Liu, X., Boachie-Adjei, O., Boskey, A. L., & Zhu, W. (2010). Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 42(7), 1132–1141. https://doi.org/10.1016/j.biocel.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  66. Deacon, C. F. (2018). Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides, 100, 150–157. https://doi.org/10.1016/j.peptides.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  67. Lovshin, J. A., Rajasekeran, H., Lytvyn, Y., Lovblom, L. E., Khan, S., Alemu, R., Locke, A., Lai, V., He, H., Hittle, L., Wang, W., Drucker, D. J., & Cherney, D. Z. I. (2017). Dipeptidyl peptidase 4 inhibition stimulates distal tubular natriuresis and increases in circulating sdf-1a1-67 in patients with type 2 diabetes. Diabetes Care, 40(8), 1073–1081. https://doi.org/10.2337/dc17-0061

    Article  CAS  PubMed  Google Scholar 

  68. Anderluh, M., Kocic, G., Tomovic, K., Kocic, R., Deljanin-Ilic, M., & Smelcerovic, A. (2016). Cross-talk between the dipeptidyl peptidase-4 and stromal cell-derived factor-1 in stem cell homing and myocardial repair: Potential impact of dipeptidyl peptidase-4 inhibitors. Pharmacology and Therapeutics, 167, 100–107. https://doi.org/10.1016/j.pharmthera.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  69. Whittam, A. J., Maan, Z. N., Duscher, D., Barrera, J. A., Hu, M. S., Fischer, L. H., Khong, S., Kwon, S. H., Wong, V. W., Walmsley, G. G., Giacco, F., Januszyk, M., Brownlee, M., Longaker, M. T., & Gurtner, G. C. (2019). Small molecule inhibition of dipeptidyl peptidase-4 enhances bone marrow progenitor cell function and angiogenesis in diabetic wounds. Translational Research, 205, 51–63. https://doi.org/10.1016/j.trsl.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  70. Kalwitz, G., Andreas, K., Endres, M., Neumann, K., Notter, M., Ringe, J., Sittinger, M., & Kaps, C. (2010). Chemokine profile of human serum from whole blood: Migratory effects of CXCL-10 and CXCL-11 on human mesenchymal stem cells. Connective Tissue Research, 51(2), 113–122. https://doi.org/10.3109/03008200903111906

    Article  CAS  PubMed  Google Scholar 

  71. Ludwig, A., Schiemann, F., Mentlein, R., Lindner, B., & Brandt, E. (2002). Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. Journal of Leukocyte Biology, 72(1), 183–191. https://doi.org/10.1189/jlb.72.1.183

    Article  CAS  PubMed  Google Scholar 

  72. Feng, Y., Yu, H. M., Shang, D. S., Fang, W. G., He, Z. Y., & Chen, Y. H. (2014). The involvement of CXCL11 in bone marrow-derived mesenchymal stem cell migration through human brain microvascular endothelial cells. Neurochemical Research, 39(4), 700–706. https://doi.org/10.1007/s11064-014-1257-7

    Article  CAS  PubMed  Google Scholar 

  73. Decalf, J., Tarbell, K. V., Casrouge, A., Price, J. D., Linder, G., Mottez, E., Sultanik, P., Mallet, V., Pol, S., Duffy, D., & Albert, M. L. (2016). Inhibition of DPP 4 activity in humans establishes its in vivo role in CXCL 10 post-translational modification: Prospective placebo-controlled clinical studies. EMBO Molecular Medicine, 8(6), 679–683. https://doi.org/10.15252/emmm.201506145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Emamnejad, R., Sahraian, M., Shakiba, Y., Salehi, Z., Masoomi, A., Imani, D., et al. (2019). Circulating mesenchymal stem cells, stromal derived factor (SDF)-1 and IP-10 levels increased in clinically active multiple sclerosis patients but not in clinically stable patients treated with beta interferon. Multiple Sclerosis and Related Disorders, 35, 233–238. https://doi.org/10.1016/j.msard.2019.08.013.

    Article  PubMed  Google Scholar 

  75. Endres, M., Andreas, K., Kalwitz, G., Freymann, U., Neumann, K., Ringe, J., Sittinger, M., Häupl, T., & Kaps, C. (2010). Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCL1 recruit human subchondral mesenchymal progenitor cells. Osteoarthritis and Cartilage, 18(11), 1458–1466. https://doi.org/10.1016/j.joca.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  76. Mirzaei, H., Salehi, H., Oskuee, R. K., Mohammadpour, A., Mirzaei, H. R., Sharifi, M. R., Salarinia, R., Darani, H. Y., Mokhtari, M., Masoudifar, A., Sahebkar, A., Salehi, R., & Jaafari, M. R. (2018). The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Letters, 419, 30–39. https://doi.org/10.1016/j.canlet.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  77. Proost, P., Schutyser, E., Menten, P., Struyf, S., Wuyts, A., Opdenakker, G., Detheux, M., Parmentier, M., Durinx, C., Lambeir, A. M., Neyts, J., Liekens, S., Maudgal, P. C., Billiau, A., & Van Damme, J. (2001). Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood, 98(13), 3554–3561. https://doi.org/10.1182/blood.V98.13.3554

    Article  CAS  PubMed  Google Scholar 

  78. Shen, Q., Fan, X., Jiang, M., Ye, Z., Zhou, Y., & Tan, W. S. (2019). Inhibiting expression of Cxcl9 promotes angiogenesis in MSCs-HUVECs co-culture. Archives of Biochemistry and Biophysics, 675, 108108. https://doi.org/10.1016/j.abb.2019.108108

    Article  CAS  PubMed  Google Scholar 

  79. Chamberlain, G., Smith, H., Rainger, G. E., & Middleton, J. (2011). Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: Effects of chemokines and shear. PLoS One, 6(9). https://doi.org/10.1371/journal.pone.0025663

