Skip to main content

Advertisement

Log in

Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells have been investigated for many years, especially for tissue regeneration, and have inherent limitations. One of the rapidly developing fields in the scientific world in recent years is extracellular vesicles. Especially, bone marrow mesenchymal stem cell originated extracellular vesicles are known to have positive contributions in tissue regeneration, and these extracellular vesicles have also been used as gene transfer systems for cellular therapy. Through gene expression analysis and bioinformatics tools, it is possible to determine which genes have changed in the targeted tissue or cell and which miRNAs that can correct this gene expression disorder. This approach connecting the stem cell, extracellular vesicles, epigenetics regulation and bioinformatics fields is one of the promising areas for the treatment of diseases in the future. With this review, it is aimed to present the studies carried out for the use of bone marrow stem cell-derived extracellular vesicles loaded with targeted miRNAs in different in vivo and in vitro human disease models and to discuss recent developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

3’ UTR :

3′-Untranslated Region

ADAM9 :

ADAM Metallopeptidase Domain 9

ADAMTS :

A Disintegrin And Metalloproteinase With Thrombospondin Motifs

AGAP2 :

ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 2

AGEs :

Advanced Glycation end Products

AGO2 :

Argonaute-2

Akt :

Protein Kinase B

ALI :

Acute Lung Injury

alpha-SMA :

α-Smooth Muscle Actin

AMH :

Anti Müllerain Hormon

AMI :

Acute Myocardial Infarction

AML12 :

Alpha Mouse Liver 12

ASK1 :

Signal-Regulating Kinase 1

Bad :

Bcl-2-Antagonist Of Cell Death Protein

BALF :

Bronchoalveolar Lavage Fluid

Bax :

Bcl-2 Associated X Protein

BBB :

Basso Beattie Bresnahan

Bcl-2 :

B-Cell CLL/Lymphoma 2

BIP :

Binding-Immunoglobulin Protein

BMD :

Bone Mineral Density

BMECs :

Brain Microvascular Endothelial Cells

BMP-2 :

Bone Morphogenetic Protein 2

BMS :

Basso Mouse Scale

BMSCs :

Bone Marrow Mesenchymal Stem Cells

CaMKII :

Calcium/Calmodulin-Dependent Protein Kinase II

CCNE1 :

Cyclin E1

CD :

Clusters of Differentiations

CDK-4 :

Cyclin Dependent Kinase 4

CFA :

Complete Freund’s Adjuvant

COL10A1 :

Collagen type X alpha 1 chain

COL2A1 :

Collagen Type II Alpha 1 Chain

COL4A1 :

Collagen Type IV Alpha 1 Chain

COL9A1 :

Collagen Type IX Alpha 1 Chain

COMP :

Cartilage Oligomeric Matrix Protein

COX2 :

Cyclooxygenase-2

CREB :

CAMP Responsive Element Binding Protein

CTGF :

Connective Tissue Growth Factor

CTX :

Cyclophosphamide

CYP2J2 :

Cytochrome P450 2J2

DCX :

Doublecortin

DDIT4 :

DNA Damage Inducible Transcript 4

DFO :

Deferoxamine

DGCR8 :

DiGeorge Syndrome Critical Region gene 8

DMBA :

7,12-Dimetilbenz [a] antrasen

DMOG :

Dimethyl Oxaloylglycine

E2 :

Estradiol

EBV :

Epstein-Barr Virus

ECM :

Extracellular Matrix

EGFR :

Epidermal Growth Factor Receptor

EGM-2 :

Endothelial Cell Growth Medium

EMT :

Epithelial Mesenchymal Transition

ERK :

Extracellular Signal-Regulated Kinase

ESCRT :

Endosomal Sorting Complex Required for Transport”

ESM1 :

Endothelial Cell-Specific Molecule-1

EZH2 :

Enhancer of Zeste Homolog 2

FasL :

Fas Ligand

FFT :

Foot False Test

FLS :

Fibroblast-Like Synoviocytes

FOXA2 :

Forkhead Box protein A2

FSH :

Follicle Stimulating Hormone

FSP1 :

Ferroptosis Suppressor Protein 1

GAP43 :

Growth Associated Protein 43

GFAP :

Glial Fibrillary Acidic Protein

Gli3 :

GLI Family Zinc Finger 3

GSK-3 beta :

Glycogen Synthase Kinase 3 beta

GVHD :

Graft Versus Host Disease

H/R :

Hypoxia/Reoxygenation

HDAC3 :

Histone Deacetylase 3

HGF :

Hepatocyte Growth Factor

HHS :

Histological Hepatitis Score

HIF1-α :

Hypoxia-Inducible Factor 1-Alpha

HSP :

Heat Shock Protein

HUVECs :

Human Umbilical Vein Endothelial Cells

I/R :

Ischemia/Reperfusion

ICHÇ :

Intracerebral Hemorrhage

IkB-alpha :

IkappaBalpha

INPP4B :

Inositol Polyphosphate-4-Phosphatase Type II B

IRF2 :

Interferon Regulatory Factor 2

ITGA2 :

Integrin Subunit Alpha 2b

IVD :

Intravertebral Disc

iNOS :

Inducible Nitric Oxide Synthase

JNK :

JUN N-Terminal Kinase

KDR :

Kinase Insert Domain Receptor

KGF :

Keratinocyte Growth Factor

KIM1 :

Kidney Injury Molecule 1

LAD :

Left Anterior Descending Coronary Artery Ligation

LCN2 :

Lipocalin2

LDH :

Lactate Dehydrogenase

LH :

luteinizing Hormone

LMP1 :

Latent Membrane Protein 1

LPS :

Lipopolysaccharide

LVEDD :

Left Ventricular End Diastolic Dimension

LVEDP :

Left Ventricular End Diastolic Pressure

LVEF :

Left Ventricular Ejection Fraction

LVESD :

Left Ventricular End Systolic Dimension

LVFS :

Left Ventricular Fractional Shortening

LVSP :

Left Ventricular Systolic Pressure

MAPK :

Mitogen-Activated Protein Kinase

MCAO :

Middle Cerebral Artery Occlusion

MCP-1 :

Monocyte Chemotactic Protein 1

MDA :

Malondialdehyde

MDI :

Motor Deficit Index

MI :

Myocardial Infarction

MLS :

Macrophage-Like Synoviocytes

MMP14 :

Matrix Metallopeptidase 14

mNSS :

Modified Neurologic Severity Score

MPO :

Myeloperoxidase

MSCs :

Mesenchymal Stem Cells

mTOR :

Mammalian Target of Rapamycin

MVBs :

Multi-Vesicular Bodies

ncRNA :

noncoding RNAs

NeuN :

Neuronal Nuclei

NF :

Neurofibromin

NF-200 :

Neurofilament 200

NFH :

Neurofilament Heavy

NF-kB :

Nuclear Factor-kappa B

NLRP3 :

NLR Family Pyrin Domain Containing 3

NOX4 :

NADPH Oksidaz 4

NPC :

Neuroprogenic Cells

NSCLC :

Non-Small Cell Lung Cancer

OA :

Osteoarthiritis

OGD :

Oxygene Glucose Deprivation

OPMD :

Oral Potentially Malignant Disorders

P38MAPK :

P38 MAP Kinase

PACT :

Protein Activator of Interferon-Induced Protein Kinase

PARP :

Poly (ADP-ribose) Polymerase

PCNA :

Proliferating Cell Nuclear Antigen

PDCD4 :

Programmed Cell Death 4

Peli1 :

Pellino-1

PGE2 :

Prostaglandin E2

PI3K :

Phosphoinositide 3-Kinase

POF :

