Skip to main content

Advertisement

Log in

Transformation of Hematopoietic Stem and Progenitor Cells by Leukemia Extracellular Vesicles: A Step Toward Leukemogenesis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Regulation of hematopoietic stem and progenitor cells (HSPCs) self-renewal, expansion, and differentiation is an inevitable process for normal hematopoiesis in the bone marrow (BM) niche, where leukemia cells are born, proliferate and occupy the microenvironment. External mediators such as extracellular vesicles (EVs) shed from leukemia cells, are one of the most important cell to cell communicators, and leading to phenotype and genotype modification and subsequently, fate of the cell. This review highlights recent evidences about the possible roles of leukemia derived-EVs on maintenance, proliferation, and death of HSPCs in a same microenvironment as leukemia cells. In addition, it focuses on mechanisms involved in the transformation of BM niche in favor of leukemia microenvironment remodeling by leukemia derived-EVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334.

    Article  CAS  Google Scholar 

  2. Sandra Pinho, Paul S. Frenette, (2019) Haematopoietic stem cell activity and interactions with the niche. Nature Reviews Molecular Cell Biology 20 (5):303-320

  3. Civin, C. I., Strauss, L., Brovall, C., Fackler, M. J., Schwartz, J., & Shaper, J. (1984). Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. The Journal of Immunology, 133(1), 157–165.

    PubMed  CAS  Google Scholar 

  4. Pellin, D., Loperfido, M., Baricordi, C., Wolock, S. L., Montepeloso, A., Weinberg, O. K., et al. (2019). A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nature Communications, 10(1), 2395.

    Article  CAS  Google Scholar 

  5. Schepers, K., Campbell, T. B., & Passegue, E. (2015). Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell, 16(3), 254–267.

  6. Griessinger, E., Anjos-Afonso, F., Pizzitola, I., Rouault-Pierre, K., Vargaftig, J., Taussig, D., et al. (2014). A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Stem Cells Translational Medicine, 3(4), 520–529.

  7. Lee, J. K., Choi, Y. L., Kwon, M., & Park, P. J. (2016). Mechanisms and Consequences of Cancer Genome Instability: Lessons from Genome Sequencing Studies. Annual Review of Pathology, 11, 283–312.

  8. Kastenhuber, E. R., & Lowe, S. W. (2017). Putting p53 in Context. Cell, 170(6), 1062–1078.

    Article  CAS  Google Scholar 

  9. Siu, K. T., Xu, Y., Swartz, K. L., Bhattacharyya, M., Gurbuxani, S., Hua, Y., et al. (2014). Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7-mediated cyclin E regulation. Molecular and Cellular Biology, 34(17), 3244–3258.

  10. Brücher, B. L. D. M., & Jamall, I. S. (2014). Cell-cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. Cellular Physiology and Biochemistry, 34(2), 213–243.

  11. Pitt, J. M., Kroemer, G., & Zitvogel, L. (2016). Extracellular vesicles: masters of intercellular communication and potential clinical interventions. The Journal of Clinical Investigation, 126(4), 1139–1143.

  12. Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., et al. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20(5), 847–856.

  13. Greening, D. W., & Simpson, R. J. (2018). Understanding extracellular vesicle diversity - current status. Expert Review of Proteomics, 15(11), 887–910.

  14. Liao, F., Tan, L., Liu, H., Wang, J., Ma, X., Zhao, B., et al. (2018). Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway. Acta Pharmacologica Sinica, 39(4), 552–560.

  15. Goloviznina, N. A., Verghese, S. C., Yoon, Y. M., Taratula, O., Marks, D. L., & Kurre, P. (2016). Mesenchymal Stromal Cell-derived Extracellular Vesicles Promote Myeloid-biased Multipotent Hematopoietic Progenitor Expansion via Toll-Like Receptor Engagement. The Journal of Biological Chemistry, 291(47), 24607–24617.

  16. Thery, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.

  17. Deatherage, B. L., & Cookson, B. T. (2012). Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infection and Immunity, 80(6), 1948–1957.

  18. Wieckowski, E., & Whiteside, T. L. (2006). Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunologic Research, 36(1–3), 247–254.

  19. Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., et al. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 183(3), 1161–1172.

  20. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., et al. (1998). Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Medicine, 4(5), 594–600.

  21. Baj-Krzyworzeka, M., Majka, M., Pratico, D., Ratajczak, J., Vilaire, G., Kijowski, J., et al. (2002). Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Experimental Hematology, 30(5), 450–459.