  80. Oravecz, T., Pall, M., Roderiquez, G., Gorrell, M. D., Ditto, M., Nguyen, N. Y., Boykins, R., Unsworth, E., & Norcross, M. A. (1997). Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. Journal of Experimental Medicine, 186(11), 1865–1872. https://doi.org/10.1084/jem.186.11.1865

    Article  CAS  Google Scholar 

  81. Kroeze, K. L., Jurgens, W. J., Doulabi, B. Z., Van Milligen, F. J., Scheper, R. J., & Gibbs, S. (2009). Chemokine-mediated migration of skin-derived stem cells: Predominant role for CCL5RANTES. Journal of Investigative Dermatology, 129(6), 1569–1581. https://doi.org/10.1038/jid.2008.405

    Article  CAS  Google Scholar 

  82. Pattappa, G., Peroglio, M., Sakai, D., Mochida, J., Benneker, L. M., Alini, M., & Grad, S. (2014). CCL5/rantes is a key chemoattractant released by degenerative intervertebral discs in organ culture. European Cells and Materials, 27, 124–136. https://doi.org/10.22203/eCM.v027a10

    Article  CAS  PubMed  Google Scholar 

  83. Lu, L., Zhang, X., Zhang, M., Zhang, H., Liao, L., Yang, T., Zhang, J., Xian, L., Chen, D., & Wang, M. (2015). RANTES and SDF-1 are keys in cell-based therapy of TMJ osteoarthritis. Journal of Dental Research, 94(11), 1601–1609. https://doi.org/10.1177/0022034515604621

    Article  CAS  PubMed  Google Scholar 

  84. Lee, J. K., Schuchman, E. H., Jin, H. K., & Bae, J. S. (2012). Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells, 30(7), 1544–1555. https://doi.org/10.1002/stem.1125

    Article  CAS  PubMed  Google Scholar 

  85. Kimura, K., Nagano, M., Salazar, G., Yamashita, T., Tsuboi, I., Mishima, H., Matsushita, S., Sato, F., Yamagata, K., & Ohneda, O. (2014). The role of CCL5 in the ability of adipose tissue-derived mesenchymal stem cells to support repair of ischemic regions. Stem Cells and Development, 23(5), 488–501. https://doi.org/10.1089/scd.2013.0307

    Article  CAS  PubMed  Google Scholar 

  86. Makinoshima, H., & Dezawa, M. (2009). Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Letters, 583(22), 3697–3703. https://doi.org/10.1016/j.febslet.2009.10.061

    Article  CAS  PubMed  Google Scholar 

  87. Liu, Y. C., Kao, Y. T., Huang, W. K., Lin, K. Y., Wu, S. C., Hsu, S. C., Schuyler, S. C., Li, L. Y., Lu, F. L., & Lu, J. (2014). CCL5/RANTES is important for inducing osteogenesis of human mesenchymal stem cells and is regulated by dexamethasone. Bioscience Trends, 8(3), 138–143. https://doi.org/10.5582/bst.2014.01047

    Article  CAS  PubMed  Google Scholar 

  88. Hong, H. S., Lee, J., Lee, E., Kwon, Y. S., Lee, E., Ahn, W., Jiang, M. H., Kim, J. C., & Son, Y. (2009). A new role of substance P as an injury-inducible messenger for mobilization of CD29 + stromal-like cells. Nature Medicine, 15(4), 425–435. https://doi.org/10.1038/nm.1909

    Article  CAS  PubMed  Google Scholar 

  89. Covas, M. J., Pinto, L. A., & Victorino, R. M. M. (1997). Effects of substance P on human T cell function and the modulatory role of peptidase inhibitors. International Journal of Clinical and Laboratory Research, 27(2), 129–134. https://doi.org/10.1007/BF02912447

    Article  CAS  PubMed  Google Scholar 

  90. Heymann, E., & Mentlein, R. (1978). Liver dipeptidyl aminopeptidase IV hydrolyzes substance P. FEBS Letters, 91(2), 360–364. https://doi.org/10.1016/0014-5793(78)81210-1

    Article  CAS  PubMed  Google Scholar 

  91. Mentlein, R. (1999). Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regulatory Peptides, 85(1), 9–24. https://doi.org/10.1016/S0167-0115(99)00089-0

    Article  CAS  PubMed  Google Scholar 

  92. Jin, Y., Hong, H. S., & Son, Y. (2015). Substance P enhances mesenchymal stem cells-mediated immune modulation. Cytokine, 71(2), 145–153. https://doi.org/10.1016/j.cyto.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  93. Park, J. H., Kim, S., Hong, H. S., & Son, Y. (2016). Substance P promotes diabetic wound healing by modulating inflammation and restoring cellular activity of mesenchymal stem cells. Wound Repair and Regeneration, 24(2), 337–348. https://doi.org/10.1111/wrr.12413

    Article  PubMed  Google Scholar 

  94. Fu, S., Jin, D., Liu, S., Wang, L., Wang, Z., Mei, G., Zou, Z. L., Wu, J. Q., & Xu, Z. Y. (2015). Protective effect of neuropeptide substance P on bone marrow Mesenchymal stem cells against apoptosis induced by serum deprivation. Stem Cells International. https://doi.org/10.1155/2015/270328

  95. Mei, G., Xia, L., Zhou, J., Zhang, Y., Tuo, Y., Fu, S., Zou, Z., Wang, Z., & Jin, D. (2013). Neuropeptide SP activates the WNT signal transduction pathway and enhances the proliferation of bone marrow stromal stem cells. Cell Biology International, 37(11), 1225–1232. https://doi.org/10.1002/cbin.10158

