Skip to main content

Advertisement

Log in

Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The current understanding and effective treatment of liver disease is far from satisfactory. Liver organoids and liver buds (LBs) transforming cell culture from two dimensions(2D) to three dimensions(3D) has provided infinite possibilities for stem cells to use in clinic. Recent technological advances in the 3D culture have shown the potentiality of liver organoids and LBs as the promising tool to model in vitro liver diseases. The induced LBs and liver organoids provide a platform for cell-based therapy, liver disease models, liver organogenesis and drugs screening. And its genetic heterogeneity supplies a way for the realization of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Loessner, D., Stok, K. S., Lutolf, M. P., et al. (2010). Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells. BIOMATERIALS., 31, 8494–8506.

    CAS  PubMed  Google Scholar 

  2. Wong, D. J., Khavari, P. A., Chow, J. M., et al. (2010). Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nature Medicine, 16, 1450–1455.

    PubMed  PubMed Central  Google Scholar 

  3. Ng, S. S., Saeb-Parsy, K., Blackford, S., et al. (2018). Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. BIOMATERIALS., 182, 299–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Peterson, S. E., & Loring, J. F. (2014). Genomic instability in pluripotent stem cells: Implications for clinical applications. The Journal of Biological Chemistry, 289, 4578–4584.

    CAS  PubMed  Google Scholar 

  5. Lund, R. J., Närvä, E., & Lahesmaa, R. (2012). Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews. Genetics, 13, 732–744.

    CAS  PubMed  Google Scholar 

  6. Knouse, K. A., Lopez, K. E., Bachofner, M., et al. (2018). Chromosome segregation Fidelity in epithelia requires tissue architecture. CELL., 175, 200–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Takebe, T., Sekine, K., Kimura, M., et al. (2017). Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Reports, 21, 2661–2670.

    CAS  PubMed  Google Scholar 

  8. Camp, J. G., & Sekine, K. (2017). Gerber T, et al. NATURE: Multilineage communication regulates human liver bud development from pluripotency.

    Google Scholar 

  9. Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. SCIENCE., 345, 1247125.

    PubMed  Google Scholar 

  10. Li, M., & Izpisua Belmonte, J. C. (2019). Organoids — Preclinical models of human disease. The New England Journal of Medicine., 380, 569–579.

    PubMed  Google Scholar 

  11. Takebe, T., & Wells, J. M. (2019). Organoids by design. SCIENCE., 364, 956–959.

    CAS  PubMed  Google Scholar 

  12. Barker, N., van Es, J. H., Kuipers, J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. NATURE., 449, 1003–1007.

    CAS  PubMed  Google Scholar 

  13. de Lau, W., Barker, N., Low, T. Y., et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. NATURE., 476, 293–297.

    PubMed  Google Scholar 

  14. Huch, M., & Koo, B. K. (2015). Modeling mouse and human development using organoid cultures. DEVELOPMENT., 142, 3113–3125.

    CAS  PubMed  Google Scholar 

  15. Takasato, M., Er, P. X., Chiu, H. S., et al. (2015). Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. NATURE., 526, 564–568.

    CAS  PubMed  Google Scholar 

  16. Schwank, G., Koo, B. K., Sasselli, V., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658.

    CAS  PubMed  Google Scholar 

  17. Boj, S. F., Hwang, C., Baker, L. A., et al. (2015). Organoid models of human and mouse ductal pancreatic Cancer. CELL., 160, 324–338.

    CAS  PubMed  Google Scholar 

  18. van de Wetering, M., Francies, H. E., Francis, J. M., et al. (2015). Prospective derivation of a living organoid biobank of colorectal Cancer patients. CELL., 161, 933–945.

    PubMed  PubMed Central  Google Scholar 

  19. Lancaster, M. A., Renner, M., Martin, C., et al. (2013). Cerebral organoids model human brain development and microcephaly. NATURE., 501, 373–379.

