Skip to main content

Advertisement

Log in

Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in An In Vitro Co-culture Model

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

This study focuses on the interactions of human adipose tissue-derived stem cells (ADSCs) and malignant melanoma cells (MMCs) with regard to future cell-based skin therapies. The aim was to identify potential oncological risks as ADSCs could unintentionally be sited within the proximity of the tumor microenvironment of MMCs. An indirect co-culture model was used to analyze interactions between ADSCs and four different established melanoma cell lines (G-361, SK-Mel-5, MeWo and A2058) as well as two low-passage primary melanoma cell cultures (M1 and M2). Doubling time, migration and invasion, angiogenesis, quantitative real-time PCR of 229 tumor-associated genes and multiplex protein assays of 20 chemokines and growth factors and eight matrix metalloproteinases (MMPs) were evaluated. Co-culture with ADSCs significantly increased migration capacity of G-361, SK-Mel-5, A2058, MeWo and M1 and invasion capacity of G-361, SK-Mel-5 and A2058 melanoma cells. Furthermore, conditioned media from all ADSC-MMC-co-cultures induced tube formation in an angiogenesis assay in vitro. Gene expression analysis of ADSCs and MMCs, especially of low-passage melanoma cell cultures, revealed an increased expression of various genes with tumor-promoting activities, such as CXCL12, PTGS2, IL-6, and HGF upon ADSC-MMC-co-culture. In this context, a significant increase (up to 5,145-fold) in the expression of numerous tumor-associated proteins could be observed, e.g. several pro-angiogenic factors, such as VEGF, IL-8, and CCL2, as well as different matrix metalloproteinases, especially MMP-2. In conclusion, the current report clearly demonstrates that a bi-directional crosstalk between ADSCs and melanoma cells can enhance different malignant properties of melanoma cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Up-/downregulation of key genes in MMCs and ADSCs after co-culture
Fig. 2: Changes in migratory and invasive capacity of ADSCs and different melanoma cell lines under co-culture conditions
Fig. 3: Qualitative assessment of changes in migration and invasion of ADSCs and different melanoma cell lines
Fig. 4: Induction of angiogenesis

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose tissue-derived stem cells

bFGF:

Basic fibroblast growth factor

CCL:

C-C motif-ligand

CD:

Cluster of differentiation

COX-2:

Cyclooxygenase-2

CXCL:

C-X-C motif ligand

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal-transition

EMMPRIN:

Extracellular matrix metalloproteinase inducer

FCS:

Fetal calf serum

FN:

Fibronectin

HGF:

Hepatocyte growth factor

hMSCs:

Human mesenchymal stem/stroma cells

HUVEC:

Human umbilical vein endothelial cells

IL:

Interleukin

MCAM:

Melanoma cell adhesion molecule

MMCs:

Malignant melanoma cells

MMP:

Matrix metalloproteinase

PMA:

Phorbol 12-myristate 13-acetate

SD:

Standard deviation

PTGS2:

Prostaglandin-endoperoxide synthase 2

TW:

Transwell

VEGF:

Vascular endothelial growth factor.

References

  1. Kapur, S. K., & Katz, A. J. (2013). Review of the adipose derived stem cell secretome. Biochimie, 95, 2222–2228.

    Article  CAS  PubMed  Google Scholar 

  2. Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5, 362–369.

    Article  PubMed  Google Scholar 

  3. Alperovich, M., Lee, Z. H., Friedlander, P. L., Rowan, B. G., Gimble, J. M., & Chiu, E. S. (2014). Adipose stem cell therapy in cancer reconstruction: a critical review. Annals of Plastic Surgery, 73(Suppl 1), S104-7.

    PubMed  Google Scholar 

  4. Sterodimas, A., de Faria, J., Nicaretta, B., & Pitanguy, I. (2010). Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS, 63, 1886–1892.