    Article  CAS  PubMed  Google Scholar 

  96. Mei, G., Zou, Z., Fu, S., Xia, L., Zhou, J., Zhang, Y., Tuo, Y., Wang, Z., & Jin, D. (2014). Substance P activates the wnt signal transduction pathway and enhances the differentiation of mouse preosteoblastic MC3T3-E1 cells. International Journal of Molecular Sciences, 15(4), 6224–6240. https://doi.org/10.3390/ijms15046224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, Y., An, S., Hao, J., Tian, F., Fang, X., & Wang, J. (2018). Systemic injection of substance P promotes murine Calvarial repair through mobilizing endogenous Mesenchymal stem cells. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-31414-5

    Article  CAS  Google Scholar 

  98. Dubon, M. J., & Park, K. S. (2016). The mechanisms of substance P-mediated migration of bone marrow-derived mesenchymal stem cell-like ST2 cells. International Journal of Molecular Medicine, 37(4), 1105–1111. https://doi.org/10.3892/ijmm.2016.2496

    Article  CAS  PubMed  Google Scholar 

  99. Xue, J., Suarez, J. S., Minaai, M., Li, S., Gaudino, G., Pass, H. I., Carbone, M., & Yang, H. (2021). HMGB1 as a therapeutic target in disease. Journal of Cellular Physiology, 236(5), 3406–3419. https://doi.org/10.1002/jcp.30125

    Article  CAS  PubMed  Google Scholar 

  100. Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., Rousso-Noori, L., Zanin-Zhorov, A., Cohen, S., Cohen, I. R., & Zipori, D. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109(4), 1422–1432. https://doi.org/10.1182/blood-2006-06-028704

    Article  CAS  PubMed  Google Scholar 

  101. Meng, E., Guo, Z., Wang, H., Jin, J., Wang, J., Wang, H., Wu, C., & Wang, L. (2008). High mobility group box 1 protein inhibits the proliferation of human Mesenchymal stem cells and promotes their migration and differentiation along Osteoblastic pathway. Stem Cells and Development, 17(4), 805–814. https://doi.org/10.1089/scd.2007.0276

    Article  CAS  PubMed  Google Scholar 

  102. Camacho-Cardenosa, M., Quesada-Gómez, J. M., Camacho-Cardenosa, A., Leal, A., Dorado, G., Torrecillas-Baena, B., & Casado-Díaz, A. (2020). Effects of normobaric cyclic hypoxia exposure on mesenchymal stem-cell differentiation–pilot study on bone parameters in elderly. World Journal of Stem Cells, 12(12), 1667–1690. https://doi.org/10.4252/wjsc.v12.i12.1667

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xie, H. L., Zhang, Y., Huang, Y. Z., Li, S., Wu, C. G., Jiao, X. F., Tan, M. Y., Huang, Y. C., & Deng, L. (2014). Regulation of high mobility group box 1 and hypoxia in the migration of mesenchymal stem cells. Cell Biology International, 38(7), 892–897. https://doi.org/10.1002/cbin.10279

    Article  CAS  PubMed  Google Scholar 

  104. Marchetti, C., Di Carlo, A., Facchiano, F., Senatore, C., De Cristofaro, R., Luzi, A., Federici, M., Romani, M., Napolitano, M., Capogrossi, M. C., & Germani, A. (2012). High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV. Diabetologia, 55(1), 236–244. https://doi.org/10.1007/s00125-011-2213-6

    Article  CAS  PubMed  Google Scholar 

  105. Yazbeck, R., Jaenisch, S. E., & Abbott, C. A. (2021). Dipeptidyl peptidase 4 inhibitors: Applications in innate immunity? Biochemical Pharmacology. https://doi.org/10.1016/j.bcp.2021.114517

  106. Wang, X. M., Yang, Y. J., & Wu, Y. J. (2013). The emerging role of dipeptidyl peptidase-4 inhibitors in cardiovascular protection: Current position and perspectives. Cardiovascular Drugs and Therapy, 27(4), 297–307. https://doi.org/10.1007/s10557-013-6459-8

    Article  CAS  PubMed  Google Scholar 

  107. Gallwitz, B. (2019). Clinical use of DPP-4 inhibitors. Frontiers in Endocrinology, 10(JUN), 1–10. https://doi.org/10.3389/fendo.2019.00389

    Article  Google Scholar 

  108. Ye, Y., Keyes, K. T., Zhang, C., Perez-Polo, J. R., Lin, Y., & Birnbaum, Y. (2010). The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. American Journal of Physiology - Heart and Circulatory Physiology, 298(5), H1454–H1465. https://doi.org/10.1152/ajpheart.00867.2009

    Article  CAS  PubMed  Google Scholar 

  109. De Falco, E., Porcelli, D., Torella, A. R., Straino, S., Iachininoto, M. G., Orlandi, A., Truffa, S., Biglioli, P., Napolitano, M., Capogrossi, M. C., & Pesce, M. (2004). SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 104(12), 3472–3482. https://doi.org/10.1182/blood-2003-12-4423

    Article  CAS  PubMed  Google Scholar 

  110. Haider, K. H., Aziz, S., & Al-Reshidi, M. A. (2017). Endothelial progenitor cells for cellular angiogenesis and repair: Lessons learned from experimental animal models. Regenerative Medicine. https://doi.org/10.2217/rme-2017-0074

  111. Huang, C. Y., Shih, C. M., Tsao, N. W., Lin, Y. W., Huang, P. H., Wu, S. C., Lee, A. W., Kao, Y. T., Chang, N. C., Nakagami, H., Morishita, R., Ou, K. L., Hou, W. C., Lin, C. Y., Shyu, K. G., & Lin, F. Y. (2012). Dipeptidyl peptidase-4 inhibitor improves neovascularization by increasing circulating endothelial progenitor cells. British Journal of Pharmacology, 167(7), 1506–1519. https://doi.org/10.1111/j.1476-5381.2012.02102.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Connelly, K. A., Advani, A., Zhang, Y., Advani, S. L., Kabir, G., Abadeh, A., Desjardins, J. F., Mitchell, M., Thai, K., & Gilbert, R. E. (2016). Dipeptidyl peptidase-4 inhibition improves cardiac function in experimental myocardial infarction: Role of stromal cell-derived factor-1α. Journal of Diabetes, 8(1), 63–75. https://doi.org/10.1111/1753-0407.12258

