Skip to main content

Advertisement

Log in

Effects of VEGF + Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Premature ovarian insufficiency (POI), a fertility disorder affecting women under 40 years of age, is characterized by early loss of ovarian function. This study was aimed to maintain ovarian function in POI animal models by mesenchymal stem cells (MSCs) transplantation with/without the supplementation of platelet-rich plasma (PRP). Adipose tissue-derived MSCs were isolated from inbred rats (Fisher-344), and constitutive expression of both VEGF and GFP were maintained by transfection with plasmids, pVEGF and pGFP-N. PRP was derived from the blood of healthy untreated rats. A total of 60 rats were divided into 5 groups of 12 rats in each. First group was kept as untreated-control (Control), and POI model was induced in Fisher-344 rats by cyclophosphamide in the next four groups. Second group was kept as sham-operated-control (Sham). MSC, PRP and MSC+ PRP-treated groups were transplanted following the validation of POI model in rats. After 2 months following the transplantation, anti-mullerian-hormone (AMH) and oestradiol (E2) blood levels were measured. Follicles were evaluated after hematoxylin-eosin staining, and the immunofluorescence staining and gene expression analyses were performed to show the ovarian regeneration. The follicular count was improved after MSC- and MSC + PRP-treatment to 63% of Control-group and significantly higher than that in Sham-group, but a significant increase was not observed in PRP-group. Higher AMH and E2 levels were measured in MSC + PRP than in Sham-group, and CXCL12, BMP-4, TGF-β and IGF-1 expressions were also increased. This study showed MSCs +/-PRP transplantation after POI supports recovery of the follicular count and function. For ovarian recovery, a single administration of PRP was found not sufficient. Although MSC treatment increased follicular regeneration, better results were obtained in the co-transplantation of MSCs and PRP. These results might be promising for follicular regeneration in POI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMH:

Anti-mullerian-hormone

AT-MSCs:

Adipose tissue-derived mesenchymal stem cells

bFGF:

Basic fibroblast growth factor

BMP-4:

Bone morphogenetic protein 4

CNTF:

Ciliary neurotropic factor

CXCL12:

C-X-C motif chemokine ligand 12

CYP19A:

Cytochrome P450 aromatase

R:

Pearson product-moment correlation coefficient

E2 :

Oestradiol

FBS:

Foetal bovine serum

G3PDH:

Glyceraldehyde 3-phosphate dehydrogenase

GDF9:

Growth Differentiation factor 9

GFP:

Green fluorescent protein

GV:

Germinal vesicle

H&E:

Hematoxylin and Eosin

IGF-1:

Insulin-like growth factor 1

IL-10:

Interleukin 10

IL1b:

Interleukin 1b

KGF:

Keratinocyte growth factor

KL:

Kit-ligand

LIF:

Leukemia inhibitory factor

MSCs:

Mesenchymal stem cells

OSCs:

Oogonial stem cells

p:

Probability

PCNA:

Proliferating cell nuclear antigen

POI:

Premature ovarian insufficiency

PRP:

Platelet-rich plasma

TGF-β:

Transforming growth factor beta 1

TRAIL:

TNF-related apoptosis-inducing ligand

VEGF:

Vascular endothelial growth factor

VSEL:

Very small embryonic-like stem cells

References

  1. Woad, K. J., Watkins, W. J., Prendergast, D., & Shelling, A. N. (2006). The genetic basis of premature ovarian failure. Australian and New Zealand Journal of Obstetrics and Gynaecology, 46, 242–244.

    Article  PubMed  Google Scholar 

  2. Shelling, A. N. (2010). Premature ovarian failure. Reproduction, 140, 633–641.

    Article  CAS  Google Scholar 

  3. Sheikhansari, G., Aghebati-Maleki, L., Nouri, M., Jadidi-Niaragh, F., & Yousefi, M. (2018). Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomedicine & Pharmacotherapy, 102, 254–262.