    Article  PubMed  Google Scholar 

  5. Rodriguez, J., Boucher, F., Lequeux, C., et al. (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Research & Therapy, 6, 241.

    Article  Google Scholar 

  6. Li, Y., Zhang, W., Gao, J., et al. (2016). Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway. Stem Cell Research & Therapy, 7, 102.

    Article  Google Scholar 

  7. Kim, W. S., Park, B. S., Park, S. H., Kim, H. K., & Sung, J. H. (2009). Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. Journal of Dermatological Science, 53, 96–102.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, W. S., Park, B. S., & Sung, J. H. (2009). The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opinion Biological Therapy, 9, 879 – 87.

    Article  CAS  Google Scholar 

  9. Kim, W. S., Park, B. S., & Sung, J. H. (2009). Protective role of adipose-derived stem cells and their soluble factors in photoaging. Archives of Dermatological Research, 301:329 – 36.

  10. Kim, W. S., Park, S. H., Ahn, S. J., et al. (2008). Whitening effect of adipose-derived stem cells: a critical role of TGF-beta 1. Biological & Pharmaceutical Bulletin, 31:606 – 10.

    Article  CAS  Google Scholar 

  11. Kim, J. H., Jung, M., Kim, H. S., Kim, Y. M., & Choi, E. H. (2011). Adipose-derived stem cells as a new therapeutic modality for ageing skin. Experimental Dermatology, 20, 383–387.

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, W. M., Nesti, L. J., & Tuan, R. S. (2012). Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Research & Therapy, 3, 20.

    Article  Google Scholar 

  13. Lin, G., Yang, R., Banie, L., et al. (2010). Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. The Prostate, 70, 1066–1073.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jotzu, C., Alt, E., Welte, G., et al. (2010). Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Analytical Cellular Pathology (Amsterdam), 33, 61–79.

    Article  CAS  Google Scholar 

  15. Koellensperger, E., Gramley, F., Preisner, F., Leimer, U., Germann, G., & Dexheimer, V. (2014). Alterations of gene expression and protein synthesis in co-cultured adipose tissue-derived stem cells and squamous cell-carcinoma cells: consequences for clinical applications. Stem Cell Research & Therapy, 5, 65.

    Article  Google Scholar 

  16. Kucerova, L., Matuskova, M., Hlubinova, K., Altanerova, V., & Altaner, C. (2010). Tumor cell behaviour modulation by mesenchymal stromal cells. Molecular Cancer, 9, 129.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karnoub, A. E., Dash, A. B., Vo, A. P., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557 – 63.

    Article  CAS  PubMed  Google Scholar 

  18. Donnenberg, V. S., Zimmerlin, L., Rubin, J. P., Donnenberg, A. D.. (2010). Regenerative therapy after cancer: what are the risks? Tissue engineering Part B. Reviews, 16:567 – 75.

  19. Chen, S. T., Geller, A. C., & Tsao, H. (2013). Update on the epidemiology of melanoma. Current Dermatology Reports, 2, 24–34.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nikolaou, V., & Stratigos, A. J. (2014). Emerging trends in the epidemiology of melanoma. The British Journal of Dermatology, 170:11 – 9.

  21. Koellensperger, E., Bollinger, N., Dexheimer, V., Gramley, F., Germann, G., & Leimer, U. (2014). Choosing the right type of serum for different applications of human adipose tissue-derived stem cells: influence on proliferation and differentiation abilities. Cytotherapy, 16, 789 – 99.

    Article  CAS  PubMed  Google Scholar 

  22. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  23. Bourin, P., Bunnell, B. A., Casteilla, L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15, 641–648.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lindroos, B., Suuronen, R., & Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Reviews, 7, 269 – 91.

    Article  PubMed  Google Scholar 

  25. Kim, W. S., Park, B. S., Sung, J. H., et al. (2007). Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. Journal of Dermatological Science, 48, 15–24.

