Skip to main content

Advertisement

Log in

Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Encapsulated on Polyvinylidene Fluoride Membranes (PFM) Promote Functional Recovery from Spinal Cord Injury

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Our previous studies showed that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells, which reside in the bulge area of the hair follicle, could restore injured nerve and spinal cord and differentiate into cardiac muscle cells. Here we transplanted mouse green fluorescent protein (GFP)-expressing HAP stem-cell colonies enclosed on polyvinylidene fluoride membranes (PFM) into the severed thoracic spinal cord of nude mice. After seven weeks of implantation, we found the differentiation of HAP stem cells into neurons and glial cells. Our results also showed that PFM-captured GFP-expressing HAP stem-cell colonies assisted complete reattachment of the thoracic spinal cord. Furthermore, our quantitative motor function analysis with the Basso Mouse Scale for Locomotion (BMS) score demonstrated a significant improvement in the implanted mice compared to non-implanted mice with a severed spinal cord. Our study also showed that it is easy to obtain HAP stem cells, they do not develop teratomas, and do not loose differentiation ability when cryopreserved. Collectively our results suggest that HAP stem cells could be a better source compared to induced pluripotent stem cells (iPS) or embryonic stem (ES) cells for regenerative medicine, specifically for spinal cord repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holmes, D. (2017). Repairing the neural highway. Nature, 552(7684), S50–S51.

    Article  CAS  PubMed  Google Scholar 

  2. Kuhl, E. (2018). Mechanical cues in spinal cord injury. Biophysical Journal, 115(5), 751–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, L., Mignone, J., Yang, M., Matic, M., Penman, S., Enikolopov, G., & Hoffman, R. M. (2003). Nestin expression in hair follicle sheath progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9958–99561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amoh, Y., Li, L., Yang, M., Moossa, A. R., Katsuoka, K., Penman, S., & Hoffman, R. M. (2004). Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 13291–13295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoffman, R. M. (2000). The hair follicle as a gene therapy target. Nat Biothechnol, 18, 20–21.

    Article  CAS  Google Scholar 

  6. Amoh, Y., Li, L., Yang, M., Moossa, A. R., Katsuoka, K., Penman, S., & Hoffman, R. M. (2005). Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proceedings of the National Academy of Sciences of the United States of America, 102, 5530–5534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amoh, Y., Li, L., Katsuoka, K., & Hoffman, R. M. (2008). Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle, 7, 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  8. Amoh, Y., Kanoh, M., Niiyama, S., Hamada, Y., Kawahara, K., Sato, Y., Hoffman, R. M., & Katsuoka, K. (2009). Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: An advantageous alternative to ES and iPS cells. Journal of Cellular Biochemistry, 107, 1016–1020.

    Article  CAS  PubMed  Google Scholar 

  9. Amoh, Y., Mii, S., Aki, R., Hamada, Y., Kawahara, K., Hoffman, R. M., & Katsuoka, K. (2012). Multipotent nestin-expressing stem cells capable of forming neurons are located in the upper, middle, and lower part of the vibrissa hair follicle. Cell Cycle, 11, 3513–3517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, F., Uchugonova, A., Kimura, H., Zhang, C., Zhao, M., Zhang, L., Koenig, K., Duong, J., Aki, R., Saito, N., Mii, S., Amoh, Y., Katsuoka, K., & Hoffman, R. M. (2011). The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla. Cell Cycle, 10, 830–839.

    Article  CAS  PubMed  Google Scholar 

  11. Kajiura, S., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Li, L., Katsuoka, K., Hoffman, R. M., & Amoh, Y. (2015). Cryopreservation of the hair follicle maintains pluripotency of nestin-expressing hair follicle associated pluripotent stem cells. Tissue Engineering, 21, 825–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yashiro, M., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Hoffman, R. M., & Amoh, Y. (2015). From hair to heart: Hair follicle stem cells differentiate to beating cardiac muscle cells. Cell Cycle, 14, 2362–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamazaki, A., Yashiro, M., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Hoffman, R. M., & Amoh, Y. (2016). Isoproterenol directs hair follicle-associated pluripotent (HAP) stem cells to differentiate in vitro to cardiac-muscle cells which can be induced to form beating heart muscle tissue sheets. Cell Cycle, 15, 760–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamazaki, A., Hamada, Y., Arakawa, N., Yashiro, M., Mii, S., Aki, R., Kawahara, K., et al. (2016). Early –age-dependent selective decrease of differentiation potential of hair-follicle-associated pluripotent (HAP) stem cells to beating cardiac muscle cells. Cell Cycle, 2, 848–861.

