Skip to main content

Advertisement

Log in

Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cells transplantation has emerged as a promising alternative therapeutic due to its potency at injury site. The need to monitor and non-invasively track the infused stem cells is a significant challenge in the development of regenerative medicine. Thus, in vivo tracking to monitor infused stem cells is especially vital. In this manuscript, we have described an effective in vitro labelling method of MSCs, a serial in vivo tracking of implanted stem cells at traumatic brain injury (TBI) site through 7 T magnetic resonance imaging (MRI). Proper homing of infused MSCs was carried out at different time points using histological analysis and Prussian blue staining. Longitudinal in vivo tracking of infused MSCs were performed up to 21 days in different groups through MRI using relaxometry technique. Results demonstrated that MSCs incubated with iron oxide-poly-L-lysine complex (IO-PLL) at a ratio of 50:1.5 μg/ml and a time period of 6 h was optimised to increase labelling efficiency. T2*-weighted images and relaxation study demonstrated a significant signal loss and effective decrease in transverse relaxation time on day-3 at injury site after systemic transplantation, revealed maximum number of stem cells homing to the lesion area. MRI results further correlate with histological and Prussian blue staining in different time periods. Decrease in negative signal and increase in relaxation times were observed after day-14, may indicate damage tissue replacement with healthy tissue. MSCs tracking with synthesized negative contrast agent represent a great advantage during both in vitro and in vivo analysis. The proposed absolute bias correction based relaxometry analysis could be extrapolated for stem cell tracking and therapies in various neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Phenotypic and differential characterisation study of isolated mMSCs
Fig. 2
Fig. 3: Longitudinal in vivo tracking of unlabeled MSCs after administration in TBI mouse
Fig. 4: Longitudinal in vivo tracking of labeled MSCs after administration in TBI mouse
Fig. 5: Comparison of T2* time of injured area in between groups
Fig. 6: Fluorescent microscopy of injured area after infusion of labelled MSCs
Fig. 7: Prussian blue staining of injured area after infusion of labelled MSCs
Fig. 8: Histological analysis of injured area and its contralateral side after transplantation of dual labelled MSCs

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

FBS:

Foetal Bovine Serum

FOV:

Field of view

ICC:

Immunocytochemistry

ISA:

Imaging sequence analysis

MGE:

Multi Gradient Echo

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal Stem Cells

mMSCs:

mice MSCs

MSME:

Multi Slice Multi Echo

PCR:

Polymerase chain reaction

PLL:

Poly-L-lysine

ROI:

Region of interest

R2 :

Transverse relaxation rate

T2 :

Transverse relaxation time

TR:

Repetition time

TE:

Echo time

TBI:

Traumatic brain injury

USPIO:

Ultrasmall superparamagnetic iron oxide

References

  1. Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., & Sniezek, J. E. (1999). Traumatic brain injury in the United States: A public health perspective. The Journal of Head Trauma Rehabilitation, 14, 602–615.

    Article  CAS  Google Scholar 

  2. Shekhar, C., Gupta, L. N., Premsagar, I. C., Sinha, M., & Kishore, J. (2015). An epidemiological study of traumatic brain injury cases in a trauma Centre of New Delhi (India). Journal of Emergiences, Trauma and Shock, 8, 131–139.

    Article  Google Scholar 

  3. Gururaj, G., Kollure, S.V.R., Chandramouli, B.A., Subbakrishna, D.K., Kraus, J.F. (2005). "Traumatic Brain Injury", National Institute of Mental Health & Neuro Sciences. Publication no. 61, Bangalore −560029, India.

  4. Chen, S., Pickard, J. D., & Harris, N. G. (2003). Time course of cellular pathology after controlled cortical impact injury. Experimental Neurology, 182, 87–102.

    Article  CAS  Google Scholar 

  5. Mishra, S. K., Rana, P., Khushu, S., & Gangenahalli, G. (2017). Therapeutic prospective of infused allogenic cultured mesenchymal stem cells in traumatic brain injury mice: A longitudinal proton magnetic resonance spectroscopy assessment. Stem Cells Translational Medicine, 6, 316–329.

    Article  CAS  Google Scholar 

  6. Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.

    Article  Google Scholar 

  7. Walker, P. A., Shah, S. K., Harting, M. T., & Cox, C. S. (2009). Progenitor cell therapies for traumatic brain injury: Barriers and opportunities in translation. Disease Models & Mechanisms, 2, 23–38.

    Article  CAS  Google Scholar 

  8. Jackson, J. S., Golding, J. P., Chapon, C., Jones, W. A., & Bhakoo, K. K. (2010). Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: A longitudinal imaging study. Stem Cell Research & Therapy, 1, 17. https://doi.org/10.1186/scrt17.

    Article  CAS  Google Scholar 

  9. Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplantation, 23, 1045–1059.

    Article  Google Scholar 

  10. Patel, D. M., Shah, J., & Srivastav, A. S. (2013). Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells International, 13, 1–15. https://doi.org/10.1155/2013/496218.