  22. Hess, C., Sadallah, S., Hefti, A., Landmann, R., & Schifferli, J. A. (1999). Ectosomes released by human neutrophils are specialized functional units. Journal of Immunology (Baltimore, Md: 1950). 163(8):4564-73.

  23. Sims, P. J., Wiedmer, T., Esmon, C. T., Weiss, H. J., & Shattil, S. J. (1989). Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. The Journal of Biological Chemistry, 264(29), 17049–17057.

  24. Zomer, A., Maynard, C., Verweij, F. J., Kamermans, A., Schafer, R., Beerling, E., et al. (2015). In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell, 161(5), 1046–1057.

  25. Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A., & Weaver, A. M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 6(1), 7164.

  26. Rackov, G., Garcia-Romero, N., Esteban-Rubio, S., Carrion-Navarro, J., Belda-Iniesta, C., & Ayuso-Sacido, A. (2018). Vesicle-Mediated Control of Cell Function: The Role of Extracellular Matrix and Microenvironment. Frontiers in Physiology, 9, 651.

  27. Taverna, S., Amodeo, V., Saieva, L., Russo, A., Giallombardo, M., De Leo, G., et al. (2014). Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Molecular Cancer, 13, 169.

  28. Umezu, T., Tadokoro, H., Azuma, K., Yoshizawa, S., Ohyashiki, K., & Ohyashiki, J. H. (2014). Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, 124(25), 3748–3757.

  29. Castells, M., Thibault, B., Delord, J. P., & Couderc, B. (2012). Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. International Journal of Molecular Sciences, 13(8), 9545–9571.

  30. Hopkin, K. (2016). Core Concept: Extracellular vesicles garner interest from academia and biotech. Proceedings of the National Academy of Sciences of the United States of America, 113(33), 9126–9128.

  31. Kowal, J., Tkach, M., & Thery, C. (2014). Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 29, 116–125.

  32. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.

  33. Tricarico, C., Clancy, J., & D’Souza-Schorey, C. (2017). Biology and biogenesis of shed microvesicles. Small GTPases, 8(4), 220–232.

  34. Mathivanan, S., Fahner, C. J., Reid, G. E., & Simpson, R. J. (2012). ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Research, 40(Database issue), D1241–D1244.

  35. Record, M., Subra, C., Silvente-Poirot, S., & Poirot, M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochemical Pharmacology, 81(10), 1171–1182.

  36. Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J. P., Primdal-Bengtson, B., et al. (2016). Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 113(8), E968–E977.

  37. Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends in Cell Biology, 19(2), 43–51.

  38. Yanez-Mo, M., Siljander, P. R., Andreu, Z., Zavec, A. B., Borras, F. E., Buzas, E. I., et al. (2015). Biological properties of extracellular vesicles and their physiological functions. Journal Extracell Vesicles, 4, 27066.

  39. Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 200(4), 373–383.

  40. Stolzing, A., & Grune, T. (2004). Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18(6), 743–745.

  41. Taylor, R. C., Cullen, S. P., & Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology, 9(3), 231–241.

  42. Holmgren, L., Szeles, A., Rajnavolgyi, E., Folkman, J., Klein, G., Ernberg, I., et al. (1999). Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood, 93(11), 3956–3963.

  43. Mulcahy, L. A., Pink, R. C., & Carter, D. R. F. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles, 3:https://doi.org/10.3402/jev.v3.24641.

  44. Kontopoulou, E., Strachan, S., Reinhardt, K., Kunz, F., Walter, C., Walkenfort, B., et al. (2020). Evaluation of dsDNA from extracellular vesicles (EVs) in pediatric AML diagnostics. Annals of Hematology, 99(3), 459-475 .

  45. Kunz, F., Kontopoulou, E., Reinhardt, K., Soldierer, M., Strachan, S., Reinhardt, D., et al. (2019). Detection of AML-specific mutations in pediatric patient plasma using extracellular vesicle–derived RNA. Annals of Hematology, 98(3), 595–603.

  46. Grove, C. S., & Vassiliou, G. S. (2014). Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Disease Models & Mechanisms, 7(8), 941–951.

  47. Aleem, E., & Arceci, R. J. (2015). Targeting cell cycle regulators in hematologic malignancies. Frontiers in Cell and Developmental Biology, 3, 16.

  48. Abou Zahr, A., & Borthakur, G. (2017). Emerging cell cycle inhibitors for acute myeloid leukemia. Expert Opinion on Emerging Drugs, 22(2), 137–148.