    Article  CAS  PubMed  Google Scholar 

  26. Choi, E. W., Shin, I. S., Song, J. W., et al. (2015). Transplantation of adipose tissue-derived mesenchymal stem cells prevents the development of Lupus Dermatitis. Stem Cells and Development, 24, 2041–2051.

    Article  CAS  PubMed  Google Scholar 

  27. Reichenberger, M. A., Heimer, S., Schaefer, A., et al. (2012). Adipose derived stem cells protect skin flaps against ischemia-reperfusion injury. Stem Cell Reviews, 8, 854 – 62.

    Article  CAS  PubMed  Google Scholar 

  28. Prantl, L., Muehlberg, F., Navone, N. M., et al. (2010). Adipose tissue-derived stem cells promote prostate tumor growth. The Prostate, 70, 1709–1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jotzu, C., Alt, E., Welte, G., et al. (2011). Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cellular Oncology, 34, 55–67.

    Article  Google Scholar 

  30. Devarajan, E., Song, Y. H., Krishnappa, S., & Alt, E. (2012). Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. International Journal of Cancer Journal International du Cancer, 131, 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  31. Kamat, P., Schweizer, R., Kaenel, P., et al. (2015). Human adipose-derived mesenchymal stromal cells may promote breast cancer progression and metastatic spread. Plastic and Reconstructive Surgery, 136, 76–84.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, J. H., Park, C. H., Chun, K. H., & Hong, S. S. (2015). Effect of adipose-derived stem cell-conditioned medium on the proliferation and migration of B16 melanoma cells. Oncology Letters, 10, 730–736.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ahn, J. O., Coh, Y. R., Lee, H. W., Shin, I. S., Kang, S. K., & Youn, H. Y. (2015). Human adipose tissue-derived mesenchymal stem cells inhibit melanoma growth in vitro and in vivo. Anticancer Research, 35, 159 – 68.

    CAS  PubMed  Google Scholar 

  34. Bahrambeigi, V., Ahmadi, N., Salehi, R., & Javanmard, S. H. (2015). Genetically modified murine adipose-derived mesenchymal stem cells producing interleukin-2 favor B16F10 melanoma cell proliferation. Immunological Investigations, 44, 216 – 36.

    Article  CAS  PubMed  Google Scholar 

  35. Esquenet, M., Swinnen, J. V., Heyns, W., & Verhoeven, G. (1997). LNCaP prostatic adenocarcinoma cells derived from low and high passage numbers display divergent responses not only to androgens but also to retinoids. The Journal of Steroid Biochemistry and Molecular Biology, 62, 391–399.

    Article  CAS  PubMed  Google Scholar 

  36. Lin, H. K., Hu, Y. C., Yang, L., et al. (2003). Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. The Journal of Biological Chemistry, 278, 50902–50907.

    Article  CAS  PubMed  Google Scholar 

  37. O’Driscoll, L., Gammell, P., McKiernan, E., et al. (2006). Phenotypic and global gene expression profile changes between low passage and high passage MIN-6 cells. The Journal of Endocrinology, 191, 665 – 76.

    Article  PubMed  Google Scholar 

  38. Neumann, E., Riepl, B., Knedla, A., et al. (2010). Cell culture and passaging alters gene expression pattern and proliferation rate in rheumatoid arthritis synovial fibroblasts. Arthritis Research & Therapy, 12, R83.

    Article  Google Scholar 

  39. Hughes, P., Marshall, D., Reid, Y., Parkes, H., & Gelber, C. (2007). The costs of using unauthenticated, over-passaged cell lines: how much more data do we. need? Biotechniques, 43(575), 7–8.

    Google Scholar 

  40. Mouriaux, F., Zaniolo, K., Bergeron, M. A., et al. (2016). Effects of long-term serial passaging on the characteristics and properties of cell lines derived from uveal melanoma primary tumors. Investigative Ophthalmology and Visual Science, 57, 5288 – 301.