    Article  CAS  PubMed  Google Scholar 

  113. Witteles, R. M., Keu, K. V., Quon, A., Tavana, H., & Fowler, M. B. (2012). Dipeptidyl peptidase 4 inhibition increases myocardial glucose uptake in nonischemic cardiomyopathy. Journal of Cardiac Failure, 18(10), 804–809. https://doi.org/10.1016/j.cardfail.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, D., Huang, W., Dai, B., Zhao, T., Ashraf, A., Millard, R. W., Ashraf, M., & Wang, Y. (2010). Genetically manipulated progenitor cell sheet with diprotin a improves myocardial function and repair of infarcted hearts. American Journal of Physiology - Heart and Circulatory Physiology, 299(5), 1339–1347. https://doi.org/10.1152/ajpheart.00592.2010

    Article  CAS  Google Scholar 

  115. Zaruba, M. M., Zhu, W., Soonpaa, M. H., Reuter, S., Franz, W. M., & Field, L. J. (2012). Granulocyte colony-stimulating factor treatment plus dipeptidylpeptidase-IV inhibition augments myocardial regeneration in mice expressing cyclin D2 in adult cardiomyocytes. European Heart Journal, 33(1), 129–137. https://doi.org/10.1093/eurheartj/ehr302

    Article  CAS  PubMed  Google Scholar 

  116. Zaruba, M. M., Theiss, H. D., Vallaster, M., Mehl, U., Brunner, S., David, R., Fischer, R., Krieg, L., Hirsch, E., Huber, B., Nathan, P., Israel, L., Imhof, A., Herbach, N., Assmann, G., Wanke, R., Mueller-Hoecker, J., Steinbeck, G., & Franz, W. M. (2009). Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell, 4(4), 313–323. https://doi.org/10.1016/j.stem.2009.02.013

    Article  CAS  PubMed  Google Scholar 

  117. Goto, T., Miyagawa, S., Tamai, K., Matsuura, R., Kido, T., Kuratani, T., Shimamura, K., Sakaniwa, R., Harada, A., & Sawa, Y. (2020). High-mobility group box 1 fragment suppresses adverse post-infarction remodeling by recruiting PDGFRα-positive bone marrow cells. PLoS One, 15(4), 1–16. https://doi.org/10.1371/journal.pone.0230392

    Article  CAS  Google Scholar 

  118. Sato, A., Suzuki, S., Watanabe, S., Shimizu, T., Nakamura, Y., Misaka, T., Yokokawa, T., Shishido, T., Saitoh, S. i., Ishida, T., Kubota, I., & Takeishi, Y. (2017). DPP4 inhibition ameliorates cardiac function by blocking the cleavage of HMGB1 in diabetic mice after myocardial infarction. International Heart Journal, 58(5), 778–786. https://doi.org/10.1536/ihj.16-547

    Article  CAS  PubMed  Google Scholar 

  119. Huber, B. C., Brunner, S., Segeth, A., Nathan, P., Fischer, R., Zaruba, M. M., Vallaster, M., Theiss, H. D., David, R., Gerbitz, A., & Franz, W. M. (2011). Parathyroid hormone is a DPP-IV inhibitor and increases SDF-1-driven homing of CXCR4+ stem cells into the ischaemic heart. Cardiovascular Research, 90(3), 529–537. https://doi.org/10.1093/cvr/cvr014

    Article  CAS  PubMed  Google Scholar 

  120. Minisola, S., Cipriani, C., Grotta, G. D., Colangelo, L., Occhiuto, M., Biondi, P., Sonato, C., Vigna, E., Cilli, M., & Pepe, J. (2019). Update on the safety and efficacy of teriparatide in the treatment of osteoporosis. Therapeutic Advances in Musculoskeletal Disease. https://doi.org/10.1177/1759720X19877994

  121. Zhang, J., Chen, Q., Zhong, J., Liu, C., Zheng, B., & Gong, Q. (2019). DPP-4 inhibitors as potential candidates for antihypertensive therapy: Improving vascular inflammation and assisting the action of traditional antihypertensive drugs. Frontiers in Immunology, 10(MAY), 1–12. https://doi.org/10.3389/fimmu.2019.01050

    Article  CAS  Google Scholar 

  122. Kröller-Schön, S., Knorr, M., Hausding, M., Oelze, M., Schuff, A., Schell, R., Sudowe, S., Scholz, A., Daub, S., Karbach, S., Kossmann, S., Gori, T., Wenzel, P., Schulz, E., Grabbe, S., Klein, T., Münzel, T., & Daiber, A. (2012). Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovascular Research, 96(1), 140–149. https://doi.org/10.1093/cvr/cvs246

    Article  CAS  PubMed  Google Scholar 

  123. Brenner, C., Kränkel, N., Kühlenthal, S., Israel, L., Remm, F., Fischer, C., Herbach, N., Speer, T., Grabmaier, U., Laskowski, A., Gross, L., Theiss, H., Wanke, R., Landmesser, U., & Franz, W. M. (2014). Short-term inhibition of DPP-4 enhances endothelial regeneration after acute arterial injury via enhanced recruitment of circulating progenitor cells. International Journal of Cardiology, 177(1), 266–275. https://doi.org/10.1016/j.ijcard.2014.09.016