  49. Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., et al. (2002). Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. The Journal of Experimental Medicine, 195(10), 1303–1316.

  50. Kim, J. W., Wieckowski, E., Taylor, D. D., Reichert, T. E., Watkins, S., & Whiteside, T. L. (2005). Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 11(3), 1010–1020.

  51. Abdouh, M., Floris, M., Gao, Z. H., Arena, V., Arena, M., & Arena, G. O. (2019). Colorectal cancer-derived extracellular vesicles induce transformation of fibroblasts into colon carcinoma cells. Journal of Experimental & Clinical Cancer Research: CR, 38(1), 257.

  52. Song, X., Ding, Y., Liu, G., Yang, X., Zhao, R., Zhang, Y., et al. (2016). Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases. The Journal of Biological Chemistry, 291(16), 8453–8464.

  53. Borzi, C., Calzolari, L., Ferretti, A. M., Caleca, L., Pastorino, U., Sozzi, G., et al. (2019). c-Myc shuttled by tumour-derived extracellular vesicles promotes lung bronchial cell proliferation through miR-19b and miR-92a. Cell Death & Disease, 10(10), 759.

  54. Lugini, L., Valtieri, M., Federici, C., Cecchetti, S., Meschini, S., Condello, M., et al. (2016). Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget, 7(31), 50086–50098.

  55. Skog, J., Würdinger, T., Van Rijn, S., Meijer, D. H., Gainche, L., Curry, W. T. Jr., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470.

  56. Qu, J. L., Qu, X. J., Zhao, M. F., Teng, Y. E., Zhang, Y., Hou, K. Z., et al. (2009). Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 41(12), 875–80.

  57. Andrade, L. N. S., Otake, A. H., Cardim, S. G. B., da Silva, F. I., Ikoma Sakamoto, M. M., Furuya, T. K., et al. (2019). Extracellular Vesicles Shedding Promotes Melanoma Growth in Response to Chemotherapy. Scientific Reports, 9(1), 14482.

  58. Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature Cell Biology, 10(5), 619–624.

  59. Kumar, B., Garcia, M., Weng, L., Jung, X., Murakami, J. L., Hu, X., et al. (2018). Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia, 32(3), 575–587.

  60. Horiguchi, H., Kobune, M., Kikuchi, S., Yoshida, M., Murata, M., Murase, K., et al. (2016). Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms. Haematologica, 101(4), 437–447.

    Article  CAS  Google Scholar 

  61. Zhao, C., Du, F., Zhao, Y., Wang, S., & Qi, L. (2019). Acute myeloid leukemia cells secrete microRNA-4532-containing exosomes to mediate normal hematopoiesis in hematopoietic stem cells by activating the LDOC1-dependent STAT3 signaling pathway. Stem Cell Research and Therapy, 10(1), 384.

  62. Shi, X. F., Wang, H., Kong, F. X., Xu, Q. Q., Xiao, F. J., Yang, Y. F., et al. (2017). Exosomal miR-486 regulates hypoxia-induced erythroid differentiation of erythroleukemia cells through targeting Sirt1. Experimental Cell Research, 351(1), 74–81.

  63. Abdelhamed, S., Hornick, N. I., & Kurre, P. (2016). Residual HSPC in the Leukemia Microenvironment Are Reprogrammed Via Extracellular Vesicle Trafficking. American Society of Hematology.

  64. Razmkhah, F., Soleimani, M., Mehrabani, D., Karimi, M. H., & Kafi-Abad, S. A. (2015). Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells. EXCLI Journal, 14, 423–429.

  65. Razmkhah, F., Soleimani, M., Mehrabani, D., Karimi, M. H., Amini Kafi-Abad, S., Ramzi, M., et al. (2017). Leukemia microvesicles affect healthy hematopoietic stem cells. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 39(2), 1010428317692234.

  66. Razmkhah, F., Soleimani, M., Ghasemi, S., & Kafi-Abad, S. A. (2019). MicroRNA-21 over expression in umbilical cord blood hematopoietic stem progenitor cells by leukemia microvesicles. Genetics and Molecular Biology.

  67. Buscaglia, L. E., & Li, Y. (2011). Apoptosis and the target genes of microRNA-21. Chinese Journal of Cancer, 30(6), 371–380.

  68. Wu, Y., Song, Y., Xiong, Y., Wang, X., Xu, K., Han, B., et al. (2017). MicroRNA-21 (Mir-21) Promotes Cell Growth and Invasion by Repressing Tumor Suppressor PTEN in Colorectal Cancer. Cellular Physiology and Biochemistry, 43(3), 945–958.