    Article  CAS  PubMed  Google Scholar 

  41. Halaban, R., Rubin, J. S., Funasaka, Y., et al. (1992). Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene, 7, 2195 – 206.

    CAS  PubMed  Google Scholar 

  42. Natali, P. G., Nicotra, M. R., Di Renzo, M. F., et al. (1993). Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. British Journal of Cancer; 68:746 – 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Otsuka, T., Takayama, H., Sharp, R., et al. (1998). c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Research, 58, 5157–5167.

    CAS  PubMed  Google Scholar 

  44. Recio, J. A., & Merlino, G. (2002). Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene, 21, 1000–1008.

    Article  CAS  PubMed  Google Scholar 

  45. Aggarwal, B. B., Sethi, G., Ahn, K. S., et al. (2006). Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Annals of the New York Academy of Sciences, 1091, 151–169.

    Article  CAS  PubMed  Google Scholar 

  46. Di, G. H., Liu, Y., Lu, Y., Liu, J., Wu, C., & Duan, H. F. (2014). IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PloS one, 9, e113572.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, J., Lan, T., Zhang, C., et al. (2015). Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget, 6, 1031–1048.

    PubMed  PubMed Central  Google Scholar 

  48. Scherzad, A., Steber, M., Gehrke, T., et al. (2015). Human mesenchymal stem cells enhance cancer cell proliferation via IL-6 secretion and activation of ERK1/2. International Journal of Oncology, 47, 391–397.

    Article  CAS  PubMed  Google Scholar 

  49. Wei, H. J., Zeng, R., Lu, J. H., et al. (2015). Adipose-derived stem cells promote tumor initiation and accelerate tumor growth by interleukin-6 production. Oncotarget, 6, 7713–7726.

    PubMed  PubMed Central  Google Scholar 

  50. Lu, C., & Kerbel, R. S. (1993). Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. The Journal of Cell Biology, 120, 1281–1288.

    Article  CAS  PubMed  Google Scholar 

  51. Lu, C., Vickers, M. F., & Kerbel, R. S. (1992). Interleukin 6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 89:9215-9.

  52. Seymour, J. F., Talpaz, M., Cabanillas, F., Wetzler, M., & Kurzrock, R. (1995). Serum interleukin-6 levels correlate with prognosis in diffuse large-cell lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 13, 575 – 82.

    Article  CAS  Google Scholar 

  53. Chang, P. H., Pan, Y. P., Fan, C. W., et al. (2016). Pretreatment serum interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha levels predict the progression of colorectal cancer. Cancer Medicine, 5, 426 – 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakashima, J., Tachibana, M., Horiguchi, Y., et al. (2000). Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 6, 2702–2706.

    CAS  Google Scholar 

  55. Kim, D. K., Oh, S. Y., Kwon, H. C., et al. (2009). Clinical significances of preoperative serum interleukin-6 and C-reactive protein level in operable gastric cancer. BMC Cancer, 9, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hoejberg, L., Bastholt, L., Johansen, J. S., Christensen, I. J., Gehl, J., & Schmidt, H. (2012). Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Research, 22, 287 – 93.

    Article  CAS  PubMed  Google Scholar 

  57. Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.

    Article  CAS  PubMed  Google Scholar 

  58. Bar-Eli, M. (1999). Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 67:12 – 8.

  59. Koch, A. E., Polverini, P. J., Kunkel, S. L., et al. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 258, 1798 – 801.

    Article  CAS  PubMed  Google Scholar 

  60. Cho, H. H., Kim, Y. J., Kim, J. T., et al. (2009). The role of chemokines in proangiogenic action induced by human adipose tissue-derived mesenchymal stem cells in the murine model of hindlimb ischemia. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 24, 511–518.

    Article  CAS  Google Scholar 

  61. Van Coillie, E., Van Aelst, I., Wuyts, A., et al. (2001). Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. The American Journal of Pathology, 159, 1405–1414.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gazzaniga, S., Bravo, A. I., Guglielmotti, A., et al. (2007). Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. The Journal of Investigative Dermatology, 127, 2031–2041.