    Article  PubMed  Google Scholar 

  124. Salybekov, A. A., Masuda, H., Miyazaki, K., Sheng, Y., Sato, A., Shizuno, T., Iida, Y., Okada, Y., & Asahara, T. (2019). Dipeptidyl dipeptidase-4 inhibitor recovered ischemia through an increase in vasculogenic endothelial progenitor cells and regeneration-associated cells in diet-induced obese mice. PLoS One, 14(3), 1–20. https://doi.org/10.1371/journal.pone.0205477

    Article  CAS  Google Scholar 

  125. Rossi, E., Bernabeu, C., & Smadja, D. M. (2019). Endoglin as an adhesion molecule in mature and progenitor endothelial cells: A function beyond TGF-β. Frontiers in Medicine. https://doi.org/10.3389/fmed.2019.00010

  126. Dingenouts, C. K. E., Bakker, W., Lodder, K., Wiesmeijer, K. C., Moerkamp, A. T., Maring, J. A., Arthur, H. M., Smits, A. M., & Goumans, M. J. (2017). Inhibiting DPP4 in a mouse model of HHT1 results in a shift towards regenerative macrophages and reduces fibrosis after myocardial infarction. PLoS One, 12(12), 1–21. https://doi.org/10.1371/journal.pone.0189805

    Article  CAS  Google Scholar 

  127. Conarello, S. L., Li, Z., Ronan, J., Roy, R. S., Zhu, L., Jiang, G., Liu, F., Woods, J., Zycband, E., Moller, D. E., Thornberry, N. A., & Zhang, B. B. (2003). Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6825–6830. https://doi.org/10.1073/pnas.0631828100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nagakura, T., Yasuda, N., Yamazaki, K., Ikuta, H., Yoshikawa, S., Asano, O., & Tanaka, I. (2001). Improved glucose tolerance via enhanced glucose-dependent insulin secretion in dipeptidyl peptidase IV-deficient fischer rats. Biochemical and Biophysical Research Communications, 284(2), 501–506. https://doi.org/10.1006/bbrc.2001.4999

    Article  CAS  PubMed  Google Scholar 

  129. Sauvé, M., Ban, K., Abdul Momen, M., Zhou, Y. Q., Henkelman, R. M., Husain, M., & Drucker, D. J. (2010). Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes, 59(4), 1063–1073. https://doi.org/10.2337/db09-0955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hirose, M., Takano, H., Hasegawa, H., Tadokoro, H., Hashimoto, N., Takemura, G., & Kobayashi, Y. (2017). The effects of dipeptidyl peptidase-4 on cardiac fibrosis in pressure overload-induced heart failure. Journal of Pharmacological Sciences, 135(4), 164–173. https://doi.org/10.1016/j.jphs.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  131. Kubota, A., Takano, H., Wang, H., Hasegawa, H., Tadokoro, H., Hirose, M., Kobara, Y., Yamada-Inagawa, T., Komuro, I., & Kobayashi, Y. (2016). DPP-4 inhibition has beneficial effects on the heart after myocardial infarction. Journal of Molecular and Cellular Cardiology, 91, 72–80. https://doi.org/10.1016/j.yjmcc.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  132. Casado-Díaz, A., Quesada-Gómez, J. M., & Dorado, G. (2020). Extracellular vesicles derived from Mesenchymal stem cells (MSC) in regenerative medicine: Applications in skin wound healing. Frontiers in Bioengineering and Biotechnology, 8(March), 1–19. https://doi.org/10.3389/fbioe.2020.00146

    Article  Google Scholar 

  133. Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6(265), 265sr6–265sr6. https://doi.org/10.1126/scitranslmed.3009337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lauri, C., Leone, A., Cavallini, M., Signore, A., Giurato, L., & Uccioli, L. (2020). Diabetic foot infections: The diagnostic challenges. Journal of Clinical Medicine, 9(6), 1779. https://doi.org/10.3390/jcm9061779

    Article  PubMed Central  Google Scholar 

  135. Westerweel, P. E., Teraa, M., Rafii, S., Jaspers, J. E., White, I. A., Hooper, A. T., Doevendans, P. A., & Verhaar, M. C. (2013). Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One, 8(3), e60357. https://doi.org/10.1371/journal.pone.0060357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xiao, H., Gu, Z., Wang, G., & Zhao, T. (2013). The possible mechanisms underlying the impairment of HIF-1α pathway signaling in hyperglycemia and the beneficial effects of certain therapies. International Journal of Medical Sciences, 10(10), 1412–1421. https://doi.org/10.7150/ijms.5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fadini, G. P., & Avogaro, A. (2013). Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis, 229(1), 23–29. https://doi.org/10.1016/j.atherosclerosis.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  138. Saboo, A., Rathnayake, A., Vangaveti, V. N., & Malabu, U. H. (2016). Wound healing effects of dipeptidyl peptidase-4 inhibitors: An emerging concept in management of diabetic foot ulcer—A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 10(2), 113–119. https://doi.org/10.1016/j.dsx.2015.04.006

    Article  Google Scholar 

  139. Marfella, R., Sasso, F. C., Rizzo, M. R., Paolisso, P., Barbieri, M., Padovano, V., Carbonara, O., Gualdiero, P., Petronella, P., Ferraraccio, F., Petrella, A., Canonico, R., Campitiello, F., Della Corte, A., Paolisso, G., & Canonico, S. (2012). Dipeptidyl peptidase 4 inhibition may facilitate healing of chronic foot ulcers in patients with type 2 diabetes. Experimental Diabetes Research, 2012. https://doi.org/10.1155/2012/892706

  140. Baticic Pucar, L., Pernjak Pugel, E., Detel, D., & Varljen, J. (2017). Involvement of DPP IV/CD26 in cutaneous wound healing process in mice. Wound Repair and Regeneration, 25(1), 25–40. https://doi.org/10.1111/wrr.12498

    Article  PubMed  Google Scholar 

  141. Soare, A., Györfi, H. A., Matei, A. E., Dees, C., Rauber, S., Wohlfahrt, T., Chen, C. W., Ludolph, I., Horch, R. E., Bäuerle, T., von Hörsten, S., Mihai, C., Distler, O., Ramming, A., Schett, G., & Distler, J. H. W. (2020). Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis and Rheumatology, 72(1), 137–149. https://doi.org/10.1002/art.41058

    Article  CAS  PubMed  Google Scholar 

  142. Kamel, N. M., Abd El Fattah, M. A., El-Abhar, H. S., & Abdallah, D. M. (2019). Novel repair mechanisms in a renal ischaemia/reperfusion model: Subsequent saxagliptin treatment modulates the pro-angiogenic GLP-1/cAMP/VEGF, ANP/eNOS/NO, SDF-1α/CXCR4, and Kim-1/STAT3/HIF-1α/VEGF/eNOS pathways. European Journal of Pharmacology, 861, 172620. https://doi.org/10.1016/j.ejphar.2019.172620.

