Skip to main content

Advertisement

Log in

Of Cytometry, Stem Cells and Fountain of Youth

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Outlined are advances of cytometry applications to identify and sort stem cells, of laser scanning cytometry and ImageStream imaging instrumentation to further analyze morphometry of these cells, and of mass cytometry to classify a multitude of cellular markers in large cell populations. Reviewed are different types of stem cells, including potential candidates for cancer stem cells, with respect to their “stemness”, and other characteristics. Appraised is further progress in identification and isolation of the “very small embryonic-like stem cells” (VSELs) and their autogenous transplantation for tissue repair and geroprotection. Also assessed is a function of hyaluronic acid, the major stem cells niche component, as a guardian and controller of stem cells. Briefly appraised are recent advances and challenges in the application of stem cells in regenerative medicine and oncology and their future role in different disciplines of medicine, including geriatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hulett, H. R., Bonner, W. A., Barrett, J., & Herzenberg, L. A. (1969). Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science, 166, 747–749.

    Article  CAS  PubMed  Google Scholar 

  2. Kamentsky, L. A., & Melamed, M. R. (1967). Spectrophotometric cell sorter. Science, 156, 1364–1365.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, V., Challen, G. A., Zuba-Surma, E., Ulrich, H., Vereb, G., & Tárnok, A. (2009). Where new approaches can stem from: Focus on stem cell identification. Cytometry. Part A, 75A, 1–3.

    Article  Google Scholar 

  4. Stoner, S. A., Duggan, E., Condello, D., et al. (2016). High sensitivity flow cytometry of membrane vesicles. Cytometry. Part A, 89(2), 196–206.

    Article  CAS  Google Scholar 

  5. Doležel, J., Vrána, J., Safář, J., Bartoš, J., Kubaláková, M., & Simková, H. (2012). Chromosomes in the flow to simplify genome analysis. Functional and Integrative Genomics, 12, 397–416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tighe, P., Negm, O., Todd, I., & Fairclough, L. (2013). Utility, reliability and reproducibility of immunoassay multiplex kits. Methods, 61, 23–29.

    Article  CAS  PubMed  Google Scholar 

  7. Ernst, D., Bolton, G., Recktenwald, D., et al. (2006). Bead-based flow cytometric assays: A multiplex assay platform with applications in diagnostic microbiology. In Y. W. Tang & C. W. Stratton (Eds.), Advanced techniques in diagnostic microbiology (pp. 427–443). New York: Springer.

    Chapter  Google Scholar 

  8. Morgan, E., Varro, R., Sepulveda, H., et al. (2004). Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clinical Immunology, 110, 252–266.

    Article  CAS  PubMed  Google Scholar 

  9. Funato, Y., Baumhover, H., Grantham-Wright, D., Wilson, J., Ernst, D., & Sepulveda, H. (2002). Simultaneous measurement of six human cytokines using the cytometric bead array system, a multiparameter immunoassay system for flow cytometry. Cytometry Research, 12, 93–97.

    Google Scholar 

  10. Cook, E. B., Stahl, J. L., Lowe, L., et al. (2001). Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry: allergics vs. non-allergics. Journal of Immunological Methods, 254, 109–118.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, J., Xue, C., Zhao, Y., Chen, D., Wu, M. H., & Wang, J. (2015). Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization. International Journal of Molecular Sciences, 16(5), 9804–9830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan, B., Li, X., Chen, D., Peng, H., Wang, J., & Chen, J. (2016). Development of microfluidic systems enabling high-throughput single-cell protein characterization. Sensors (Basel), 16(2), 232. doi:10.3390/s16020232

  13. Donnenberg, V. S., Ulrich, H., & Tárnok, A. (2013). Cytometry in stem cell research and therapy. Cytometry. Part A, 83(1), 1–4.

    Article  CAS  Google Scholar 

  14. Robinson, J. P., Rajwa, B., Patsekin, V., & Davisson, V. J. (2012). Computational analysis of high-throughput flow cytometry data. Expert Opinion on Drug Discovery, 7, 679–693.