Premature Ovarian Failure

pre-miRNA :

Precursor miRNA

pri-miRNAs :

Primary miRNAs

PTEN :

Phosphatase And Tensin Homolog

PTGS2 :

Prostaglandin-Endoperoxide Synthase 2

RA :

Rheumatoid Arthritis

RABEPK :

Rab Effector Protein with Kelch Motifs

RAC2 :

Rac Family Small GTPase 2

RASA1 :

RAS P21 Protein Activator 1

RhoA :

Ras Homolog Family Member A

RHPN2 :

Rhophilin Rho GTPase Binding Protein 2

RISC :

RNA Induced Silencing Complex

ROS :

Reactive Oxygen Species

RUNX2 :

RUNX Family Transcription Factor 2

RVG+Lamp2b) :

Rabies Virus Glycoprotein + Lysosome-Associated Membrane Glycoprotein 2b

SAA3 :

Serum Amyloid A3

SAH :

Subarachnoid Hemorrhage

SCI :

Spinal Cord Injury

SCID :

Severe Combined Immunodeficiency

SEMA3A :

Semaphorin 3A

SIRT7 :

Sirtun 7

SMSCs :

Synovial Mesenchymal Stem Cells

SNAIL1 :

Snail Family Transcriptional Repressor 1

SOD :

Superoxide Dismutase

SOX2 :

SRY-Box Transcription Factor 2

SOX9 :

SRY-Box Transcription Factor 9

SP1 :

Specificity Protein 1

STAT3 :

Signal Transducer And Activator Of Transcription 3

TFF3 :

Trefoil Factor-3

TGF-beta 1 :

Transforming Growth Factor Beta 1

TGF-beta :

Transforming Growth Factor Beta

TGF-BR1 :

Transforming Growth Factor Beta (TGF-beta) Receptor Type 1

TNBS :

2,4,6-Trinitrobenzene Sulfonic Acid

TNF-alpha :

Tumor Necrosis Factor Alpha

TRBP :

Transactivation Response Element RNA-Binding Protein

Trx :

Thioreductin

TXNIP :

Thioreduxin- Interacting Protein

UUO :

Unilateral Ureteral Obstruction

VEGFA :

Vascular Endothelial Growth Factor A

VEGFR :

Vascular Endothelial Growth Factor Receptor

VPA :

Valproic Acid

VSMC :

Vascular Smooth Muscle Cells

WNT5A :

Wnt Family Member 5A

XPO5 :

Exportin-5

ZEB :

Zinc Finger E-Box Binding Homeobox

References

  1. Zhao, P., Xiao, L., Peng, J., Qian, Y. Q., & Huang, C. C. (2018). Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. European Review for Medical and Pharmacological Sciences, 22(12), 3962–3970.

    CAS  PubMed  Google Scholar 

  2. Ratajczak, M. Z., Zuba-Surma, E. K., Wojakowski, W., Ratajczak, J., & Kucia, M. (2008). Bone marrow - home of versatile stem cells. Transfusion Medicine and Hemotherapy, 35(3), 248–259.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haider, K. H., & Aramini, B. (2020). Mircrining the injured heart with stem cell-derived exosomes: An emerging strategy of cell-free therapy. Stem Cell Research & Therapy, 11(1), 23.

    Article  Google Scholar 

  4. Liu, H., Liang, Z., Wang, F., Zhou, C., Zheng, X., Hu, T., et al. (2019). Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight, 4(24) Pii: 131273.

  5. Zuo, R., Liu, M., Wang, Y., Li, J., Wang, W., Wu, J., Sun, C., Li, B., Wang, Z., Lan, W., Zhang, C., Shi, C., & Zhou, Y. (2019). BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Research & Therapy, 10(1), 30.

    Article  CAS  Google Scholar 

  6. Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with Mesenchymal stem cells: An update. Cell Transplantation, 25(5), 829–848.

    Article  PubMed  Google Scholar 

  7. Brown, C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D., Dodds, R., Govind, C. K., & Chaudhry, G. R. (2019). Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of Tissue Engineering and Regenerative Medicine, 13(9), 1738–1755.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, S., Zhu, R., Li, H., Li, J., Han, Q., & Zhao, R. C. (2019). Mesenchymal stem cells and immune disorders: From basic science to clinical transition. Frontiers in Medicine, 13(2), 138–151.

    Article  Google Scholar 

  9. Reinders, M. E. J., van Kooten, C., Rabelink, T. J., & de Fijter, J. W. (2018). Mesenchymal stromal cell therapy for solid organ transplantation. Transplantation, 102(1), 35–43.

    Article  PubMed  Google Scholar 

  10. Wilson, A., Webster, A., & Genever, P. (2019). Nomenclature and heterogeneity: Consequences for the use of mesenchymal stem cells in regenerative medicine. Regenerative Medicine, 14(6), 595–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, C., Jiao, G., Wu, W., Wang, H., Ren, S., Zhang, L., Zhou, H., Liu, H., & Chen, Y. (2019). Exosomes from bone marrow Mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/β-catenin signaling pathway. Cell Transplantation, 28(11), 1373–1383.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mendt, M., Rezvani, K., & Shpall, E. (2019). Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplantation, 54(Suppl 2), 789–792.

    Article  PubMed  Google Scholar 

  13. Yu, H., Cheng, J., Shi, W., Ren, B., Zhao, F., Shi, Y., Yang, P., Duan, X., Zhang, J., Fu, X., Hu, X., & Ao, Y. (2020). Bone marrow mesenchymal stem cell derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomaterialia, 106, 328–341.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, P., Wang, L., Li, Q., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., Jin, C., Yu, Y., Liu, J., Qian, L., & Yang, Y. (2019). Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Research & Therapy, 10(1), 300.

    Article  Google Scholar 

  15. Bian, S., Zhang, L., Duan, L., Wang, X., Min, Y., & Yu, H. (2014). Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of Molecular Medicine (Berlin, Germany), 92(4), 387–397.

    Article  CAS  Google Scholar 

  16. Ding, J., Wang, X., Chen, B., Zhang, J., & Xu, J. (2019). Exosomes derived from human bone marrow Mesenchymal stem cells stimulated by Deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. BioMed Research International, 2019, 9742765.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liang, B., Liang, J. M., Ding, J. N., Xu, J., Xu, J. G., & Chai, Y. M. (2019). Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell derived exosomes enhance boneregeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Research & Therapy, 10(1), 335.

    Article  Google Scholar 

  18. Alzahrani, F. A. (2019). Melatonin improves therapeutic potential of mesenchymal stem cells derived exosomes against renal ischemia-reperfusion injury in rats. American Journal of Translational Research, 11(5), 2887–28907.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Alzahrani, F., Saadeldin, I., & Alkarim, S. (2018). Ameliorative effect of mesenchymal stem cells-derived exosomes on diethylnitrosamine-induced liver injury in albino rats. International Journal of Pharmacology, 14, 1128–1135.

    Article  CAS  Google Scholar 

  20. Liu, J., Chen, T., Lei, P., Tang, X., & Huang, P. (2019). Exosomes released by bone marrow Mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4/NF-κB pathway. International Journal of Medical Sciences, 16(9), 1238–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fang, S., Li, Y., & Chen, P. (2018). Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Design, Development and Therapy, 13, 45–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miao, C., Lei, M., Hu, W., Han, S., & Wang, Q. (2017). A brief review: The therapeutic potential of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Research & Therapy, 8, 242.