    Article  CAS  PubMed  Google Scholar 

  143. Long, M., Cai, L., Li, W., Zhang, L., Guo, S., Zhang, R., Zheng, Y., Liu, X., Wang, M., Zhou, X., Wang, H., Li, X., Li, L., Zhu, Z., Yang, G., & Zheng, H. (2018). DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes, 67(3), 518–531. https://doi.org/10.2337/db17-0934

    Article  CAS  PubMed  Google Scholar 

  144. Novelli, M., Savola, P., Fierro, M. T., Verrone, A., Quaglino, P., & Bernengo, M. G. (1996). Keratinocytes express dipeptidyl-peptidase IV (CD26) in benign and malignant skin diseases. British Journal of Dermatology, 134(6), 1052–1056. https://doi.org/10.1046/j.1365-2133.1996.d01-900.x

    Article  CAS  Google Scholar 

  145. Thielitz, A., Vetter, R. W., Schultze, B., Wrenger, S., Simeoni, L., Ansorge, S., Neubert, K., Faust, J., Lindenlaub, P., Gollnick, H. P. M., & Reinhold, D. (2008). Inhibitors of dipeptidyl peptidase IV-like activity mediate antifibrotic effects in normal and keloid-derived skin fibroblasts. Journal of Investigative Dermatology, 128(4), 855–866. https://doi.org/10.1038/sj.jid.5701104

    Article  CAS  Google Scholar 

  146. Shih, C. M., Huang, C. Y., Huang, C. Y., Wang, K. H., Wei, P. L., Chang, Y. J., Fong, T. H., Pan, J. L., & Lee, A. W. (2018). A dipeptidyl peptidase-4 inhibitor promotes wound healing in normoglycemic mice by modulating keratinocyte activity. Experimental Dermatology, 27(10), 1134–1141. https://doi.org/10.1111/exd.13751

    Article  CAS  PubMed  Google Scholar 

  147. Christopherson, K. W., Cooper, S., Hangoc, G., & Broxmeyer, H. E. (2003). CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Experimental Hematology, 31(11), 1126–1134. https://doi.org/10.1016/S0301-472X(03)00256-X

    Article  CAS  PubMed  Google Scholar 

  148. Schürmann, C., Linke, A., Engelmann-Pilger, K., Steinmetz, C., Mark, M., Pfeilschifter, J., Klein, T., & Frank, S. (2012). The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic Ob/Ob mice. The Journal of Pharmacology and Experimental Therapeutics, 342(1), 71–80. https://doi.org/10.1124/jpet.111.191098

    Article  CAS  PubMed  Google Scholar 

  149. Yan, S., Marguet, D., Dobers, J., Reutter, W., & Fan, H. (2003). Deficiency of CD26 results in a change of cytokine and immunoglobin secretion after stimulation by pokeweed mitogen. European Journal of Immunology, 33(6), 1519–1527. https://doi.org/10.1002/eji.200323469

    Article  CAS  PubMed  Google Scholar 

  150. Preller, V., Gerber, A., Wrenger, S., Togni, M., Marguet, D., Tadje, J., Lendeckel, U., Röcken, C., Faust, J., Neubert, K., Schraven, B., Martin, R., Ansorge, S., Brocke, S., & Reinhold, D. (2007). TGF-β1-mediated control of central nervous system inflammation and autoimmunity through the inhibitory receptor CD26. The Journal of Immunology, 178(7), 4632–4640. https://doi.org/10.4049/jimmunol.178.7.4632

    Article  CAS  PubMed  Google Scholar 

  151. Straino, S., Di Carlo, A., Mangoni, A., De Mori, R., Guerra, L., Maurelli, R., Panacchia, L., Di Giacomo, F., Palumbo, R., Di Campli, C., Uccioli, L., Biglioli, P., Bianchi, M. E., Capogrossi, M. C., & Germani, A. (2008). High-mobility group box 1 protein in human and murine skin: Involvement in wound healing. Journal of Investigative Dermatology, 128(6), 1545–1553. https://doi.org/10.1038/sj.jid.5701212

    Article  CAS  Google Scholar 

  152. Sinagra, T., Merlo, S., Spampinato, S. F., De Pasquale, R., & Sortino, M. A. (2015). High mobility group box 1 contributes to wound healing induced by inhibition of dipeptidylpeptidase 4 in cultured keratinocytes. Frontiers in Pharmacology, 6, 1–9. https://doi.org/10.3389/fphar.2015.00126.