    Article  CAS  PubMed  Google Scholar 

  63. Koga, M., Kai, H., Egami, K., et al. (2008),nt melanoma in mice. Biochemical and Biophysical Research Communications, 365:279 – 84.

  64. Wu, S., Singh, S., Varney, M. L., Kindle, S., & Singh, R. K. (2012). Modulation of CXCL-8 expression in human melanoma cells regulates tumor growth, angiogenesis, invasion, and metastasis. Cancer Medicine, 1, 306 – 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology, 170, 3369–3376.

    Article  CAS  Google Scholar 

  66. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  67. Luca, M., Huang, S., Gershenwald, J. E., Singh, R. K., Reich, R., & Bar-Eli, M. (1997). Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. The American Journal of Pathology, 151, 1105–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hadler-Olsen, E., Fadnes, B., Sylte, I., Uhlin-Hansen, L., & Winberg, J. O. (2011). Regulation of matrix metalloproteinase activity in health and disease. The FEBS Journal, 278, 28–45.

    Article  CAS  PubMed  Google Scholar 

  69. Valente, P., Fassina, G., Melchiori, A., et al. (1998). TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. International Journal of Cancer Journal International du Cancer, 75, 246 – 53.

    Article  CAS  PubMed  Google Scholar 

  70. Miyoshi, A., Kitajima, Y., Kido, S., et al. (2005). Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. British Journal of Cancer, 92, 252–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reis, S. T., Leite, K. R., Piovesan, L. F., et al. (2012). Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of Bladder Cancer. BMC Urology, 12, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Y. Z., Wu, K. P., Wu, A. B., et al. (2014). MMP-14 overexpression correlates with poor prognosis in non-small cell lung cancer. Tumour biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 35, 9815–9821.

    Article  CAS  Google Scholar 

  73. Zhao, S., Ma, W., Zhang, M., et al. (2013). High expression of CD147 and MMP-9 is correlated with poor prognosis of triple-negative breast cancer (TNBC) patients. Medical Oncology, 30, 335.

    Article  PubMed  Google Scholar 

  74. Hofmann, U. B., Eggert, A. A., Blass, K., Brocker, E. B., & Becker, J. C. (2005). Stromal cells as the major source for matrix metalloproteinase-2 in cutaneous melanoma. Archives of Dermatological Research, 297:154 – 60.

    Article  CAS  PubMed  Google Scholar 

  75. Kanekura, T., & Chen, X. (2010). CD147/basigin promotes progression of malignant melanoma and other cancers. Journal of dermatological science ;57:149 – 54.

  76. Hatanaka, M., Higashi, Y., Fukushige, T., et al. (2014). Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts. Anticancer Research, 34, 7091–7096.

    CAS  PubMed  Google Scholar 

  77. Tang, Y., Nakada, M. T., Rafferty, P., et al. (2006). Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Molecular Cancer Research, MCR, 4, 371–377.

    Article  CAS  PubMed  Google Scholar 

  78. Kanekura, T., Chen, X., & Kanzaki, T. (2002). Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. International Journal of Cancer Journal International du Cancer, 99, 520–528.

    Article  CAS  PubMed  Google Scholar 

  79. Alonso, S. R., Tracey, L., Ortiz, P., et al. (2007). A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Research, 67, 3450–3460.

    Article  CAS  PubMed  Google Scholar 

  80. Hao, L., Ha, J. R., Kuzel, P., Garcia, E., & Persad, S. (2012). Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail. The British Journal of Dermatology, 166, 1184–1197.

    Article  CAS  PubMed  Google Scholar 

  81. Demaria, S., Pikarsky, E., Karin, M., et al. (2010). Cancer and inflammation: promise for biologic therapy. Journal of Immunotherapy, 33, 335–351.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fujimoto, H., Sangai, T., Ishii, G., et al. (2009). Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. International Journal of Cancer Journal International du Cancer, 125, 1276–1284.