    Article  Google Scholar 

  23. Johnstone, R. M., Adam, M., Hammond, J., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.

    Article  CAS  PubMed  Google Scholar 

  24. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., Beckham, C., Bedina Zavec, A., Benmoussa, A., Berardi, A. C., Bergese, P., Bielska, E., Blenkiron, C., Bobis-Wozowicz, S., Boilard, E., Boireau, W., Bongiovanni, A., Borràs, F. E., Bosch, S., Boulanger, C. M., Breakefield, X., Breglio, A. M., Brennan, M. Á., Brigstock, D. R., Brisson, A., Broekman, M. L. D., Bromberg, J. F., Bryl-Górecka, P., Buch, S., Buck, A. H., Burger, D., Busatto, S., Buschmann, D., Bussolati, B., Buzás, E. I., Byrd, J. B., Camussi, G., Carter, D. R. F., Caruso, S., Chamley, L. W., Chang, Y. T., Chen, C., Chen, S., Cheng, L., Chin, A. R., Clayton, A., Clerici, S. P., Cocks, A., Cocucci, E., Coffey, R. J., Cordeiro-da-Silva, A., Couch, Y., Coumans, F. A. W., Coyle, B., Crescitelli, R., Criado, M. F., D’Souza-Schorey, C., Das, S., Datta Chaudhuri, A., de Candia, P., de Santana Jr., E. F., de Wever, O., del Portillo, H. A., Demaret, T., Deville, S., Devitt, A., Dhondt, B., di Vizio, D., Dieterich, L. C., Dolo, V., Dominguez Rubio, A. P., Dominici, M., Dourado, M. R., Driedonks, T. A. P., Duarte, F. V., Duncan, H. M., Eichenberger, R. M., Ekström, K., el Andaloussi, S., Elie-Caille, C., Erdbrügger, U., Falcón-Pérez, J. M., Fatima, F., Fish, J. E., Flores-Bellver, M., Försönits, A., Frelet-Barrand, A., Fricke, F., Fuhrmann, G., Gabrielsson, S., Gámez-Valero, A., Gardiner, C., Gärtner, K., Gaudin, R., Gho, Y. S., Giebel, B., Gilbert, C., Gimona, M., Giusti, I., Goberdhan, D. C. I., Görgens, A., Gorski, S. M., Greening, D. W., Gross, J. C., Gualerzi, A., Gupta, G. N., Gustafson, D., Handberg, A., Haraszti, R. A., Harrison, P., Hegyesi, H., Hendrix, A., Hill, A. F., Hochberg, F. H., Hoffmann, K. F., Holder, B., Holthofer, H., Hosseinkhani, B., Hu, G., Huang, Y., Huber, V., Hunt, S., Ibrahim, A. G. E., Ikezu, T., Inal, J. M., Isin, M., Ivanova, A., Jackson, H. K., Jacobsen, S., Jay, S. M., Jayachandran, M., Jenster, G., Jiang, L., Johnson, S. M., Jones, J. C., Jong, A., Jovanovic-Talisman, T., Jung, S., Kalluri, R., Kano, S. I., Kaur, S., Kawamura, Y., Keller, E. T., Khamari, D., Khomyakova, E., Khvorova, A., Kierulf, P., Kim, K. P., Kislinger, T., Klingeborn, M., Klinke II, D. J., Kornek, M., Kosanović, M. M., Kovács, Á. F., Krämer-Albers, E. M., Krasemann, S., Krause, M., Kurochkin, I. V., Kusuma, G. D., Kuypers, S., Laitinen, S., Langevin, S. M., Languino, L. R., Lannigan, J., Lässer, C., Laurent, L. C., Lavieu, G., Lázaro-Ibáñez, E., le Lay, S., Lee, M. S., Lee, Y. X. F., Lemos, D. S., Lenassi, M., Leszczynska, A., Li, I. T. S., Liao, K., Libregts, S. F., Ligeti, E., Lim, R., Lim, S. K., Linē, A., Linnemannstöns, K., Llorente, A., Lombard, C. A., Lorenowicz, M. J., Lörincz, Á. M., Lötvall, J., Lovett, J., Lowry, M. C., Loyer, X., Lu, Q., Lukomska, B., Lunavat, T. R., Maas, S. L. N., Malhi, H., Marcilla, A., Mariani, J., Mariscal, J., Martens-Uzunova, E. S., Martin-Jaular, L., Martinez, M. C., Martins, V. R., Mathieu, M., Mathivanan, S., Maugeri, M., McGinnis, L. K., McVey, M. J., Meckes Jr., D. G., Meehan, K. L., Mertens, I., Minciacchi, V. R., Möller, A., Møller Jørgensen, M., Morales-Kastresana, A., Morhayim, J., Mullier, F., Muraca, M., Musante, L., Mussack, V., Muth, D. C., Myburgh, K. H., Najrana, T., Nawaz, M., Nazarenko, I., Nejsum, P., Neri, C., Neri, T., Nieuwland, R., Nimrichter, L., Nolan, J. P., Nolte-’t Hoen, E. N. M., Noren Hooten, N., O’Driscoll, L., O’Grady, T., O’Loghlen, A., Ochiya, T., Olivier, M., Ortiz, A., Ortiz, L. A., Osteikoetxea, X., Østergaard, O., Ostrowski, M., Park, J., Pegtel, D. M., Peinado, H., Perut, F., Pfaffl, M. W., Phinney, D. G., Pieters, B. C. H., Pink, R. C., Pisetsky, D. S., Pogge von Strandmann, E., Polakovicova, I., Poon, I. K. H., Powell, B. H., Prada, I., Pulliam, L., Quesenberry, P., Radeghieri, A., Raffai, R. L., Raimondo, S., Rak, J., Ramirez, M. I., Raposo, G., Rayyan, M. S., Regev-Rudzki, N., Ricklefs, F. L., Robbins, P. D., Roberts, D. D., Rodrigues, S. C., Rohde, E., Rome, S., Rouschop, K. M. A., Rughetti, A., Russell, A. E., Saá, P., Sahoo, S., Salas-Huenuleo, E., Sánchez, C., Saugstad, J. A., Saul, M. J., Schiffelers, R. M., Schneider, R., Schøyen, T. H., Scott, A., Shahaj, E., Sharma, S., Shatnyeva, O., Shekari, F., Shelke, G. V., Shetty, A. K., Shiba, K., Siljander, P. R. M., Silva, A. M., Skowronek, A., Snyder II, O. L., Soares, R. P., Sódar, B. W., Soekmadji, C., Sotillo, J., Stahl, P. D., Stoorvogel, W., Stott, S. L., Strasser, E. F., Swift, S., Tahara, H., Tewari, M., Timms, K., Tiwari, S., Tixeira, R., Tkach, M., Toh, W. S., Tomasini, R., Torrecilhas, A. C., Tosar, J. P., Toxavidis, V., Urbanelli, L., Vader, P., van Balkom, B. W. M., van der Grein, S. G., van Deun, J., van Herwijnen, M. J. C., van Keuren-Jensen, K., van Niel, G., van Royen, M. E., van Wijnen, A. J., Vasconcelos, M. H., Vechetti Jr., I. J., Veit, T. D., Vella, L. J., Velot, É., Verweij, F. J., Vestad, B., Viñas, J. L., Visnovitz, T., Vukman, K. V., Wahlgren, J., Watson, D. C., Wauben, M. H. M., Weaver, A., Webber, J. P., Weber, V., Wehman, A. M., Weiss, D. J., Welsh, J. A., Wendt, S., Wheelock, A. M., Wiener, Z., Witte, L., Wolfram, J., Xagorari, A., Xander, P., Xu, J., Yan, X., Yáñez-Mó, M., Yin, H., Yuana, Y., Zappulli, V., Zarubova, J., Žėkas, V., Zhang, J. Y., Zhao, Z., Zheng, L., Zheutlin, A. R., Zickler, A. M., Zimmermann, P., Zivkovic, A. M., Zocco, D., & Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles., 7(1), 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lu, K., Li, H. Y., Yang, K., Wu, J. L., Cai, X. W., Zhou, Y., & Li, C. Q. (2017). Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: In vitro study on exosomes in interaction of nucleus pulposus cells and bone marow mesenchymal stem cells. Stem Cell Research & Therapy, 8(1), 108.