    Article  CAS  Google Scholar 

  153. Ervinna, N., Mita, T., Yasunari, E., Azuma, K., Tanaka, R., Fujimura, S., Sukmawati, D., Nomiyama, T., Kanazawa, A., Kawamori, R., Fujitani, Y., & Watada, H. (2013). Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo e-deficient mice. Endocrinology, 154(3), 1260–1270. https://doi.org/10.1210/en.2012-1855

    Article  CAS  PubMed  Google Scholar 

  154. Cortet, B., Lucas, S., Legroux-Gerot, I., Penel, G., Chauveau, C., & Paccou, J. (2019). Bone disorders associated with diabetes mellitus and its treatments. Joint, Bone, Spine. Elsevier Masson SAS. https://doi.org/10.1016/j.jbspin.2018.08.002

  155. Qiu, M., Zhai, S., & Liu, D. (2020). DPP4 activities are associated with osteopenia/osteoporosis and fracture risk in newly diagnosed type 2 diabetes. International Journal of Endocrinology. https://doi.org/10.1155/2020/8874272

  156. Lee, H. S., & Hwang, J. S. (2020). Impact of type 2 diabetes mellitus and Antidiabetic medications on bone metabolism. Current Diabetes Reports Springer. https://doi.org/10.1007/s11892-020-01361-5

  157. Yang, J., Huang, C., Wu, S., Xu, Y., Cai, T., Chai, S., Yang, Z., Sun, F., & Zhan, S. (2017). The effects of dipeptidyl peptidase-4 inhibitors on bone fracture among patients with type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials. PLoS One, 12(12), e018753. https://doi.org/10.1371/journal.pone.0187537

    Article  CAS  Google Scholar 

  158. Sbaraglini, M. L., Molinuevo, M. S., Sedlinsky, C., Schurman, L., & McCarthy, A. D. (2014). Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells. European Journal of Pharmacology, 727(1), 8–14. https://doi.org/10.1016/j.ejphar.2014.01.028

    Article  CAS  PubMed  Google Scholar 

  159. Bilezikian, J. P., Josse, R. G., Eastell, R., Lewiecki, E. M., Miller, C. G., Wooddell, M., Northcutt, A. R., Kravitz, B. G., Paul, G., Cobitz, A. R., Nino, A. J., & Fitzpatrick, L. A. (2013). Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. Journal of Clinical Endocrinology and Metabolism, 98(4), 1519–1528. https://doi.org/10.1210/jc.2012-4018

    Article  CAS  PubMed  Google Scholar 

  160. Eom, Y. S., Gwon, A. R., Kwak, K. M., Kim, J. Y., Yu, S. H., Lee, S., Kim, Y. S., Park, I. B., Kim, K. W., Lee, K., & Kim, B. J. (2016). Protective effects of vildagliptin against pioglitazone-induced bone loss in type 2 diabetic rats. PLoS One, 11(12), 1–11. https://doi.org/10.1371/journal.pone.0168569

    Article  CAS  Google Scholar 

  161. Kyle, K. A., Willett, T. L., Baggio, L. L., Drucker, D. J., & Grynpas, M. D. (2011). Differential effects of PPAR-γ activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology, 152(2), 457–467. https://doi.org/10.1210/en.2010-1098

    Article  CAS  PubMed  Google Scholar 

  162. Mansur, S. A., Mieczkowska, A., Flatt, P. R., Chappard, D., Irwin, N., & Mabilleau, G. (2019). Sitagliptin alters bone composition in high-fat-fed mice. Calcified Tissue International, 104(4), 437–448. https://doi.org/10.1007/s00223-018-0507-0

    Article  CAS  PubMed  Google Scholar 

  163. Nishida, H., Suzuki, H., Madokoro, H., Hayashi, M., Morimoto, C., Sakamoto, M., & Yamada, T. (2014). Blockade of CD26 signaling inhibits human osteoclast development. Journal of Bone and Mineral Research, 29(11), 2439–2455. https://doi.org/10.1002/jbmr.2277

    Article  CAS  PubMed  Google Scholar 

  164. Matar, A. J., Crepeau, R. L., & Duran-Struuck, R. (2020). Cellular immunotherapies in preclinical large animal models of transplantation. Biology of Blood and Marrow Transplantation. Transplant Cell Ther. https://doi.org/10.1016/j.bbmt.2020.09.032

  165. Lumelsky, N., O’Hayre, M., Chander, P., Shum, L., & Somerman, M. J. (2018). Autotherapies: Enhancing endogenous healing and regeneration. Trends in Molecular Medicine, 24(11), 919–930. https://doi.org/10.1016/j.molmed.2018.08.004

    Article  PubMed  Google Scholar 

  166. Huang, X., & Broxmeyer, H. E. (2019). Progress towards improving homing and engraftment of hematopoietic stem cells for clinical transplantation. Current Opinion in Hematology. https://doi.org/10.1097/MOH.0000000000000510

  167. Campbell, T. B., Hangoc, G., Liu, Y., Pollok, K., & Broxmeyer, H. E. (2007). Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells and Development, 16(3), 347–353. https://doi.org/10.1089/scd.2007.9995

    Article  CAS  PubMed  Google Scholar 

  168. Farag, S. S., Nelson, R., Cairo, M. S., O’Leary, H. A., Zhang, S., Huntley, C., Delgado, D., Schwartz, J., Zaid, M. A., Abonour, R., Robertson, M., & Broxmeyer, H. (2017). High-dose sitagliptin for systemic inhibition of dipeptidylpeptidase-4 to enhance engraftment of single cord umbilical cord blood transplantation. Oncotarget, 8(66), 110350–110357. https://doi.org/10.18632/oncotarget.22739

    Article  PubMed  PubMed Central  Google Scholar 

  169. Farag, S. S., Abu Zaid, M., Schwartz, J. E., Thakrar, T. C., Blakley, A. J., Abonour, R., Robertson, M. J., Broxmeyer, H. E., & Zhang, S. (2021). Dipeptidyl peptidase 4 inhibition for prophylaxis of acute graft-versus-host disease. New England Journal of Medicine, 384(1), 11–19. https://doi.org/10.1056/nejmoa2027372