    Article  CAS  PubMed  Google Scholar 

  83. Ohta, M., Kitadai, Y., Tanaka, S., et al. (2002). Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. International Journal of Cancer Journal International du Cancer, 102, 220–224.

    Article  CAS  PubMed  Google Scholar 

  84. Ohta, M., Kitadai, Y., Tanaka, S., et al. (2003). Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. International Journal of Oncology, 22, 773–778.

    CAS  PubMed  Google Scholar 

  85. Ueno, T., Toi, M., Saji, H., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research : An official journal of the American Association for Cancer Research, 6, 3282–3289.

    CAS  Google Scholar 

  86. Mitchell, B., & Mahalingam, M. (2014). The CXCR4/CXCL12 axis in cutaneous malignancies with an emphasis on melanoma. Histology and Histopathology, 29, 1539–1546.

    CAS  PubMed  Google Scholar 

  87. Sun, X., Cheng, G., Hao, M., et al. (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Reviews, 29:709 – 22.

  88. Mortier, A., Gouwy, M., Van Damme, J., & Proost, P. (2011). Effect of posttranslational processing on the in vitro and in vivo activity of chemokines. Experimental Cell Research, 317, 642 – 54.

    Article  CAS  PubMed  Google Scholar 

  89. Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews Cancer 3:859 – 68.

  90. Kappelmann, M., Bosserhoff, A., & Kuphal, S. (2014). AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. European Journal of Cell Biology, 93, 76–81.

    Article  CAS  PubMed  Google Scholar 

  91. Shu, W., Shu, Y. T., Dai, C. Y., & Zhen, Q. Z. (2012). Comparing the biological characteristics of adipose tissue-derived stem cells of different persons. Journal of Cellular Biochemistry, 113, 2020–2026.

    Article  CAS  PubMed  Google Scholar 

  92. Shain, A. H., Yeh, I., Kovalyshyn, I., et al. (2015). The genetic evolution of melanoma from precursor lesions. The New England Journal of Medicine, 373, 1926–1936.

    Article  PubMed  Google Scholar 

  93. Vizkeleti, L., Kiss, T., Koroknai, V., et al. (2017). Altered integrin expression patterns shown by microarray in human cutaneous melanoma. Melanoma Research, 27, 180–188.

    Article  CAS  PubMed  Google Scholar 

  94. Riker, A. I., Enkemann, S. A., Fodstad, O., et al. (2008). The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Medical Genomics, 1, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Koh, S. S., Wei, J. P., Li, X., et al. (2012). Differential gene expression profiling of primary cutaneous melanoma and sentinel lymph node metastases. Modern pathology : An Official Journal of the United States and Canadian Academy of Pathology, Inc, 25, 828 – 37.

    Article  CAS  Google Scholar 

  96. Kandarakov, O. F., Kopantseva, E. E., & Belyavsky, A. V. (2016). Analysis of proliferation of melanoma cells and mesenchymal stem cells in co-culture and contribution of experimental conditions into interpretation of the results. Bulletin of Experimental Biology and Medicine 162:127 – 33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Claudia Ziegelmeier and Iris Kaiser for technical support with the multiplex analysis and Prof. Dr. Holger Sültmann (Division of Cancer Genome Research, NCT and German Cancer Research Center, Heidelberg, Germany) for providing access to the Bio-Plex 200 System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Koellensperger.

Ethics declarations

Disclosure of interest

The authors have no commercial, proprietary, or financial interest in the products or companies described in this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preisner, F., Leimer, U., Sandmann, S. et al. Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in An In Vitro Co-culture Model. Stem Cell Rev and Rep 14, 125–140 (2018). https://doi.org/10.1007/s12015-017-9772-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9772-y

Keywords

Navigation