  69. Ou, H., Li, Y., & Kang, M. (2014). Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PloS One, 9(11), e109929.

  70. Xu, L. F., Wu, Z. P., Chen, Y., Zhu, Q. S., Hamidi, S., & Navab, R. (2014). MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PloS One, 9(8), e103698.

  71. Haque, S., & Vaiselbuh, S. (2016). Leukemia-Derived Exosomes Induce Paracrine and Autocrine Cell Proliferation in Pediatric ALL. Blood, 128, 4080-.

  72. Huan, J., Hornick, N. I., Shurtleff, M. J., Skinner, A. M., Goloviznina, N. A., Roberts, C. T. Jr., et al. (2013). RNA trafficking by acute myelogenous leukemia exosomes. Cancer Research, 73(2), 918–929.

  73. Razmkhah, F., Ghasemi, S., Soleimani, M., & Amini Kafi-Abad, S. (2019). LY86, LRG1 and PDE9A genes overexpression in umbilical cord blood hematopoietic stem progenitor cells by acute myeloid leukemia (M3) microvesicles. Experimental Hematology & Oncology, 8, 23.

  74. Han, Y. C., Park, C. Y., Bhagat, G., Zhang, J., Wang, Y., Fan, J. B., et al. (2010). microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. The Journal of Experimental Medicine, 207(3), 475–489.

  75. Zhang, H.-M., Li, Q., Zhu, X., Liu, W., Hu, H., Liu, T., et al. (2016). miR-146b-5p within BCR-ABL1–positive microvesicles promotes leukemic transformation of hematopoietic cells. Cancer Research, 76(10), 2901–2911.

  76. Hornick, N. I., Doron, B., Abdelhamed, S., Huan, J., Harrington, C. A., Shen, R., et al. (2016). AML suppresses hematopoiesis by releasing exosomes that contain microRNAs targeting c-MYB. Science Signaling, 9(444), ra88.

  77. Abdelhamed, S., Butler, J. T., Doron, B., Halse, A., Nemecek, E., Wilmarth, P. A., et al. (2019). Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche. EMBO Reports, 20(7), e47546.

  78. Huan, J., Hornick, N. I., Goloviznina, N. A., Kamimae-Lanning, A. N., David, L. L., Wilmarth, P. A., et al. (2015). Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia, 29(12), 2285–2295.

  79. O’Neil, J., Tchinda, J., Gutierrez, A., Moreau, L., Maser, R. S., Wong, K. K., et al. (2007). Alu elements mediate MYB gene tandem duplication in human T-ALL. The Journal of Experimental Medicine, 204(13), 3059–3066.

  80. Jeffs, A. R., Benjes, S. M., Smith, T. L., Sowerby, S. J., & Morris, C. M. (1998). The BCR gene recombines preferentially with Alu elements in complex BCR-ABL translocations of chronic myeloid leukaemia. Human Molecular Genetics, 7(5), 767–776.

  81. Strout, M. P., Marcucci, G., Bloomfield, C. D., & Caligiuri, M. A. (1998). The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2390–2395.

  82. Balaj, L., Lessard, R., Dai, L., Cho, Y. J., Pomeroy, S. L., Breakefield, X. O., et al. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Communications, 2, 180.

  83. Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., et al. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. International Journal of Cancer, 124(1), 81–87.

  84. Wherley, J., Kamimae-Lanning, A. N., Goloviznina, N. A., Huan, J., & Kurre, P. (2014). Induction of DNA Damage Response and Repair Pathways in HSPCs Following Exposure to AML Exosomes. American Society of Hematology.

  85. Zhu, X., You, Y., Li, Q., Zeng, C., Fu, F., Guo, A., et al. (2014). BCR-ABL1-positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia, 28(8), 1666–1675.

  86. Eldh, M., Ekstrom, K., Valadi, H., Sjostrand, M., Olsson, B., Jernas, M., et al. (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PloS One, 5(12), e15353.

Download references

Acknowledgements

We cordially thank the Iranian Research Assist Company for designing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Razmkhah.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samii, A., Razmkhah, F. Transformation of Hematopoietic Stem and Progenitor Cells by Leukemia Extracellular Vesicles: A Step Toward Leukemogenesis. Stem Cell Rev and Rep 16, 1081–1091 (2020). https://doi.org/10.1007/s12015-020-09975-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09975-8

Keywords

Navigation