    Article  CAS  Google Scholar 

  170. Chen, C.-C., Chen, R.-F., Wang, Y.-C., Li, Y.-T., Chuang, J.-H., & Kuo, Y.-R. (2020). Combination of a CD26 inhibitor, G-CSF, and short-term Immunosuppressants modulates allotransplant survival and Immunoregulation in a rodent Hindlimb allotransplant model. Transplantation (Vol. Publish Ah). https://doi.org/10.1097/tp.0000000000003504

  171. Jang, J. H., Yamada, Y., Janker, F., De Meester, I., Baerts, L., Vliegen, G., Inci, I., Chatterjee, S., Weder, W., & Jungraithmayr, W. (2017). Anti-inflammatory effects on ischemia/reperfusion-injured lung transplants by the cluster of differentiation 26/dipeptidylpeptidase 4 (CD26/DPP4) inhibitor vildagliptin. Journal of Thoracic and Cardiovascular Surgery, 153(3), 713–724.e4. https://doi.org/10.1016/j.jtcvs.2016.10.080

    Article  CAS  Google Scholar 

  172. Yamada, Y., Jang, J. H., De Meester, I., Baerts, L., Vliegen, G., Inci, I., Yoshino, I., Weder, W., & Jungraithmayr, W. (2016). CD26 costimulatory blockade improves lung allograft rejection and is associated with enhanced interleukin-10 expression. Journal of Heart and Lung Transplantation, 35(4), 508–517. https://doi.org/10.1016/j.healun.2015.11.002

    Article  Google Scholar 

  173. Zhao, X., Zhang, K., Daniel, P., Wisbrun, N., Fuchs, H., & Fan, H. (2019). Delayed allogeneic skin graft rejection in CD26-deficient mice. Cellular and molecular immunology, 16(6), 557–567. https://doi.org/10.1038/s41423-018-0009-z

    Article  CAS  PubMed  Google Scholar 

  174. Pinheiro, M. M., Pinheiro, F. M. M., & Trabachin, M. L. (2018). Dipeptidyl peptidase-4 inhibitors (DPP-4i) combined with vitamin D3: An exploration to treat new-onset type 1 diabetes mellitus and latent autoimmune diabetes in adults in the future. International Immunopharmacology, 57, 11–17. https://doi.org/10.1016/j.intimp.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  175. Pospisilik, J. A., Martin, J., Doty, T., Ehses, J. A., Pamir, N., Lynn, F. C., Piteau, S., Demuth, H. U., McIntosh, C. H. S., & Pederson, R. A. (2003). Dipeptidyl peptidase IV inhibitor treatment stimulates β-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes, 52(3), 741–750. https://doi.org/10.2337/diabetes.52.3.741

    Article  CAS  PubMed  Google Scholar 

  176. Kawamori, D., Shirakawa, J., Liew, C. W., Hu, J., Morioka, T., Duttaroy, A., Burkey, B., & Kulkarni, R. N. (2017). GLP-1 signalling compensates for impaired insulin signalling in regulating beta cell proliferation in βIRKO mice. Diabetologia, 60(8), 1442–1453. https://doi.org/10.1007/s00125-017-4303-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mu, J., Woods, J., Zhou, Y. P., Roy, R. S., Li, Z., Zycband, E., Feng, Y., Zhu, L., Li, C., Howard, A. D., Moller, D. E., Thornberry, N. A., & Zhang, B. B. (2006). Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes, 55(6), 1695–1704. https://doi.org/10.2337/db05-1602

    Article  CAS  PubMed  Google Scholar 

  178. Jelsing, J., Vrang, N., van Witteloostuijn, S. B., Mark, M., & Klein, T. (2012). The DPP4 inhibitor linagliptin delays the onset of diabetes and: Preserves β-cell mass in non-obese diabetic mice. Journal of Endocrinology, 214(3), 381–387. https://doi.org/10.1530/JOE-11-0479

    Article  CAS  Google Scholar 

  179. Liu, W., Son, D. O., Lau, H. K., Zhou, Y., Prud’homme, G. J., Jin, T., & Wang, Q. (2017). Combined oral administration of GABA and DPP-4 inhibitor prevents beta cell damage and promotes beta cell regeneration in mice. Frontiers in Pharmacology, 8, 1–10. https://doi.org/10.3389/fphar.2017.00362.

    Article  CAS  Google Scholar 

  180. Penaforte-Saboia, J. G., Couri, C. E. B., Albuquerque, N. V., Silva, V. L. L., Olegario, N. B. d. C., Fernandes, V. O., & Montenegro Junior, R. M. (2021). Emerging roles of dipeptidyl peptidase-4 inhibitors in delaying the progression of type 1 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. https://doi.org/10.2147/DMSO.S294742

  181. Pavathuparambil Abdul Manaph, N., Sivanathan, K. N., Nitschke, J., Zhou, X. F., Coates, P. T., & Drogemuller, C. J. (2019). An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Research and Therapy, 10(1). https://doi.org/10.1186/s13287-019-1396-5

Download references

Acknowledgements

This work is supported by grants PI15/01857, PI18/01659 and CIBER “Fragilidad y Envejecimiento Saludable” (CIBERFES) of “Instituto de Salud Carlos III” (ISCIII), “Ministerio de Economía y Competitividad” (MINECO), Spain and European Union (EU).

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

BTB, JMQG and ACD designed the paper; BTB and ACD searched bibliography; BTB, GD and ACD wrote the manuscript; BTB, MAGM, JMQG, GD and ACD critically revised the content.

Corresponding author

Correspondence to Antonio Casado-Díaz.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrecillas-Baena, B., Gálvez-Moreno, M.Á., Quesada-Gómez, J.M. et al. Influence of Dipeptidyl Peptidase-4 (DPP4) on Mesenchymal Stem-Cell (MSC) Biology: Implications for Regenerative Medicine – Review. Stem Cell Rev and Rep 18, 56–76 (2022). https://doi.org/10.1007/s12015-021-10285-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10285-w

Keywords

Navigation