    CAS  PubMed  Google Scholar 

  20. Forbester, J. L., Goulding, D., Vallier, L., et al. (2015). Interaction of salmonella enterica Serovar typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infection and Immunity, 83, 2926–2934.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McCracken, K. W., Catá, E. M., Crawford, C. M., et al. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. NATURE., 516, 400–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemos, D. R., McMurdo, M., Karaca, G., Wilflingseder, J., Leaf, I. A., Gupta, N., Miyoshi, T., Susa, K., Johnson, B. G., Soliman, K., Wang, G., Morizane, R., Bonventre, J. V., & Duffield, J. S. (2018). Interleukin-1 Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis. Journal of the American Society of Nephrology, 29(6), 1690–1705.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fong, E. L. S., Toh, T. B., Lin, Q. X. X., Liu, Z., Hooi, L., Mohd Abdul Rashid, M. B., Benoukraf, T., Chow, E. K.-H., Huynh, T. H., & Yu, H. (2018). Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials, 159, 229–240.

    CAS  PubMed  Google Scholar 

  24. Kanteti, R., Mirzapoiazova, T., Riehm, J. J., Dhanasingh, I., Mambetsariev, B., Wang, J., Kulkarni, P., Kaushik, G., Seshacharyulu, P., Ponnusamy, M. P., Kindler, H. L., Nasser, M. W., Batra, S. K., & Salgia, R. (2018). Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biology & Therapy, 19(4), 316–327.

    CAS  Google Scholar 

  25. Takebe, T., Sekine, K., Enomura, M., et al. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. NATURE., 499, 481–484.

    CAS  PubMed  Google Scholar 

  26. Shinozawa, T., Yoshikawa, H. Y., & Takebe, T. (2016). Reverse engineering liver buds through self-driven condensation and organization towards medical application. Developmental Biology, 420, 221–229.

    CAS  PubMed  Google Scholar 

  27. Li, J., Xing, F., Chen, F., et al. (2018). Functional 3D human liver bud assembled from MSC-derived multiple liver cell lineages. Cell Transplantation, 1504309615.

  28. Koui, Y., Kido, T., Ito, T., et al. (2017). An in vitro human liver model by iPSC-derived parenchymal and non-parenchymal cells. Stem Cell Reports, 9, 490–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, R. R., Koido, M., Tadokoro, T., et al. (2018). Human iPSC-derived posterior gut progenitors are expandable and capable of forming gut and liver organoids. Stem Cell Reports, 10, 780–793.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ayabe, H., Anada, T., Kamoya, T., et al. (2018). Optimal hypoxia regulates human iPSC-derived liver bud differentiation through intercellular TGFB signaling. Stem Cell Reports, 11, 306–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ang, L. T., Tan, A. K. Y., Autio, M. I., et al. (2018). A roadmap for human liver differentiation from pluripotent stem cells. Cell Reports, 22, 2190–2205.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takebe, T., Enomura, M., Yoshizawa, E., et al. (2015). Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell, 16, 556–565.

    CAS  PubMed  Google Scholar 

  33. Takebe, T., Zhang, R., Koike, H., et al. (2014). Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature Protocols, 9, 396–409.

    CAS  PubMed  Google Scholar 

  34. Chen, K. G., Mallon, B. S., McKay, R. D. G., et al. (2014). Human pluripotent stem cell culture: Considerations for maintenance, expansion, and therapeutics. Cell Stem Cell, 14, 13–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cherry, A. B. C., & Daley, G. Q. (2012). Reprogramming cellular identity for regenerative medicine. CELL., 148, 1110–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lemaigre, F. P. (2009). Mechanisms of liver development: Concepts for understanding liver disorders and Design of Novel Therapies. GASTROENTEROLOGY., 137, 62–79.

    CAS  PubMed  Google Scholar 

  37. Lin, Y., Fang, Z.-P., Liu, H.-J., Wang, L.-J., Cheng, Z., Tang, N., Li, T., Liu, T., Han, H.-X., Cao, G., Liang, L., Ding, Y.-Q., & Zhou, W.-J. (2017). HGF/R-spondin1 rescues liver dysfunction through the induction of Lgr5+ liver stem cells. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01341-6.