    Article  Google Scholar 

  26. Yokoi, A., Villar-Prados, A., Oliphint, P. A., Zhang, J., Song, X., De Hoff, P., Morey, R., Liu, J., Roszik, J., Clise-Dwyer, K., Burks, J. K., O'Halloran, T. J., Laurent, L. C., & Sood, A. K. (2019). Mechanisms of nuclear content loading to exosomes. Sci Adv, 5(11), eaax8849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ouyang, X., Han, X., Chen, Z., Fang, J., Huang, X., & Wei, H. (2018). MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Research & Therapy, 9(1), 246.

    Article  CAS  Google Scholar 

  28. Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Giovanni, C. G. (2016). Stem cell-derived extracellular vesicles and immune-modulation. Frontiers in Cell and Development Biology, 4, 83.

    Article  Google Scholar 

  29. Altanerova, U., Jakubechova, J., Benejova, K., Priscakova, P., Pesta, M., Pitule, P., Topolcan, O., Kausitz, J., Zduriencikova, M., Repiska, V., & Altaner, C. (2019). Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. International Journal of Cancer, 144(4), 897–908.

    Article  PubMed  Google Scholar 

  30. Shimaoka, M., Kawamoto, E., Gaowa, A., Okamoto, T., & Park, E. J. (2019). Connexins and Integrins in Exosomes. Cancers (Basel), 11(1), 106.

    Article  CAS  Google Scholar 

  31. Tsao, C. R., Liao, M. F., Wang, M. H., Cheng, C. M., & Chen, C. H. (2014). Mesenchymal stem cell derived Exosomes: A new Hope for the treatment of cardiovascular disease? Zhonghua Minguo Xin Zang Xue Hui Za Zhi, 30(5), 395–400.

    PubMed Central  Google Scholar 

  32. Forsberg, M. H., Kink, J. A., Hematti, P., & Capitinin, C. M. (2020). Mesenchymal Stromal Cells and Exosomes: Progress and Challenges. Front Cell Dev Biol.

  33. Ma, Z. J., Yang, J. J., Lu, Y. B., Liu, Z. Y., & Wang, X. X. (2020). Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells, 12(8), 814–840.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhuang, X., Xiang, X., Grizzle, W., Sun, D., Zhang, S., Axtell, R. C., Ju, S., Mu, J., Zhang, L., Steinman, L., Miller, D., & Zhang, H. G. (2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy, 19, 1769–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie, X., Wu, H., Li, M., Chen, X., Xu, X., Ni, W., Lu, C., Ni, R., Bao, B., & Xiao, M. (2019). Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy, 21(5), 509–524.

    Article  CAS  PubMed  Google Scholar 

  36. Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287–296.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baharlooi, H., Azimi, M., Salehi, Z., & Izad, M. (2020). Mesenchymal stem cell-derived Exosomes: A promising therapeutic ace card to address autoimmune diseases. Int J Stem Cells, 13(1), 13–23.

    Article  CAS  PubMed  Google Scholar 

  38. Rezaie, J., Ajezi, S., Avci, Ç. B., Karimipour, M., Geranmayeh, M. H., Nourazarian, A., Sokullu, E., Rezabakhsh, A., & Rahbarghazi, R. (2018). Exosomes and their application in biomedical field: Difficulties and advantages. Molecular Neurobiology, 55(4), 3372–3393.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, L., Jiao, G., Ren, S., Zhang, X., Li, C., Wu, W., Wang, H., Liu, H., Zhou, H., & Chen, Y. (2020). Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Research & Therapy, 11(1), 38.

    Article  CAS  Google Scholar 

  40. Wei, H., Chen, J., Wang, S., Fu, F., Zhu, X., Wu, C., Liu, Z., Zhong, G., & Lin, J. (2019). A Nanodrug consisting of doxorubicin and exosome derived from Mesenchymal stem cells for osteosarcoma treatment In vitro. International Journal of Nanomedicine, 14, 8603–8610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Z., Liu, F., He, X., Yang, X., Shan, F., & Feng, J. (2019). Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. International Immunopharmacology, 67, 268–280.

    Article  CAS  PubMed  Google Scholar 

  42. Yeo, R. W., Lai, R. C., Zhang, B., Tan, S. S., Yin, Y., Teh, B. J., et al. (2013). Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Advanced Drug Delivery Reviews, 65(3), 336–341.

    Article  CAS  PubMed  Google Scholar 

  43. Eldh, M., Ekstrom, K., Valadi, H., Sjostrand, M., Olsson, B., Jernas, M., et al. (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One, 5(12), e15353.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meckes Jr., D. G., Shair, K. H., Marquitz, A. R., Kung, C. P., Edwards, R. H., & Raab-Traub, N. (2010). Human tumor virus utilizes exosomes for intercellular communication. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20370–20375.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xie, L., Wang, J., Zhang, Y., Chen, H., Lin, D., Ding, J., Xuan, J., Chen, Q., & Cai, L. (2019). The effects of local injection of exosomes derived from BMSCs on random skin flap in rats. American Journal of Translational Research, 11(11), 7063–7073.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hou, K., Li, G., Zhao, J., Xu, B., Zhang, Y., Yu, J., & Xu, K. (2020). Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. Journal of Neuroinflammation, 17(1), 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, Y., Zhou, Y., Zhang, R., Wen, L., Wu, K., Li, Y., Yao, Y., Duan, R., & Jia, Y. (2019). Bone Mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Frontiers in Neuroscience, 13, 209.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zeng, Q., Zhou, Y., Liang, D., He, H., Liu, X., Zhu, R., Zhang, M., Luo, X., Wang, Y., & Huang, G. (2020). Exosomes secreted from bone marrow Mesenchymal stem cells attenuate oxygen-glucose deprivation/Reoxygenation-induced Pyroptosis in PC12 cells by promoting AMPK-dependent Autophagic flux. Frontiers in Cellular Neuroscience, 14, 182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reis, L. A., Borges, F. T., Simões, M. J., Borges, A. A., Sinigaglia-Coimbra, R., & Schor, N. (2012). Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One, 7(9), e44092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, S., Liu, Y., & Pu, Z. (2019). Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Design, Development and Therapy, 13, 2887–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, M., Liu, W., Li, J., Lu, J., Lu, H., Jia, W., & Liu, F. (2020). Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Research & Therapy, 11(1), 350.

    Article  CAS  Google Scholar 

  52. Bruno, S., Tapparo, M., Collino, F., Chiabotto, G., Deregibus, M. C., Soares Lindoso, R., Neri, F., Kholia, S., Giunti, S., Wen, S., Quesenberry, P., & Camussi, G. (2017). Renal regenerative potential of different extracellular vesicle populations derived from bone marrow Mesenchymal stromal cells. Tissue Engineering. Part A, 23(21–22), 1262–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. El Andaloussi, S., Lakhal, S., Mager, I., & Wood, M. J. (2013). Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews, 65(3), 391–397.