    Google Scholar 

  15. Yamazaki, A., Obara, K., Tohgi, N., Shirai, K., Mii, S., Hamada, Y., Arakawa, N., Aki, R., Hoffman, R. M., & Amoh, Y. (2017). Implanted hair-follicle-associated pluripotent (HAP) stem cells encapsulated in poly-vinylidene fluoride membrane cylinders promote effective recovery of peripheral nerve injury. Cell Cycle, 16, 1927–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tohgi, N., Obara, K., Yashiro, M., Hamada, Y., Arakawa, N., Mii, S., Aki, R., Hoffman, R. M., & Amoh, Y. (2017). Human hair-follicle associated pluripotent (hHAP) stem cells differentiate to cardiac-muscle cells. Cell Cycle, 16, 95–99.

    Article  CAS  PubMed  Google Scholar 

  17. Amoh, Y., Li, L., Campillo, R., Kawahara, K., Katsuoka, K., Penman, S., & Hoffman, R. M. (2005). Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proceedings of the National Academy of Sciences of the United States of America, 102, 17734–17738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., & Nishimune, Y. (1997). ‘Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407, 313–319.

    Article  CAS  PubMed  Google Scholar 

  19. Yashiro, M., Mii, S., Aki, R., Hamada, Y., Arakawa, N., Kawahara, K., Hoffman, R. M., Amoh, Y. (2016). Protocols for efficient differentiation of hair follicle-associated pluripotent (HAP) stem cells to beating cardiac muscle cells. Methods in Molecular Biology, 1453, 151–159.

  20. Basso, D. M., Fisher, L. C., Anderson, A. J., Jakeman, L. B., McTigue, D. M., & Popovich, P. G. (2006). Mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. Journal of Neurotrauma, 23, 635–659.

    Article  PubMed  Google Scholar 

  21. Faden, A. I. (1987). Pharmacotherapy in spinal cord injury: A critical review of recent developments. Clinical Neuropharmacology, 10(3), 193–204.

    Article  CAS  PubMed  Google Scholar 

  22. Ozawa, H., Keane, R. W., Marcillo, A. E., Diaz, P. H., & Dietrich, W. D. (2002). Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats. Experimental Neurology, 177(1), 306–313.

    Article  CAS  PubMed  Google Scholar 

  23. Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., & Steward, O. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. The Journal of Neuroscience, 25(19), 4694–4705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jarocha, D., Milczarek, O., Wedrychowicz, A., Kwiatkowski, S., & Majka, M. (2015). Continuous improvement after multiple mesenchymal stem cell transplantations in a patient with complete spinal cord injury. Cell Transplantation, 24(4), 661–672.

    Article  PubMed  Google Scholar 

  25. Fandel, T. M., Trivedi, A., Nicholas, C. R., Zhang, H., Chen, J., Martinez, A. F., Noble-Haeusslein, L. J., & Kriegstein, A. R. (2016). Transplanted human stem cell-derived interneuron precursors mitigate mouse bladder dysfunction and central neuropathic pain after spinal cord injury. Cell Stem Cell, 19(4), 544–557.

    Article  CAS  PubMed  Google Scholar 

  26. Ruven, C., Li, W., Li, H., Wong, W. M., & Wu, W. (2017). Transplantation of embryonic spinal cord derived cells helps to prevent muscle atrophy after peripheral nerve injury. International Journal of Molecular Sciences, 18(3), E511.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X. M., Ma, J., Sun, Y., Yu, B. Q., Jiao, Z. M., Wang, D., Yu, M. Y., Li, J. Y., & Fu, J. (2018). Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model. Journal of Translational Medicine, 16(1), 193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan, I. U., Yoon, Y., Kim, A., Jo, K. R., Choi, K. U., Jung, T., Kim, N., Son, Y., Kim, W. H., & Kweon, O. K. (2018). Improved healing after the co-transplantation of HO-1 and BDNF overexpressed mesenchymal stem cells in the subacute spinal cord injury of dogs. Cell Transplantation, 27(7), 1140–1153.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gomes, E. D., Mendes, S. S., Assunção-Silva, R. C., Teixeira, F. G., Pires, A. O., Anjo, S. I., Manadas, B., Leite-Almeida, H., Gimble, J. M., Sousa, N., Lepore, A. C., Silva, N. A., & Salgado, A. J. (2018). Co-transplantation of adipose tissue-derived stromal cells and olfactory Ensheathing cells for spinal cord injury repair. Stem Cells, 36(5), 696–708.

    Article  CAS  PubMed  Google Scholar 

  30. Alastrue-Agudo A, Rodriguez-Jimenez FJ, Mocholi EL, De Giorgio F, Erceg S, Moreno-Manzano V. (2018). FM19G11 and ependymal progenitor/stem cell combinatory treatment enhances neuronal preservation and Oligodendrogenesis after severe spinal cord injury. International Journal of Molecular Sciences, 19(1), E200.