  38. McLin, V. A., Rankin, S. A., & Zorn, A. M. (2007). Repression of Wnt/ -catenin signaling in the anterior endoderm is essential for liver and pancreas development. DEVELOPMENT., 134, 2207–2217.

    CAS  PubMed  Google Scholar 

  39. Li, C., Wu, X., Tong, J., et al. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy, 6.

  40. Secunda, R., Vennila, R., Mohanashankar, A. M., et al. (2015). Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: A comparative study. CYTOTECHNOLOGY., 67, 793–807.

    CAS  PubMed  Google Scholar 

  41. Uezumi, A., Ojima, K., Fukada, S., et al. (2006). Functional heterogeneity of side population cells in skeletal muscle. BIOCHEM BIOPH RES CO., 341, 864–873.

    CAS  Google Scholar 

  42. Laino, G., Graziano, A., D'Aquino, R., et al. (2006). An approachable human adult stem cell source for hard-tissue engineering. Journal of Cellular Physiology, 206, 693–701.

    CAS  PubMed  Google Scholar 

  43. Santhagunam, A., Santos, F. D., Madeira, C., et al. (2014). Isolation and ex vivo expansion of synovial mesenchymal stromal cells for cartilage repair. CYTOTHERAPY., 16, 440–453.

    CAS  PubMed  Google Scholar 

  44. Frausin, S., Viventi, S., Verga Falzacappa, L., et al. (2015). Wharton's jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochemica, 117, 329–338.

    CAS  PubMed  Google Scholar 

  45. Al-Nbaheen, M., Vishnubalaji, R., Ali, D., et al. (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Reviews and Reports, 9, 32–43.

    CAS  Google Scholar 

  46. Centeno, C. J., Al-Sayegh, H., Freeman, M. D., et al. (2016). A multi-center analysis of adverse events among two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic conditions. International Orthopaedics, 40, 1755–1765.

    PubMed  Google Scholar 

  47. English, K. (2013). Mechanisms of mesenchymal stromal cell immunomodulation. Immunology and Cell Biology, 91, 19–26.

    CAS  PubMed  Google Scholar 

  48. Dahl, J., Duggal, S., Coulston, N., et al. (2008). Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. The International Journal of Developmental Biology., 52, 1033–1042.

    CAS  PubMed  Google Scholar 

  49. Jeon, Y., Kim, J., Cho, J. H., et al. (2016). Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy. Journal of Cellular Biochemistry, 117, 1112–1125.

    CAS  PubMed  Google Scholar 

  50. Heo, J. S., Choi, Y., Kim, H. S., et al. (2016). Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. International Journal of Molecular Medicine, 37, 115–125.

    PubMed  Google Scholar 

  51. Hass, R., Kasper, C., Böhm, S., et al. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell communication and signaling : CCS., 9, 12.

    CAS  Google Scholar 

  52. Si Tayeb, K., Noto, F. K., Nagaoka, M., et al. (2010). Highly efficient generation of human hepatocyte–like cells from induced pluripotent stem cells. HEPATOLOGY., 51, 297–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fong, E. L. S., Harrington, D. A., Farach-Carson, M. C., & Yu, H. (2016). Heralding a new paradigm in 3D tumor modeling. Biomaterials, 108, 197–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, X., Liu, S., Wang, Y., Hu, H., Li, L., Wu, Y., Cao, D., Cai, Y., Zhang, J., & Zhang, X. (2019). Interleukin-22 regulates the homeostasis of the intestinal epithelium during inflammation. International Journal of Molecular Medicine, 43(4), 1657–1668.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huch, M., Dorrell, C., Boj, S. F., et al. (2013). In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. NATURE., 494, 247–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Broutier, L., Andersson-Rolf, A., Hindley, C. J., et al. (2016). Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 11, 1724–1743.

    CAS  PubMed  Google Scholar 

  57. Fiorotto, R., Amenduni, M., Mariotti, V., et al. (2018). Liver diseases in the dish: iPSC and organoids as a new approach to modeling liver diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.