    Article  PubMed  Google Scholar 

  54. Pedroza-Torres, A., Romero-Córdoba, S. L., Justo-Garrido, M., Salido-Guadarrama, I., Rodríguez-Bautista, R., Montaño, S., Muñiz-Mendoza, R., Arriaga-Canon, C., Fragoso-Ontiveros, V., Álvarez-Gómez, R. M., Hernández, G., & Herrera, L. A. (2019). MicroRNAs in tumor cell metabolism: Roles and therapeutic opportunities. Frontiers in Oncology, 9, 1404.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Syed, S. N., & Brüne, B. (2020). MicroRNAs as emerging regulators of signaling in the tumor microenvironment. Cancers (Basel), 12(4).

  56. Ding, L., Gu, H., Xiong, X., Ao, H., Cao, J., Lin, W., et al. (2019). MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast Cancer. Cells, 8(12) pii: E1492.

  57. Sohel, M. M. H. (2020). Circulating microRNAs as biomarkers in cancer diagnosis. Life Sciences, 248, 117473.

    Article  CAS  PubMed  Google Scholar 

  58. Behl, T., Kumar, C., Makkar, R., Gupta, A., & Sachdeva, M. (2020). Intercalating the role of MicroRNAs in Cancer: As enemy or protector. Asian Pacific Journal of Cancer Prevention, 21(3), 593–298.

    Article  CAS  PubMed  Google Scholar 

  59. Tüfekci, K. U., Meuwissen, R. L., & Genç, S. (2014). The role of microRNAs in biological processes. Methods in Molecular Biology, 1107, 15–31.

    Article  PubMed  Google Scholar 

  60. Chen, L., Heikkinen, L., Wang, C., Yang, Y., Sun, H., & Wong, G. (2019). Trends in the development of miRNA bioinformatics tools. Briefings in Bioinformatics, 20(5), 1836–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, W., & Wang, X. (2019). Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biology, 20(1), 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Van Vu, T., & Do, V. N. (2017). Customization of artificial MicroRNA design. In S. Rani (Ed.), MicroRNA profiling. Methods in molecular biology (Vol. 1509). New York, NY: Humana Press.

    Google Scholar 

  63. Fan, J., Feng, Y., Zhang, R., Zhang, W., Shu, Y., Zeng, Z., Huang, S., Zhang, L., Huang, B., Wu, D., Zhang, B., Wang, X., Lei, Y., Ye, Z., Zhao, L., Cao, D., Yang, L., Chen, X., Liu, B., Wagstaff, W., He, F., Wu, X., Zhang, J., Wolf, J. M., Lee, M. J., Haydon, R. C., Luu, H. H., Huang, A., He, T. C., & Yan, S. (2020). A simplified system for the effective expression and delivery of functional mature microRNAs in mammalian cells. Cancer Gene Therapy, 27(6), 424–437.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, N., Zhang, D., Chen, S. L., Gong, B. Q., Guo, Y., Xu, L., Zhang, X. N., & Li, J. F. (2018). Engineering artificial MicroRNAs for multiplex gene silencing and simplified transgenic screen. Plant Physiology, 178(3), 989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Calloni, R., & Bonatto, D. (2015). Scaffolds for artificial miRNA expression in animal cells. Hum Gene Ther Methods, 26(5), 162–174.

    Article  CAS  PubMed  Google Scholar 

  66. Borel, F., Kay, M. A., & Mueller, C. (2014). Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Molecular Therapy, 22(4), 692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herrera-Carrillo, E., Liu, Y. P., & Berkhout, B. (2017). Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors. Hum Gene Ther Methods, 28(4), 177–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Y. P., & Berkhout, B. (2011). miRNA cassettes in viral vectors: Problems and solutions. Biochimica et Biophysica Acta, 1809(11–12), 732–745.

    Article  CAS  PubMed  Google Scholar 

  69. Yang, N. (2015). An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig, 5(4), 179–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vannucci, L., Lai, M., Chiuppesi, F., Ceccherini-Nelli, L., & Pistello, M. (2013). Viral vectors: A look back and ahead on gene transfer technology. The New Microbiologica, 36(1), 1–22.

    CAS  PubMed  Google Scholar 

  71. Rousset, F., Salmon, P., Bredl, S., Cherpin, O., Coelho, M., Myburgh, R., Alessandrini, M., Perny, M., Roccio, M., Speck, R. F., Senn, P., & Krause, K. H. (2019). Optimizing synthetic miRNA Minigene architecture for efficient miRNA hairpin concatenation and multi-target gene knockdown. Mol Ther Nucleic Acids, 14, 351–363.

    Article  CAS  PubMed  Google Scholar 

  72. Fu, Y., Chen, J., & Huang, Z. (2019). Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA, 1, 24.

    Article  Google Scholar 

  73. Paul, S., Vázquez, L. A. B., Uribe, S. P., Reyes-Pérez, P. R., & Sharma, A. (2020). Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cell, 9(7), 1698.

    Article  CAS  Google Scholar 

  74. Xu, F., Xiang, Q., Huang, J., Chen, Q., Yu, N., Long, X., & Zhou, Z. (2019). Exosomal miR-423-5p mediates the proangiogenic activity of human adipose-derived stem cells by targeting Sufu. Stem Cell Research & Therapy, 10(1), 106.

    Article  CAS  Google Scholar 

  75. Hyun, J., Wang, S., Kim, J., Kim, G. J., & Jung, Y. (2015). MicroRNA125b-mediated hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Scientific Reports, 5, 14135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, K., Jiang, Z., Webster, K. A., Chen, J., Hu, H., Zhou, Y., Zhao, J., Wang, L., Wang, Y., Zhong, Z., Ni, C., Li, Q., Xiang, C., Zhang, L., Wu, R., Zhu, W., Yu, H., Hu, X., & Wang, J. (2017). Enhanced Cardioprotection by human endometrium Mesenchymal stem cells driven by Exosomal MicroRNA-21. Stem Cells Translational Medicine, 6(1), 209–222.

    Article  CAS  PubMed  Google Scholar 

  77. Ding, Y., Cao, F., Sun, H., Wang, Y., Liu, S., Wu, Y., Cui, Q., Mei, W. T., & Li, F. (2019). Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Letters, 442, 351–361.

    Article  CAS  PubMed  Google Scholar 

  78. Sharif, S., Ghahremani, M. H., & Soleimani, M. (2018). Delivery of exogenous miR-124 to Glioblastoma multiform cells by Wharton's jelly Mesenchymal stem cells decreases cell proliferation and migration, and confers Chemosensitivity. Stem Cell Reviews and Reports, 14(2), 236–246.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, L., Wang, J., Fu, Z., Ai, Y., Li, Y., Wang, Y., & Wang, Y. (2019). Sevoflurane suppresses migration and invasion of glioma cells by regulating miR-146b-5p and MMP16. Artif Cells Nanomed Biotechnol, 47(1), 3306–3314.

    Article  CAS  PubMed  Google Scholar 

  80. Katakowski, M., Buller, B., Zheng Xi, L. Y., Rogers, T., Osobamiro, O., et al. (2013). Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Letters, 335(1), 201–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu, J., Ji, H., Tang, H., & Xu, Z. (2018). microRNA-124a suppresses PHF19 over-expression, EZH2 hyper-activation, and aberrant cell proliferation in human glioma. Biochemical and Biophysical Research Communications, 503(3), 1610–1617.

    Article  CAS  PubMed  Google Scholar 

  82. Lang, F. M., Hossain, A., Gumin, J., Momin, E. N., Shimizu, Y., Ledbetter, D., Shahar, T., Yamashita, S., Parker Kerrigan, B., Fueyo, J., Sawaya, R., & Lang, F. F. (2018). Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro-Oncology, 20(3), 380–390.