    Article  Google Scholar 

  11. Lee, J. S., Hong, J. M., Moon, G. J., Lee, P. H., Ahn, Y. H., Bang, O. Y., & STARTING collaborators. (2010). A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 28, 1099–1106.

    Article  Google Scholar 

  12. Betzer, O., Meir, R., Dreifusss, T., Shamalov, K., Motiei, M., Shwartz, A., et al. (2015). In-vitro optimization of nanoparticle-cell labeling protocols for in-vivo cell tracking applications. Scientific Reports, 5, 15400. https://doi.org/10.1038/srep15400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mishra, S. K., Khushu, S., & Gangenahalli, G. (2015). Potential stem cell labeling ability of poly-L-lysine complexed to ultrasmall iron oxide contrast agent: An optimization and relaxometry study. Experimental Cell Research, 339, 427–436.

    Article  CAS  Google Scholar 

  14. Ngen, E. J., Wang, L., Kato, Y., Krishnamachary, B., Zhu, W., Gandhi, N., Smith, B., Armour, M., Wong, J., Gabrielson, K., & Artemov, D. (2015). Imaging transplanted stem cells in real time using an MRI dual-contrast method. Scientific Reports, 5, 13628. https://doi.org/10.1038/srep13628.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Long, Q., Li, J., Luo, Q., Hei, Y., Wang, K., Tian, Y., Yang, J., Lei, H., Qiu, B., & Liu, W. (2015). MRI tracking of bone marrow mesenchymal stem cells labeled with ultra-small superparamagnetic iron oxide nanoparticles in a rat model of temporal lobe epilepsy. Neuroscience Letters, 606, 30–35.

    Article  CAS  Google Scholar 

  16. Modo, M., Mellodew, K., Cash, D., Fraser, S. E., Meade, T. J., Price, J., & Williams, S. C. R. (2004). Mapping transplanted stem cell migration after a stroke: A serial, in vivo magnetic resonance imaging study. NeuroImage, 21, 311–317.

    Article  Google Scholar 

  17. Zhou, B., Shan, H., Li, D., Jiang, Z. B., Qian, J. S., Zhu, K. S., Huang, M. S., & Meng, X. C. (2010). MR tracking of magnetically labeled mesenchymal stem cells in rats with liver fibrosis. Magnetic Resonance Imaging, 28, 394–399.

    Article  Google Scholar 

  18. Song, M., Kim, Y., Kim, Y., Ryu, S., Song, I., Kim, S. U., & Yoon, B. W. (2009). MRI tracking of intravenously transplanted human neural stem cells in rat focal ischemia model. Neuroscience Research, 64, 235–239.

    Article  Google Scholar 

  19. Velde, G. V., Rangarajan, J. R., Vreys, R., et al. (2012). Quantitative evaluation of MRI-based tracking of ferritin-labeled endogenous neural stem cell progeny in rodent brain. NeuroImage, 62, 367–380.

    Article  Google Scholar 

  20. Qin, J. B., Li, K. A., Li, X. X., Xie, Q. S., Lin, J. Y., Ye, K. C., Jiang, M. E., Zhang, G. X., & Lu, X. W. (2012). Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury. International Journal of Nanomedicine, 7, 5191–5203.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mishra, S. K., Khushu, S., & Gangenahalli, G. (2016). Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging. Contrast Media & Molecular Imaging, 11, 350–361.

    Article  CAS  Google Scholar 

  22. Mishra, S. K., Khushu, S., & Gangenahalli, G. (2017). Biological effect of iron oxide-protamine sulfate complex on mesenchymal stem cells and its relaxometry based labelling optimization for cellular MRI. Experimental Cell Research, 351, 59–67.

    Article  CAS  Google Scholar 

  23. Liu, W., & Joseph, A. (2009). Detection and quantification of magnetically labeled cells by cellular MRI. European Journal of Radiology, 70, 258–264.

    Article  Google Scholar 

  24. Kumar, R., Delshad, S., Macey, P. M., Woo, M. A., & Harper, R. M. (2011). Development of T2-relaxation values in regional brain sites during adolescence. Magnetic Resonance Imaging, 29, 185–193.

    Article  Google Scholar 

  25. Mishra, S. K., Khushu, S., & Gangenahalli, G. (2017). Early monitoring and quantitative evaluation of macrophage infiltration after experimental traumatic brain injury: A magnetic resonance imaging and flow cytometric analysis. Molecular and Cellular Neurosciences, 78, 25–34.

    Article  CAS  Google Scholar 

  26. Vreys, R., Velde, G. V., Krylychkina, O., Vellema, M., Verhoye, M., Timmermans, J. P., Baekelandt, V., & van der Linden, A. (2010). MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain: Validation of various MPIO labeling strategies. NeuroImage, 49, 2094–2103.