  58. Tian, M., Neil, J. R., & Schiemann, W. P. (2011). Transforming growth factor-β and the hallmarks of cancer. Cellular Signalling, 23, 951–962.

    CAS  PubMed  Google Scholar 

  59. Bierie, B., & Moses, H. L. (2010). Transforming growth factor beta (TGF-β) and inflammation in cancer. CYTOKINE GROWTH F R., 21, 49–59.

    CAS  Google Scholar 

  60. Vascular Endothelial Growth Factor.

  61. Wang, Y., Wang, H., Deng, P., et al. (2018). In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab on a Chip, 18, 3606–3616.

    CAS  PubMed  Google Scholar 

  62. Broutier, L., Mastrogiovanni, G., Verstegen, M. M., et al. (2017). Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature Medicine, 23, 1424–1435.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kruitwagen, H. S., Oosterhoff, L. A., Vernooij, I. G. W. H., et al. (2017). Long-term adult feline liver organoid cultures for disease modeling of hepatic steatosis. Stem Cell Reports, 8, 822–830.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nie, Y., Zheng, Y., Miyakawa, K., et al. (2018). Recapitulation of hepatitis B virus–host interactions in liver organoids from human induced pluripotent stem cells. EBIOMEDICINE., 35, 114–123.

    PubMed  PubMed Central  Google Scholar 

  65. Takebe, T., Sekine, K., Kimura, M., et al. (2017). Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Reports, 21, 2661–2670.

    CAS  PubMed  Google Scholar 

  66. Takebe, T., Sekine, K., Enomura, M., et al. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. NATURE., 499, 481–484.

    CAS  PubMed  Google Scholar 

  67. Ang, L. T., Tan, A. K. Y., Autio, M. I., et al. (2018). A roadmap for human liver differentiation from pluripotent stem cells. Cell Reports, 22, 2190–2205.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Spence, J. R., Mayhew, C. N., Rankin, S. A., et al. (2010). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. NATURE., 470, 105–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tremblay, K. D., & Zaret, K. S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Developmental Biology, 280, 87–99.

    CAS  PubMed  Google Scholar 

  70. Vyas, D., Baptista, P. M., Brovold, M., et al. (2018). Self-assembled liver organoids recapitulate hepatobiliary organogenesisin vitro. HEPATOLOGY., 67, 750–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Andersson, E. R., Chivukula, I. V., Hankeova, S., et al. (2018). Mouse model of Alagille syndrome and mechanisms of Jagged1 missense mutations. GASTROENTEROLOGY., 154, 1080–1095.

    CAS  PubMed  Google Scholar 

  72. Huch, M., Gehart, H., van Boxtel, R., et al. (2015). Long-term culture of genome-stable bipotent stem cells from adult human liver. CELL., 160, 299–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cheon, D. J., & Orsulic, S. (2011). Mouse models of cancer. Annual Review of Pathology, 6, 95–119.

    CAS  PubMed  Google Scholar 

  74. Caponigro, G., & Sellers, W. R. (2011). Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews. Drug Discovery, 10, 179–187.

    CAS  PubMed  Google Scholar 

  75. Trepo, C., Chan, H. L., & Lok, A. (2014). Hepatitis B virus infection. LANCET., 384, 2053–2063.

    CAS  PubMed  Google Scholar 

  76. Liang, T. J., Block, T. M., McMahon, B. J., et al. (2015). Present and future therapies of hepatitis B: From discovery to cure. HEPATOLOGY., 62, 1893–1908.

    PubMed  PubMed Central  Google Scholar 

  77. Pitera, J. E., Woolf, A. S., Basson, M. A., et al. (2012). Sprouty1 haploinsufficiency prevents renal agenesis in a model of Fraser syndrome. Journal of the American Society of Nephrology : JASN., 23, 1790–1796.