    Article  CAS  PubMed  Google Scholar 

  83. Kim, R., Lee, S., Lee, J., Kim, M., KimWJ, L. H. W., et al. (2018). Exosomes derived from microRNA-584 transfected Mesenchymal stem cells: Novel alternative therapeutic vehicles for Cancer therapy. BMB Reports, 51(8), 406–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, H., Sun, Y., Qi, X., Gordon, R. E., O'Brien, J. A., Yuan, H., Zhang, J., Wang, Z., Zhang, M., Song, Y., Yu, C., & Gu, C. (2019). EZH2 phosphorylation promotes self-renewal of Glioma stem-like cells through NF-κB methylation. Frontiers in Oncology, 9, 641.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Q., Fan, X., Xu, B., Pang, Q., & Teng, L. (2018). miR-133b acts as a tumor suppressor and negatively regulates EMP2 in glioma. Neoplasma, 65(4), 494–504.

    Article  CAS  PubMed  Google Scholar 

  86. Xu, H., Zhao, G., Zhang, Y., Jiang, H., Wang, W., Zhao, D., Hong, J., Yu, H., & Qi, L. (2019). Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Research & Therapy, 10(1), 381.

    Article  CAS  Google Scholar 

  87. Yu, L., Gui, S., Liu, Y., Qiu, X., Zhang, G., Zhang, X., et al. (2019). Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY), 11(15), 5300–5318.

    Article  CAS  Google Scholar 

  88. Zhang, F., Lu, Y., Wang, M., Zhu, J., Li, J., Zhang, P., et al. (2020). Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell, Probes, 101513.

  89. Umezu, T., Imanishi, S., Azuma, K., Kobayashi, C., Yoshizawa, S., Ohyashiki, K., & Ohyashiki, J. H. (2017). Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Advances, 1(13), 812–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bao, Q., Liao, X., Li, R., & Ding, N. (2019). KCNQ1OT1 promotes migration and inhibits apoptosis by modulating miR-185-5p/Rab14 axis in oral squamous cell carcinoma. Development, Growth & Differentiation, 61(9), 466–474.

    Article  CAS  Google Scholar 

  91. Wang, L., Yin, P., Wang, J., Wang, Y., Sun, Z., Zhou, Y., & Guan, X. (2019). Delivery of mesenchymal stem cells-derived extracellular vesicles with enriched miR-185 inhibits progression of OPMD. Artif Cells Nanomed Biotechnol, 47(1), 2481–2491.

    Article  CAS  PubMed  Google Scholar 

  92. Xie, C., Du, L. Y., Guo, F., Li, X., & Cheng, B. (2019). Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. Molecular and Cellular Biochemistry, 458(1–2), 11–26.

    Article  CAS  PubMed  Google Scholar 

  93. Chen, S. L., Ma, M., Yan, L., Xiong, S. H., Liu, Z., Li, S., Liu, T., Shang, S., Zhang, Y. Y., Zeng, H., Xie, H. L., & Zuo, C. H. (2019). Clinical significance of exosomal miR-1231 in pancreatic cancer. Zhonghua Zhong Liu Za Zhi, 41(1), 46–49.

    CAS  PubMed  Google Scholar 

  94. Shang, S., Wang, J., Chen, S., Tian, R., Zeng, H., Wang, L., Xia, M., Zhu, H., & Zuo, C. (2019). Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Medicine, 8(18), 7728–7740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wu, D. M., Wen, X., Han, X. R., Wang, S., Wang, Y. J., Shen, M., Fan, S. H., Zhang, Z. F., Shan, Q., Li, M. Q., Hu, B., Lu, J., Chen, G. Q., & Zheng, Y. L. (2019). Bone marrow Mesenchymal stem cell-derived Exosomal MicroRNA-126-3p inhibits pancreatic Cancer development by targeting ADAM9. Mol Ther Nucleic Acids, 16, 229–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu, Y., Shen, L., Li, F., Yang, J., Wan, X., & Ouyang, M. (2019). microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. Journal of Cellular Physiology, 234(11), 21380–21394.

    Article  CAS  PubMed  Google Scholar 

  97. Roudnicky, F., Poyet, C., Wild, P., Krampitz, S., Negrini, F., Huggenberger, R., Rogler, A., Stohr, R., Hartmann, A., Provenzano, M., Otto, V. I., & Detmar, M. (2013). Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Research, 73(3), 1097–1106.

    Article  CAS  PubMed  Google Scholar 

  98. Cai, H., Yang, X., Gao, Y., Xu, Z., Yu, B., Xu, T., Li, X., Xu, W., Wang, X., & Hua, L. (2019). Exosomal MicroRNA-9-3p secreted from BMSCs Downregulates ESM1 to suppress the development of bladder Cancer. Mol Ther Nucleic Acids, 18, 787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, L., & Li, S. (2018). miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1. Oncology Letters, 16(2), 1715–1721.

    PubMed  PubMed Central  Google Scholar 

  100. Jiang, S., Mo, C., Guo, S., Zhuang, J., Huang, B., & Mao, X. (2019). Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2. Journal of Experimental & Clinical Cancer Research, 38(1), 495.

    Article  CAS  Google Scholar 

  101. Che, Y., Shi, X., Shi, Y., Jiang, X., Ai, Q., Shi, Y., Gong, F., & Jiang, W. (2019). Exosomes derived from miR-143-overexpressing MSCs inhibit cell migration and invasion in human prostate Cancer by Downregulating TFF3. Mol Ther Nucleic Acids., 18, 232–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liang, Y., Zhang, D., Li, L., Xin, T., Zhao, Y., Ma, R., & du, J. (2020). Exosomal microRNA-144 from bone marrow-derived mesenchymal stem cells inhibits the progression of non-small cell lung cancer by targeting CCNE1 and CCNE2. Stem Cell Research & Therapy, 11(1), 87.

    Article  CAS  Google Scholar 

  103. Shimbo, K., Miyaki, S., Ishitobi, H., Kato, Y., Kubo, T., Shimose, S., & Ochi, M. (2014). Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochemical and Biophysical Research Communications, 445(2), 381–387.

    Article  CAS  PubMed  Google Scholar 

  104. Liu, L., Xu, L., Zhang, S., Wang, D., Dong, G., Chen, H., Li, X., Shu, C., & Wang, R. (2018). STF-083010, an inhibitor of XBP1 splicing, attenuates acute renal failure in rats by suppressing endoplasmic reticulum stress-induced apoptosis and inflammation. Experimental Animals, 67(3), 373–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, R., Lin, M., Li, L., Li, L., Qi, G., Rong, R., Xu, M., & Zhu, T. (2014). Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats. Zhonghua Yi Xue Za Zhi, 94, 3298–3303.

    CAS  PubMed  Google Scholar 

  106. Wang, C., Zhu, G., He, W., Yin, H., Lin, F., Gou, X., & Li, X. (2019). BMSCs protect against renal ischemia-reperfusion injury by secreting exosomes loaded with miR-199a-5p that target BIP to inhibit endoplasmic reticulum stress at the very early reperfusion stages. The FASEB Journal, 33(4), 5440–5456.

    Article  CAS  PubMed  Google Scholar 

  107. Tapparo, M., Bruno, S., Collino, F., Togliatto, G., Deregibus, M. C., Provero, P., Wen, S., Quesenberry, P. J., & Camussi, G. (2019). Renal regenerative potential of extracellular vesicles derived from miRNA-engineered Mesenchymal stromal cells. International Journal of Molecular Sciences, 20(10), 2381.

    Article  PubMed Central  Google Scholar 

  108. Zhu, G., Pei, L., Lin, F., Yin, H., Li, X., He, W., Liu, N., & Gou, X. (2019). Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. Journal of Cellular Physiology, 234(12), 23736–23749.