    Article  CAS  Google Scholar 

  4. Sukur, Y. E., Kivancli, I. B., & Ozmen, B. (2014). Ovarian aging and premature ovarian failure. Journal of The Turkish-German Gynecological Association, 15, 190–196.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bedoschi, G., Navarro, P. A., & Oktay, K. (2016). Chemotherapy-induced damage to ovary: Mechanisms and clinical impact. Future Oncology, 2, 2333–2344.

    Article  CAS  Google Scholar 

  6. Soleimani, R., Heytens, E., Darzynkiewicz, Z., & Oktay, K. (2011). Mechanisms of chemotherapy-induced human ovarian aging: Double strand DNA breaks and microvascular compromise. Aging, 3, 782–793.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou, L., Xie, Y., Li, S., et al. (2017). Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR signaling pathway in vivo. Journal of Ovarian Research, 10(1), 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuksel, A., Bildik, G., Senbabaoglu, F., et al. (2015). The magnitude of gonadotoxicity of chemotherapy drugs on ovarian follicles and granulosa cells varies depending upon the category of the drugs and the type of granulosa cells. Human Reproduction, 30, 2926–2935.

    CAS  PubMed  Google Scholar 

  9. Galvez-Martin, P., Sabata, R., Verges, J., Zugaza, J. L., Ruiz, A., & Clares, B. (2016). Mesenchymal stem cells as therapeutics agents: Quality and environmental regulatory aspects. Stem Cells International, 2016, 9783408.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qiu, P., Bai, Y., Pan, S., Li, W., Liu, W., & Hua, J. (2013). Gender depended potentiality of differentiation of human umbilical cord mesenchymal stem cells into oocyte-like cells in vitro. Cell Biochemistry and Function, 31, 365–373.

    Article  CAS  PubMed  Google Scholar 

  11. Bukovsky, A. (2011). Immune maintenance of self in morphostasis of distinct tissues, tumor growth, and regenerative medicine. Scandinavian Journal of Immunology, 73, 159–189.

    Article  CAS  PubMed  Google Scholar 

  12. Pourgholaminejad, A., Aghdami, N., Baharvand, H., & Moazzeni, S. M. (2016). The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine, 85, 51–60.

    Article  CAS  PubMed  Google Scholar 

  13. Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9, 11–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gobbi, A., & Fishman, M. (2016). Platelet-rich plasma and bone marrow-derived mesenchymal stem cells in sports medicine. Sports Medicine and Arthroscopy Review, 24, 69–73.

    Article  PubMed  Google Scholar 

  15. Sills, E. S., Rickers, N. S., Li, X., & Palermo, G. D. (2018). First data on in vitro fertilization and blastocyst formation after intraovarian injection of calcium gluconate-activated autologous platelet rich plasma. Gynecological Endocrinology, 2018, 1–5.

    Google Scholar 

  16. Wang, S., Yu, L., Sun, M., et al. (2013). The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. BioMed Research International, 2013, 690491.

    PubMed  PubMed Central  Google Scholar 

  17. Liu, T., Huang, Y., Guo, L., Cheng, W., & Zou, G. (2012). CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. International Journal of Medical Sciences, 9, 592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson, J., Bagley, J., Skaznik-Wikiel, M., et al. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell, 122, 303–315.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, H. J., Selesniemi, K., Niikura, Y., et al. (2007). Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. Journal of Clinical Oncology, 25, 3198–3204.

    Article  CAS  PubMed  Google Scholar 

  20. Santiquet, N., Vallières, L., Pothier, F., Sirard, M. A., Robert, C., & Richard, F. (2012). Transplanted bone marrow cells do not provide new oocytes but rescue fertility in female mice following treatment with chemotherapeutic agents. Cellular Reprogramming, 14, 123–129.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Z., Wang, Y., Yang, T., Li, J., & Yang, X. (2017). Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Research & Therapy, 8, 11.