    Article  Google Scholar 

  27. Frank, J. A., Miller, B. R., Arbab, A. S., Zywicke, H. A., Jordan, E. K., Lewis, B. K., Bryant Jr., L. H., & Bulte, J. W. M. (2003). Clinically applicable labelling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology, 228, 480–487.

    Article  Google Scholar 

  28. Mishra, S. K., Khushu, S., & Gangenahalli, G. (2018). Effects of iron oxide contrast agent in combination with various transfection agents during mesenchymal stem cells labelling: An in vitro toxicological evaluation. Toxicology In Vitro, 50, 179–189.

    Article  CAS  Google Scholar 

  29. Mahmood, A., Lu, D., & Chopp, M. (2004). Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery, 55, 1185–1193.

    Article  Google Scholar 

  30. Lee, N. K., Kim, H. S., Yoo, D., Hwang, J. W., Choi, S. J., Oh, W., Chang, J. W., & Na, D. L. (2017). Magnetic resonance imaging of ferumoxytol-labeled human mesenchymal stem cells in the mouse brain. Stem Cell Reviews and Reports, 13, 127–138.

    Article  CAS  Google Scholar 

  31. François, S., Bensidhoum, M., Mouiseddine, M., Mazurier, C., Allenet, B., Semont, A., Frick, J., Saché, A., Bouchet, S., Thierry, D., Gourmelon, P., Gorin, N. C., & Chapel, A. (2006). Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment tomultiple organs: A study of their quantitative distribution after irradiation damage. Stem Cells, 24, 1020–1029.

    Article  Google Scholar 

  32. Feng, S. W., Lu, X. L., Liu, Z. S., Zhang, Y. N., Liu, T. Y., Li, J. L., Yu, M. J., Zeng, Y., & Zhang, C. (2008). Dynamic distribution of bone marrow-derived mesenchymal stromal cells and change of pathology after infusing into mdx mice. Cytotherapy, 10, 254–264.

    Article  CAS  Google Scholar 

  33. Zhang, N., Fitsanakis, V. A., Erikson, K. M., Aschner, M., Avison, M. J., & Gore, J. C. (2009). A model for the analysis of competitive relaxation effects of manganese and iron in vivo. NMR in Biomedicine, 22, 391–404.

    Article  CAS  Google Scholar 

  34. Jacob, R. E., Amidan, B. G., Soelberg, J., & Minard, K. R. (2010). In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. Journal of Magnetic Resonance Imaging, 31, 1091–1099.

    Article  Google Scholar 

  35. Helpern, J. A., Lee, S. P., Falangola, M. F., Dyakin, V. V., Bogart, A., Ardekani, B., Duff, K., Branch, C., Wisniewski, T., de Leon, M. J., Wolf, O., O'Shea, J., & Nixon, R. A. (2004). MRI assessment of neuropathology in a transgenic mouse model of alzheimer’s disease. Magnetic Resonance in Medicine, 51, 794–798.

    Article  Google Scholar 

  36. Yin, Y., Zhou, X., Guan, X., Liu, Y., Jiang, C. B., & Liu, J. (2015). In vivo tracking of human adipose-derived stem cells labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging. Neural Regeneration Research, 10, 909–915.

    Article  Google Scholar 

  37. Geng, K., Yang, Z. X., Huang, D., Yi, M., Jia, Y., Yan, G., et al. (2015). Tracking of mesenchymal stem cells labeled with gadolinium diethylenetriamine pentaacetic acid by 7T magnetic resonance imaging in a model of cerebral ischemia. Molecular Medicine Reports, 11, 954–960.

    Article  CAS  Google Scholar 

  38. Shyu, W. C., Chen, C. P., Lin, S. Z., Lee, Y. J., & Li, H. (2007). Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats. Stroke, 38, 367–374.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The S & T project (INM-311, 4.1/1.6) was supported by funding from the Defence Research and Development Organization (DRDO), Ministry of Defence, Govt. of India. The authors also wish to express their gratitude to Dr. Anurag Agrawal and Bijay Ranjan Pattnaik (Research Fellow), Translational research in asthma laboratory, IGIB for their unstinted support in the microscopy study. Dr. Sushanta Kumar Mishra sincerely thanks the Indian Council of Medical Research (ICMR, 2014-25070) for providing a research fellowship in support of the project.

Author information

Authors and Affiliations

Authors

Contributions

SKM conceived the study, designed experimental plan, performed experiments, collected and interpreted data and drafted the manuscript. SK and GG supervised all the experimental work, assisted in data interpretation, crosschecked the results and revised the manuscript. AKS took administrative part in providing research funding and permitted to perform experimental work in other labs. All authors read and approved the final draft of manuscript.

Corresponding authors

Correspondence to Subash Khushu or Gurudutta Gangenahalli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Khushu, S., Singh, A.K. et al. Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study. Stem Cell Rev and Rep 14, 888–900 (2018). https://doi.org/10.1007/s12015-018-9828-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9828-7

Keywords

Navigation