    Article  CAS  PubMed  Google Scholar 

  109. Lu, F. B., Chen, D. Z., Chen, L., Hu, E. D., Wu, J. L., Li, H., Gong, Y. W., Lin, Z., Wang, X. D., Li, J., Jin, X. Y., Xu, L. M., & Chen, Y. P. (2019). Attenuation of experimental autoimmune hepatitis in mice with bone Mesenchymal stem cell-derived Exosomes carrying MicroRNA-223-3p. Molecules and Cells, 42(12), 906–918.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, L., Lu, F. B., Chen, D. Z., Wu, J. L., Hu, E. D., Xu, L. M., Zheng, M. H., Li, H., Huang, Y., Jin, X. Y., Gong, Y. W., Lin, Z., Wang, X. D., & Chen, Y. P. (2018). BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Molecular Immunology, 93, 38–46.

    Article  CAS  PubMed  Google Scholar 

  111. Wang, B., Yao, K., Huuskes, B. M., Shen, H. H., Zhuang, J., Godson, C., Brennan, E. P., Wilkinson-Berka, J. L., Wise, A. F., & Ricardo, S. D. (2016). Mesenchymal stem cells deliver exogenous MicroRNA-let7c via Exosomes to attenuate renal fibrosis. Molecular Therapy, 24(7), 1290–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, Y., Ge, W., Xu, L., Qu, C., Zhu, M., Zhang, W., et al. (2012). miR-200b is involved in intestinal fibrosis of Crohn's disease. International Journal of Molecular Medicine, 29(4), 601–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang, J., Zhou, C. Z., Zhu, R., Fan, H., Liu, X. X., Duan, X. Y., Tang, Q., Shou, Z. X., & Zuo, D. M. (2017). miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. Journal of Gastroenterology and Hepatology, 32(12), 1966–1974.

    Article  CAS  PubMed  Google Scholar 

  114. Yi, X., Wei, X., Lv, H., An, Y., Li, L., Lu, P., Yang, Y., Zhang, Q., Yi, H., & Chen, G. (2019). Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Experimental Cell Research, 383(2), 111454.

    Article  CAS  PubMed  Google Scholar 

  115. Hanna, A., & Frangogiannis, N. G. (2019). The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med, 6, 140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi, B., Wang, Y., Zhao, R., Long, X., Deng, W., & Wang, Z. (2018). Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS One, 13(2), e0191616.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ma, T., Chen, Y., Chen, Y., Meng, Q., Sun, J., Shao, L., et al. (2018). MicroRNA-132 delivered by Mesenchymal stem cell-derived Exosomes, promote angiogenesis in myocardial infarction. Stem Cells International, 2018, 3290372.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Luther, K. M., Haar, L., McGuinness, M., Wang, Y., Lynch Iv, T. L., Phan, A., et al. (2018). Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. Journal of Molecular and Cellular Cardiology, 119, 125–137.

    Article  CAS  PubMed  Google Scholar 

  119. Chen, Q., Liu, Y., Ding, X., Li, Q., Qiu, F., Wang, M., Shen, Z., Zheng, H., & Fu, G. (2020). Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Molecular and Cellular Biochemistry, 465(1–2), 103–114.

    Article  CAS  PubMed  Google Scholar 

  120. Wang, Y., Zhao, R., Liu, D., Deng, W., Xu, G., Liu, W., et al. (2018). Exosomes derived from miR-214-enriched bone marrow-derived Mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII. Oxidative Medicine and Cellular Longevity, 2018, 4971261.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Li, Y., Yang, R., Guo, B., Zhang, H., Zhang, H., Liu, S., & Li, Y. (2019). Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochemical and Biophysical Research Communications, 514(1), 323–328.

    Article  CAS  PubMed  Google Scholar 

  122. Xu, C., Hu, Y., Hou, L., Ju, J., Li, X., Du, N., et al. (2014). β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. Journal of Molecular and Cellular Cardiology, 75, 111–121.

    Article  CAS  PubMed  Google Scholar 

  123. Chen, Y., Zhao, Y., Chen, W., Xie, L., Zhao, Z. A., Yang, J., Chen, Y., Lei, W., & Shen, Z. (2017). MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Research & Therapy, 8(1), 268.

    Article  Google Scholar 

  124. Barreto, G., Manninen, M. K., & Eklund, K. (2020). Osteoarthritis and toll-like receptors: When innate immunity meets chondrocyte apoptosis. Biology (Basel), 9(4) pii: E65.

  125. Mao, G., Zhang, Z., Huang, Z., Chen, W., Huang, G., Meng, F., Zhang, Z., & Kang, Y. (2017). MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation. Osteoarthritis and Cartilage, 25(4), 521–532.

    Article  CAS  PubMed  Google Scholar 

  126. Huang, J., Chen, C., Liang, C., Luo, P., Xia, G., Zhang, L., Wang, X., Wen, Z., Cao, X., & Wu, S. (2020). Dysregulation of the Wnt signaling pathway and synovial stem cell dysfunction in osteoarthritis development. Stem Cells and Development, 29(7), 401–413.

    Article  CAS  PubMed  Google Scholar 

  127. Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., Liao, W., & Kang, Y. (2018). Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Research & Therapy, 9(1), 247.

    Article  CAS  Google Scholar 

  128. Liu, F. C., Wang, C. C., Lu, J. W., Lee, C. H., Chen, S. C., Ho, Y. J., et al. (2019). Chondroprotective effects of Genistein against osteoarthritis induced joint inflammation. Nutrients, 11(5) Pii: E1180.

  129. Jin, Z., Ren, J., & Qi, S. (2020). Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. International Immunopharmacology, 78, 105946.

    Article  CAS  PubMed  Google Scholar 

  130. Comertpay, B., & Gov, E. (2020). Identification of key biomolecules in rheumatoid arthritis through the reconstruction of comprehensive disease-specific biological networks. Autoimmunity, 3, 1–11.

    Google Scholar 

  131. Fang, Q., Zhou, C., & Nandakumar, K. S. (2020). Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators of Inflammation, 2020, 3830212.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Liu, Y., Han, Y., Qu, H., Fang, J., Ye, M., & Yin, W. (2019). Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. Journal of Clinical Laboratory Analysis, 33(7), e22953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zheng, J., Zhu, L., Iok In, I., Chen, Y., Jia, N., & Zhu, W. (2020). Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis. International Immunopharmacology, 78, 105985.

    Article  CAS  PubMed  Google Scholar 

  134. Chen, Z., Wang, H., Xia, Y., Yan, F., & Lu, Y. (2018). Therapeutic potential of Mesenchymal cell-derived miRNA-150-5p-expressing Exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. Journal of Immunology, 201(8), 2472–2482.

    Article  CAS  Google Scholar 

  135. Rikhtegar, R., Yousefi, M., Dolati, S., Kasmaei, H. D., Charsouei, S., Nouri, M., & Shakouri, S. K. (2019). Stem cell-based cell therapy for neuroprotection in stroke: A review. Journal of Cellular Biochemistry, 120(6), 8849–8862.

    Article  CAS  PubMed  Google Scholar 

  136. Xiao, Y., Geng, F., Wang, G., Li, X., Zhu, J., & Zhu, W. (2018). Bone marrow-derived mesenchymal stem cells-derived exosomes prevent oligodendrocyte apoptosis through exosomal miR-134 by targeting caspase-8. Journal of Cellular Biochemistry.