    Article  CAS  Google Scholar 

  22. Sun, M., Wang, S., Li, Y., et al. (2013). Adipose-derived stem cells improved mouse ovary function after hemotherapy-induced ovary failure. Stem Cell Research & Therapy, 4, 80.

    Article  CAS  Google Scholar 

  23. Takehara, Y., Yabuuchi, A., Ezoe, K., et al. (2013). The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Laboratory Investigation, 93, 181–193.

    Article  CAS  PubMed  Google Scholar 

  24. Demirayak, B., Yüksel, N., Çelik, O. S., et al. (2016). Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury. Experimental Eye Research, 151, 227–235.

    Article  CAS  PubMed  Google Scholar 

  25. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Kortenbach, I., Marini, F., & Krause, D. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  26. Ozbek, E., Adas, G., Otunctemur, A., et al. (2015). Role of mesenchymal stem cells transfected with vascular endothelial growth factor in maintaining renal structure and function in rats with unilateral ureteral obstruction. Experimental and Clinical Transplantation, 13, 262–272.

    PubMed  Google Scholar 

  27. Öksüz, S., Alagöz, M. Ş., Karagöz, H., et al. (2015). Comparison of treatments with local mesenchymal stem cells and mesenchymal stem cells with increased vascular endothelial growth factor expression on irradiation injury of expanded skin. Annals of Plastic Surgery, 75, 219–230.

    Article  CAS  PubMed  Google Scholar 

  28. Adas, G., Koc, B., Adas, M., et al. (2016). Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbeck's Archives of Surgery, 401, 725–740.

    Article  PubMed  Google Scholar 

  29. Nagata, M. J., Messora, M. R., Furlaneto, F. A., et al. (2010). Effectiveness of two methods for preparation of autologous platelet-rich plasma: An experimental study in rabbits. European Journal of Dentistry, 4, 395–402.

    PubMed  PubMed Central  Google Scholar 

  30. Cakici, C., Buyrukcu, B., Duruksu, G., et al. (2013). Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. BioMed Research International, 2013, 529589.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun, X., Su, Y., He, Y., et al. (2015). New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators. Cell Cycle, 14, 721–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Flaws, J. A., Abbud, R., Mann, R. J., et al. (1997). Chronically elevated luteinizing hormone depletes primordial follicles in the mouse ovary. Biological Reproduction, 57, 1233–1237.

    Article  CAS  Google Scholar 

  33. Pedersen, T. (1970). Determination of follicle growth rate in the ovary of the immature mouse. Journal of Reproduction and Fertility, 21, 81–93.

    Article  CAS  PubMed  Google Scholar 

  34. Detre, S., Saclani Jotti, G., & Dowsett, M. A. J. (1995). A "quickscore" method for immunohistochemical semiquantitation: Validation for oestrogen receptor in breast carcinomas. Clinical Pathology, 48, 876–878.

    Article  CAS  Google Scholar 

  35. Epstein, R. J. (1990). Drug-induced DNA damage and tumor chemosensitivity. Journal of Clinical Oncology, 8, 2062–2084.

    Article  CAS  PubMed  Google Scholar 

  36. Kilic, S., Pinarli, F., Ozogul, C., Tasdemir, N., Naz Sarac, G., & Delibasi, T. (2014). Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecological Endocrinology, 30, 135–140.

    Article  CAS  PubMed  Google Scholar 

  37. Song, D., Zhong, Y., Qian, C., et al. (2016). Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model. BioMed Research International, 2016, 2517514.

    PubMed  PubMed Central  Google Scholar 

  38. Kerr, J. B., Brogan, L., Myers, M., et al. (2012). The primordial follicle reserve is not renewed after chemical or gamma-irradiation mediated depletion. Reproduction, 143, 469–476.

    Article  CAS  PubMed  Google Scholar 

  39. Lei, L., & Spradling, A. C. (2013). Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proceedings of the National Academy of Sciences, 110, 8585–8590.