    CAS  PubMed  Google Scholar 

  78. Chen, Y., Huang, S. X., de Carvalho, A. L. R. T., et al. (2017). A three-dimensional model of human lung development and disease from pluripotent stem cells. Nature Cell Biology, 19, 542–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schutte, M., Fox, B., Baradez, M., et al. (2011). Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. ASSAY DRUG DEV TECHN., 9, 475–486.

    CAS  Google Scholar 

  80. Berthiaume, F., Moghe, P. V., Toner, M., et al. (1996). Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: Hepatocytes cultured in a sandwich configuration. The FASEB Journal, 10, 1471–1484.

    CAS  PubMed  Google Scholar 

  81. Fu, D., Wakabayashi, Y., Lippincott-Schwartz, J., et al. (2011). Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proceedings of the National Academy of Sciences., 108, 1403–1408.

    CAS  Google Scholar 

  82. Dunn, J. C., Tompkins, R. G., & Yarmush, M. L. (1991). Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnology Progress, 7, 237–245.

    CAS  PubMed  Google Scholar 

  83. Kern, A., Bader, A., Pichlmayr, R., et al. (1997). Drug metabolism in hepatocyte sandwich cultures of rats and humans. Biochemical Pharmacology, 54, 761–772.

    CAS  PubMed  Google Scholar 

  84. Schyschka, L., Sánchez, J. J. M., Wang, Z., et al. (2013). Hepatic 3D cultures but not 2D cultures preserve specific transporter activity for acetaminophen-induced hepatotoxicity. Archives of Toxicology, 87, 1581–1593.

    CAS  PubMed  Google Scholar 

  85. Kimoto, E., Walsky, R., Zhang, H., et al. (2012). Differential modulation of cytochrome P450 activity and the effect of 1-Aminobenzotriazole on hepatic transport in Sandwich-cultured human hepatocytes. Drug Metabolism and Disposition, 40, 407–411.

    CAS  PubMed  Google Scholar 

  86. Xu, J. J., Henstock, P. V., Dunn, M. C., et al. (2008). Cellular imaging predictions of clinical drug-induced liver injury. Toxicological Sciences, 105, 97–105.

    CAS  PubMed  Google Scholar 

  87. Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. NATURE., 428, 487–492.

    CAS  PubMed  Google Scholar 

  88. Du, Y., Han, R., Wen, F., et al. (2008). Synthetic sandwich culture of 3D hepatocyte monolayer. BIOMATERIALS., 29, 290–301.

    CAS  PubMed  Google Scholar 

  89. Haycock JW. 3D cell culture: a review of current approaches and techniques. Methods in molecular biology (Clifton, N.J.). 2011;695:1.

  90. Ramaiahgari, S. C., den Braver, M. W., Herpers, B., et al. (2014). A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Archives of Toxicology.

  91. Au, S. H. (2014). Chamberlain MD, Mahesh S, et al. Hepatic organoids for microfluidic drug screening. LAB CHIP., 14, 3290.

    CAS  PubMed  Google Scholar 

  92. Saheli, M., Sepantafar, M., Pournasr, B., et al. (2018). Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. Journal of Cellular Biochemistry, 119, 4320–4333.

    CAS  PubMed  Google Scholar 

  93. Ramachandran, S. D., Schirmer, K., Münst, B., et al. (2015). In vitro generation of functional liver organoid-like structures using adult human cells. PLoS One, 10, e139345.

    Google Scholar 

  94. Sendi H, Mead I, Wan M, et al. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling. PLOS ONE. 2018;13:e200847.

    PubMed  PubMed Central  Google Scholar 

  95. Dijkstra, K. K., Cattaneo, C. M., Weeber, F., et al. (2018). Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. CELL., 174, 1586–1598.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Palucka, A. K., & Coussens, L. M. (2016). The basis of Oncoimmunology. CELL., 164, 1233–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Neal, J. T., Li, X., Zhu, J., et al. (2018). Organoid modeling of the tumor immune microenvironment. CELL., 175, 1972–1988.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yanagi, Y., Nakayama, K., Taguchi, T., et al. (2017). In vivo and ex vivo methods of growing a liver bud through tissue connection. SCI REP-UK., 7.