  31. Wichterle, H., Lieberm, I., Porter, J. A., & Jessell, T. M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385–397.

    Article  CAS  PubMed  Google Scholar 

  32. Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., Gage, F. H., & Anderson, A. J. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 14069–14074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  34. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  CAS  PubMed  Google Scholar 

  35. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., & Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5, 237–241.

    Article  CAS  PubMed  Google Scholar 

  37. Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., Brock, J., Blesch, A., Rosenzweig, E. S., Havton, L. A., Zheng, B., Conner, J. M., Marsala, M., & Tuszynski, M. H. (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell, 150(6), 1264–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sabelström, H., Stenudd, M., Réu, P., Dias, D. O., Elfineh, M., Zdunek, S., Damberg, P., Göritz, C., & Frisén, J. (2013). Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science, 342(6158), 637–640.

    Article  CAS  PubMed  Google Scholar 

  39. Stenudd, M., Sabelström, H., & Frisén, J. (2015). Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurology, 72(2), 235–237.

    Article  PubMed  Google Scholar 

  40. Rosenzweig, E. S., Brock, J. H., Lu, P., Kumamaru, H., Salegio, E. A., Kadoya, K., Weber, J. L., Liang, J. J., Moseanko, R., Hawbecker, S., Huie, J. R., Havton, L. A., Nout-Lomas, Y. S., Ferguson, A. R., Beattie, M. S., Bresnahan, J. C., & Tuszynski, M. H. (2018). Restorative effects of human neural stem cell grafts on the primate spinal cord. Nature Medicine, 24(4), 484–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD. (2018). A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell, 22(6):941–950.

  42. Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., Higashi, H., Nagai, T., Katoh, H., Kohda, K., Matsuzaki, Y., Yuzaki, M., Ikeda, E., Toyama, Y., Nakamura, M., Yamanaka, S., & Okano, H. (2010). Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12704–12709.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nori, S., Okada, Y., Nishimura, S., Sasaki, T., Itakura, G., Kobayashi, Y., Renault-Mihara, F., Shimizu, A., Koya, I., Yoshida, R., Kudoh, J., Koike, M., Uchiyama, Y., Ikeda, E., Toyama, Y., Nakamura, M., & Okano, H. (2015). Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: Oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports, 4(3), 360–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Strnadel, J., Carromeu, C., Bardy, C., Navarro, M., et al. (2018). Survival of syngeneic and allogeneic iPSC-derived neural precursors after spinal grafting in minipigs. Sci Transl Med, 10(440), eaam6651.

  45. Yang, C., Li, X., Sun, L., Guo, W., & Tian, W. (2017). Potential of human dental stem cells in repairing the complete transection of rat spinal cord. Journal of Neural Engineering, 14(2), 026005.

  46. Najafzadeh, N., Nobakht, M., Pourheydar, B., & Golmohammadi, M. G. (2013). Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury. Neural Regeneration Research, 8(36), 3365–3372.

    PubMed  PubMed Central  Google Scholar 

  47. Ohta, Y., Takenaga, M., Hamaguchi, A., Ootaki, M., Takeba, Y., Kobayashi, T., Watanabe, M., Iiri, T., & Matsumoto, N. (2018). Isolation of adipose-derived stem/stromal cells from cryopreserved fat tissue and transplantation into rats with spinal cord injury. International Journal of Molecular Sciences, 19(7), E1963.

    Article  CAS  PubMed  Google Scholar 

  48. Ramalho BDS, Almeida FM, Sales CM, de Lima S, Martinez AMB (2018). Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice. Neural Regeneration Research, 13(6),1046–1053.

Download references

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research (C) 16 K10173 from the Ministry of Education, Science, Sports, and Culture of Japan, a grant from the Ministry of Education, Culture, Sports, Science, and Technology of the Japan Government, MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2014-2018), the Terumo Life Science Foundation (to Y. Amoh), and the Parents Association Grant of Kitasato University, School of Medicine (to K. Obara).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shree Ram Singh, Robert M. Hoffman or Yasuyuki Amoh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obara, K., Tohgi, N., Shirai, K. et al. Hair-Follicle-Associated Pluripotent (HAP) Stem Cells Encapsulated on Polyvinylidene Fluoride Membranes (PFM) Promote Functional Recovery from Spinal Cord Injury. Stem Cell Rev and Rep 15, 59–66 (2019). https://doi.org/10.1007/s12015-018-9856-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9856-3

Keywords

Navigation