    Article  Google Scholar 

  40. Yuan, J., Zhang, D., Wang, L., et al. (2013). No evidence for neo-oogenesis may link to ovarian senescence in adult monkey. Stem Cells, 31, 2538–2550.

    Article  CAS  PubMed  Google Scholar 

  41. Virant-Klun, I., Skutella, T., Bhartiya, D., & Jin, X. (2013). Stem cells in reproductive tissues: From the basics to clinics. BioMed Research International, 2013, 357102.

    PubMed  PubMed Central  Google Scholar 

  42. White, Y. A., Woods, D. C., Takai, Y., Ishihara, O., Seki, H., & Tilly, J. L. (2012). Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nature Medicine, 18, 413–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson, J., Canning, J., Kaneko, T., Pru, J. K., & Tilly, J. L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature, 428, 145–150.

    Article  CAS  PubMed  Google Scholar 

  44. Bukovsky, A., Svetlikova, M., & Caudle, M. R. (2005). Oogenesis in cultures derived from adult human ovaries. Reproductive Biology and Endocrinology, 3, 17.

    Article  CAS  PubMed  Google Scholar 

  45. Bukovsky, A. (2011). Ovarian stem cell niche and follicular renewal in mammals. The Anatomical Record, 294, 1284–1306.

    Article  CAS  PubMed  Google Scholar 

  46. Bukovsky, A. (2015). Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases. Reproductive Biology and Endocrinology, 13, 10.

    Article  CAS  PubMed  Google Scholar 

  47. Hayama, T., Yamaguchi, T., Kato-Itoh, M., et al. (2014). Generation of mouse functional oocytes in rat by xeno-ectopic transplantation of primordial germ cells. Biology of Reproduction, 91, 89.

    Article  CAS  PubMed  Google Scholar 

  48. Morgan, S., Anderson, R. A., Gourley, C., Wallace, W. H., & Spears, N. (2012). How do chemotherapeutic agents damage the ovary? Human Reproduction Update, 18, 525–535.

    Article  CAS  PubMed  Google Scholar 

  49. Young, J. M., & McNeilly, A. S. (2010). Theca: The forgotten cell of the ovarian follicle. Reproduction, 140, 489–504.

    Article  CAS  PubMed  Google Scholar 

  50. Virant-Klun, I. (2015). Postnatal oogenesis in humans: A review of recent findings. Stem Cells Cloning, 8, 49–60.

    PubMed  PubMed Central  Google Scholar 

  51. Eppig, J. J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction, 122, 829–838.

    Article  CAS  PubMed  Google Scholar 

  52. Bukovsky, A., & Caudle, M. R. (2012). Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment and a clinical trial. Reproductive Biology and Endocrinology, 10, 97.

    Article  PubMed  Google Scholar 

  53. Frese, L., Dijkman, P. E., & Hoerstrup, S. P. (2016). Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicine and Hemotherapy, 43, 268–274.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dewailly, D., Robin, G., Peigne, M., Decanter, C., Pigny, P., & Catteau-Jonard, S. (2016). Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Human Reproduction Update, 22, 709–724.

    Article  CAS  PubMed  Google Scholar 

  55. Virant-Klun, I., Skutella, T., Stimpfel, M., & Sinkovec, J. (2011). Ovarian surface epithelium in patients with severe ovarian infertility: A potential source of cells expressing markers of pluripotent/multipotent stem cells. Journal of Biomedicine and Biotechnology, 2011, 381928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huda, F., Fan, Y., Suzuki, M., et al. (2016). Fusion of human fetal mesenchymal stem cells with "degenerating" cerebellar neurons in spinocerebellar Ataxia type 1 model mice. PLoS One, 11, e0164202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Binelli, M., & Murphy, B. D. (2010). Coordinated regulation of follicle development by germ and somatic cells. Reproduction Fertility and Development, 22(1), 12.

    Article  CAS  Google Scholar 

  58. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and Germ & Hematopoietic Cells in culture. Stem Cell Reviews and Reports, 13, 202–216.