  137. Xin, H., Katakowski, M., Wang, F., Qian, J. Y., Liu, X. S., Ali, M. M., Buller, B., Zhang, Z. G., & Chopp, M. (2017). MicroRNA cluster miR-17-92 cluster in Exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke, 48(3), 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hamzei Taj, S., Kho, W., Riou, A., Wiedermann, D., & Hoehn, M. (2016). MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials, 91, 151–165.

    Article  CAS  PubMed  Google Scholar 

  139. Yang, J., Zhang, X., Chen, X., Wang, L., & Yang, G. (2017). Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids, 7, 278–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z. G., & Chopp, M. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 31(12), 2737–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Deng, Y., Chen, D., Gao, F., Lv, H., Zhang, G., Sun, X., Liu, L., Mo, D., Ma, N., Song, L., Huo, X., Yan, T., Zhang, J., & Miao, Z. (2019). Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. Journal of Biological Engineering, 13, 71.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., Shang, X., Zhang, Z. G., & Chopp, M. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 30(7), 1556–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xin, H., Wang, F., Li, Y., Lu, Q. E., Cheung, W. L., Zhang, Y., Zhang, Z. G., & Chopp, M. (2017). Secondary release of Exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with Exosomes harvested from MicroRNA 133b-overexpressing multipotent Mesenchymal stromal cells. Cell Transplantation, 26(2), 243–257.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lai, N., Wu, D., Liang, T., Pan, P., Yuan, G., Li, X., Li, H., Shen, H., Wang, Z., & Chen, G. (2020). Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. Journal of Neuroinflammation, 17(1), 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shen, H., Yao, X., Li, H., Li, X., Zhang, T., Sun, Q., Ji, C., & Chen, G. (2018). Role of Exosomes derived from miR-133b modified MSCs in an experimental rat model of Intracerebral hemorrhage. Journal of Molecular Neuroscience, 64(3), 421–430.

    Article  CAS  PubMed  Google Scholar 

  146. Theis T, Yoo M, Park CS, Chen J, Kügler S, Gibbs KM, et. al. (2017). Lentiviral delivery of miR-133b improves functional recovery after spinal cord injury in mice. Molecular Neurobiology, 54(6), 4659–4671.

  147. Li, D., Zhang, P., Yao, X., Li, H., Shen, H., Li, X., Wu, J., & Lu, X. (2018). Exosomes derived from miR-133b-modified Mesenchymal stem cells promote recovery after spinal cord injury. Frontiers in Neuroscience, 12, 845.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yu, T., Zhao, C., Hou, S., Zhou, W., Wang, B., & Chen, Y. (2019). Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Brazilian Journal of Medical and Biological Research, 52(12), e8735.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cheng, X., Zhang, G., Zhang, L., Hu, Y., Zhang, K., Sun, X., Zhao, C., Li, H., Li, Y. M., & Zhao, J. (2018). Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. Journal of Cellular and Molecular Medicine, 22(1), 261–276.

    Article  CAS  PubMed  Google Scholar 

  150. Ji, W., Jiang, W., Li, M., Li, J., & Li, Z. (2019). miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury. Biochimie., 167, 171–178.

    Article  CAS  PubMed  Google Scholar 

  151. Guo, H., Huang, B., Wang, Y., Zhang, Y., Ma, Q., & Ren, Y. (2020). Bone marrow mesenchymal stem cells-derived exosomes improve injury of hippocampal neurons in rats with depression by upregulating microRNA-26a expression. International Immunopharmacology, 82, 106285.

    Article  CAS  PubMed  Google Scholar 

  152. Zhao, L., Jiang, X., Shi, J., Gao, S., Zhu, Y., Gu, T., & Shi, E. (2019). Exosomes derived from bone marrow mesenchymal stem cells overexpressing microRNA-25 protect spinal cords against transient ischemia. The Journal of Thoracic and Cardiovascular Surgery, 157(2), 508–517.

    Article  CAS  PubMed  Google Scholar 

  153. Li, C., Li, X., Zhao, B., & Wang, C. (2020). Exosomes derived from miR-544-modified mesenchymal stem cells promote recovery after spinal cord injury. Arch Physiol Biochem, 1–7.

  154. Sun, B., Ma, Y., Wang, F., Hu, L., & Sun, Y. (2019). miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis. Stem Cell Res Ther, 10(1), 360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, M., Lin, L., Sha, C., Li, T., Zhao, D., Wei, H., Chen, Q., Liu, Y., Chen, X., Xu, W., Li, Y., & Zhu, X. (2020). Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. Laboratory Investigation, 100(3), 342–352.

    Article  CAS  PubMed  Google Scholar 

  156. Leopold, J. A. (2015). Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends in Cardiovascular Medicine, 25(4), 267–274.

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, K., Zhang, Y., Feng, W., Chen, R., Chen, J., Touyz, R. M., Wang, J., & Huang, H. (2017). Interleukin-18 enhances vascular calcification and Osteogenic differentiation of vascular smooth muscle cells through TRPM7 activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(10), 1933–1943.

    Article  CAS  PubMed  Google Scholar 

  158. Wang, Y., Ma, W. Q., Zhu, Y., Han, X. Q., & Liu, N. (2018). Exosomes Derived From Mesenchymal Stromal Cells Pretreated With Advanced Glycation End Product-Bovine Serum Albumin Inhibit Calcification of Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne), 9, 524.

    Article  Google Scholar 

  159. Ling, X., Zhang, G., Xia, Y., Zhu, Q., Zhang, J., Li, Q., Niu, X., Hu, G., Yang, Y., Wang, Y., & Deng, Z. (2020). Exosomes from human urine-derived stem cells enhanced neurogenesis via miR-26a/HDAC6 axis after ischaemic stroke. Journal of Cellular and Molecular Medicine, 24(1), 640–654.

    Article  CAS  PubMed  Google Scholar 

  160. Guo, Y., & Niu, S. (2018). MiR-25 protects PC-12 cells from H2O2 mediated oxidative damage via WNT/β-catenin pathway. The Journal of Spinal Cord Medicine, 41(4), 416–425.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All of the persons contributed to the manuscript was placed as an Author in the manuscript.

Availability of Data and Materials

In this ‘Review’ no publicly available datasets were used. All of the articles discussed were cited.

Funding

‘This work is not supported by any institution’.

Author information

Authors and Affiliations

Authors

Contributions

Prof. Dr. Zafer Cetin conducted literature surveys and prepared the main text, Fig. 1 and Table 1, Assist Prof. Gökhan Görgişen contributed the section 6, Assist. Prof. Emel Sokullu contributed to sections 2/3 and edited the manuscript, and Prof. Dr. Eyup Ilker Saygili contributed to the configuration of the manuscript.

Corresponding author

Correspondence to Zafer Cetin.

Ethics declarations

Competing Interests

This manusript is only prepared for scientific purposes and ‘There is no conflict of interests’.

Consent for Publication

All authors of the manuscript; have read and agreed the Journal BioMed Central ‘Copyright and License Policy’, have read and agreed to its content and are accountable for all aspects of the accuracy and integrity of the manuscript in accordance with ICMJE criteria and decleare that ‘The Article’ is original, has not already been published in a journal, and is not currently under consideration by another journal.

Ethics Approval and Consent to Participate

Not applicable.

Additional information

This article belongs to the Topical Collection: Special Issue on Exosomes and Microvesicles: from Stem Cell Biology to Translation in Human Diseases

Guest Editor: Giovanni Camussi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, Z., Saygili, E.I., Görgisen, G. et al. Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles. Stem Cell Rev and Rep 17, 471–501 (2021). https://doi.org/10.1007/s12015-020-10082-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10082-x

Keywords

Navigation