  99. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  100. Borst, P. (2012). Cancer drug pan-resistance: Pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biology, 2, 120066.

    PubMed  PubMed Central  Google Scholar 

  101. Vlachogiannis, G., Hedayat, S., Vatsiou, A., et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. SCIENCE., 359, 920–926.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. van de Wetering, M., Francies, H. E., Francis, J. M., et al. (2015). Prospective derivation of a living organoid biobank of colorectal Cancer patients. CELL., 161, 933–945.

    PubMed  PubMed Central  Google Scholar 

  103. Boj, S. F., Hwang, C., Baker, L. A., et al. (2015). Organoid models of human and mouse ductal pancreatic Cancer. CELL., 160, 324–338.

    CAS  PubMed  Google Scholar 

  104. Gao, D., Vela, I., Sboner, A., et al. (2014). Organoid cultures derived from patients with advanced prostate Cancer. CELL., 159, 176–187.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sachs, N., de Ligt, J., Kopper, O., et al. (2018). A living biobank of breast Cancer organoids captures disease heterogeneity. CELL., 172, 373–386.

    CAS  PubMed  Google Scholar 

  106. Skardal, A., Devarasetty, M., Rodman, C., et al. (2015). Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Annals of Biomedical Engineering, 43, 2361–2373.

    PubMed  PubMed Central  Google Scholar 

  107. Li, L., Knutsdottir, H., Hui, K., et al. (2019). Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight., 4.

  108. Asai, A., Aihara, E., Watson, C., et al. (2017). Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. DEVELOPMENT., 144, 1056–1064.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Peng, W. C., Logan, C. Y., Fish, M., et al. (2018). Inflammatory Cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. CELL., 175, 1607–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Saheli, M., Sepantafar, M., Pournasr, B., et al. (2018). Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. Journal of Cellular Biochemistry, 119, 4320–4333.

    CAS  PubMed  Google Scholar 

  111. Sepantafar, M., Maheronnaghsh, R., Mohammadi, H., et al. (2017). Engineered hydrogels in Cancer therapy and diagnosis. Trends in Biotechnology, 35, 1074–1087.

    CAS  PubMed  Google Scholar 

  112. Caliari, S. R., & Burdick, J. A. (2016). A practical guide to hydrogels for cell culture. Nature Methods, 13, 405–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, Y., Feng, J., Zhao, S., Han, L., Yang, H., Lin, Y., & Rong, Z. (2018). Long-Term Engraftment Promotes Differentiation of Alveolar Epithelial Cells from Human Embryonic Stem Cell Derived Lung Organoids. Stem Cells and Development, 27(19), 1339–1349.

    CAS  PubMed  Google Scholar 

  114. Guye, P., Ebrahimkhani, M. R., Kipniss, N., Velazquez, J. J., Schoenfeld, E., Kiani, S., Griffith, L. G., & Weiss, R. (2016). Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nature Communications, 7(1). https://doi.org/10.1038/ncomms10243.

Download references

Acknowledgements

We thank Dr. Xiaoping Xu and Yuan Chen for help in discussion on field liver bud and organoid.

Availability of Data and Materials

Not applicable.

Funding

This work was supported by the National Natural Science Foundation of China (81470875), Science and Technology Planning Project of Guangdong Province (2015B020229002, 2014B020227002), and the Natural Science Foundation of Guangdong Province (2014A030312013).

Author information

Authors and Affiliations

Authors

Contributions

Weng Jun conceptualized the discussions. Fanhong Zeng wrote the manuscript under the supervision of Gao Yi. Yue Zhang and Xu Han edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Weng or Yi Gao.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fanhong Zeng, Yue Zhang, Xu Han, Jun Weng, and Yi Gao are co-authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Zhang, Y., Han, X. et al. Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application. Stem Cell Rev and Rep 15, 774–784 (2019). https://doi.org/10.1007/s12015-019-09909-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09909-z

Keywords

Navigation