    Article  CAS  Google Scholar 

  59. Xia, X., Wang, T., Yin, T., Yan, L., Yan, J., & Lu, C. (2015). Mesenchymal stem cells facilitate in vitro development of human Preantral follicle. Reproductive Sciences, 22, 1367–1376.

    Article  CAS  PubMed  Google Scholar 

  60. Pangas, S. A. (2012). Regulation of the ovarian reserve by members of the transforming growth factor beta family. Molecular Reproduction and Development, 79, 666–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, Y. C., Chang, H. M., Cheng, J. C., Tsai, H. D., Wu, C. H., & Leung, P. C. (2015). Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells. Human Reproduction, 30, 2190–2201.

    Article  CAS  PubMed  Google Scholar 

  62. Al-Samerria, S., Al-Ali, I., McFarlane, J. R., & Almahbobi, G. (2015). The impact of passive immunisation against BMPRIB and BMP4 on follicle development and ovulation in mice. Reproduction, 149, 403–411.

    Article  CAS  PubMed  Google Scholar 

  63. Dunlop, C. E., & Anderson, R. A. (2014). The regulation and assessment of follicular growth. Scandinavian Journal of Clinical and Laboratory Investigation, 244, 13–17.

    Article  CAS  PubMed  Google Scholar 

  64. Park, E. S., Woods, D. C., & Tilly, J. L. (2013). Bone morphogenetic protein 4 promotes mammalian oogonial stem cell differentiation via Smad1/5/8 signaling. Fertility and Sterility, 100, 1468–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bayne, R. A., Donnachie, D. J., Kinnell, H. L., Childs, A. J., & Anderson, R. A. (2016). BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2. Molecular Human Reproduction, 22, 622–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tan, S., Feng, B., Yin, M., et al. (2017). Stromal Senp1promotes mouse early folliculogenesis by regulating BMP4 expression. Cell & Bioscience, 7, 36.

    Article  CAS  Google Scholar 

  67. Polat, I. M., Alçiğir, E., Pekcan, M., et al. (2015). Characterization of transforming growth factor beta superfamily, growth factors, transcriptional factors, and lipopolysaccharide in bovine cystic ovarian follicles. Theriogenology, 84, 1043–1052.

    Article  CAS  PubMed  Google Scholar 

  68. Vural, F., Vural, B., Doğer, E., Çakıroğlu, Y., & Çekmen, M. (2016). Perifollicular blood flow and its relationship with endometrial vascularity, follicular fluid EG-VEGF, IGF-1, and inhibin-a levels and IVF outcomes. Journal of Assisted Reproduction and Genetics, 33, 1355–1362.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bukovsky, A., Keenan, J. A., Caudle, M. R., Wimalasena, J., Upadhyaya, N. B., & Van Meter, S. E. (1995). Immunohistochemical studies of the adult human ovary: Possible contribution of immune and epithelial factors to folliculogenesis. American Journal of Reproductive Immunology, 33, 323–340.

    Article  CAS  PubMed  Google Scholar 

  70. Jasti, S., Warren, B. D., McGinnis, L. K., Kinsey, W. H., Petroff, B. K., & Petroff, M. G. (2012). The autoimmune regulator prevents premature reproductive senescence in female mice. Biology of Reproduction, 86, 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ye, H., Zheng, T., Li, W., et al. (2017). Ovarian stem cell nests in reproduction and ovarian aging. Cellular Physiology and Biochemistry, 43, 1917–1925.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Experimental Medicine Research and Application Unit (DETAB) at Kocaeli University for their assistance in our experimental work. This work was supported by the Scientific and Research Council of Turkey (TUBITAK) [grant number 114S398].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birol Vural.

Ethics declarations

Disclosure of Interest

The authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vural, B., Duruksu, G., Vural, F. et al. Effects of VEGF + Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model . Stem Cell Rev and Rep 15, 558–573 (2019). https://doi.org/10.1007/s12015-019-09892-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09892-5

Keywords

Navigation