    Article  PubMed  PubMed Central  Google Scholar 

  15. O'Donnell, E. A., Ernst, D. N., & Hingorani, R. (2013). Multiparameter flow cytometry: advances in high resolution analysis. Immune Network, 13(2), 43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aghaeepour, N., Finak, G., FlowCAP Consortium; DREAM Consortium, Hoos, H., Mosmann, T. R., Brinkman, R., Gottardo, R., & Scheuermann, R. H. (2013). Critical assessment of automated flow cytometry data analysis techniques. Nature Methods, 10(3), 228–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Normolle, D. P., Donnenberg, V. S., & Donnenberg, A. D. (2013). Statistical classification of multivariate flow cytometry data analyzed by manual gating: stem, progenitor, and epithelial marker expression in nonsmall cell lung cancer and normal lung. Cytometry. Part A, 83(1), 150–160.

    Article  CAS  Google Scholar 

  18. Jaye, D. L., Bray, R. A., Gebel, H. M., Harris, W. A., & Waller, E. K. (2012). Translational applications of flow cytometry in clinical practice. The Journal of Immunology, 188(10), 4715–4719.

    Article  CAS  PubMed  Google Scholar 

  19. Roederer, M. (2016). Distributions of autofluorescence after compensation: be Panglossian, fret not. Cytometry. Part A, 89(4), 398–402.

    Article  CAS  Google Scholar 

  20. Donnenberg, V. S., Landreneau, R. J., Pfeifer, M. E., & Donnenberg, A. D. (2013). Flow cytometric determination of stem/progenitor content in epithelial tissues: an example from nonsmall lung cancer and normal lung. Cytometry. Part A, 83(1), 141–149.

    Article  CAS  Google Scholar 

  21. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183(4), 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  22. Storms, R. W., Goodell, M. A., Fisher, A., Mulligan, R. C., & Smith, C. (2000). Hoechst dye efflux reveals a novel CD7(+)CD34(−) lymphoid progenitor in human umbilical cord blood. Blood, 96(6), 2125–2133.

    CAS  PubMed  Google Scholar 

  23. Lin, K. K., & Goodell, M. A. (2011). Detection of hematopoietic stem cells by flow cytometry. Methods in Cell Biology, 103, 21–30.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, F. F., Zhang, L., Wu, D. S., et al. (2014). PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PloS One, 9(3), e88298. doi:10.1371/journal.pone.0088298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jiang, Y., Gao, H., Liu, M., & Mao, Q. (2016). Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma. American Journal of Cancer Research, 6(9), 1890–1905.

    PubMed  PubMed Central  Google Scholar 

  26. Yasuda, K., Torigoe, T., Morita, R., et al. (2013). Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population. PloS One, 8(8), e68187. doi:10.1371/journal.pone.0068187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Darzynkiewicz, Z., Traganos, F., Staiano-Coico, L., & Kapuscinski, J. (1982). Interactions of rhodamine 123 with living cells studied by flow cytometry. Cancer Research, 42(3), 799–780.

    CAS  PubMed  Google Scholar 

  28. Lu, J., Cui, Y., Zhu, J., He, J., Zhou, G., & Yue, Z. (2013). Biological characteristics of Rh123 stem-like cells in a side population of 786-O renal carcinoma cells. Oncology Letters, 5, 1903–1908.

    PubMed  PubMed Central  Google Scholar 

  29. Challen, G. A., & Little, M. H. (2006). A side order of stem cells: the SP phenotype. Stem Cells, 24(1), 3–12.

    Article  PubMed  Google Scholar 

  30. Liu, W. H., Qian, N. S., Li, R., & Dou, K. F. (2010). Replacing Hoechst33342 with rhodamine123 in isolation of cancer stem-like cells from the MHCC97 cell line. Toxicology In Vitro, 24, 538–545.

    Article  CAS  PubMed  Google Scholar 

  31. Darzynkiewicz, Z., Staiano-Coico, L., & Melamed, M. R. (1981). Increased mitochondrial uptake of rhodamine 123 during lymphocyte stimulation. Proceedings of the National Academy of Sciences USA, 78, 2383–2387.

    Article  CAS  Google Scholar 

  32. Ueno, H. (2016). Identification of normal and neoplastic stem cells by the multicolor lineage tracing methods. Pathology International, 66(8), 423–430.

    Article  PubMed  Google Scholar 

  33. Mildmay-White, A., Khan, W. (2016). Cell surface markers on adipose-derived stem cells: a systematic review. Current Stem Cell Research & Therapy. Epub ahead of print. PubMed

  34. Donnenberg, V. S., & Ulrich, H. (2013). Mesenchymal stem cells, therapy, and cytometry. Cytometry. Part A, 83(1), 8–10.

    Article  CAS  Google Scholar 

  35. Zimmerlin, L., Donnenberg, V. S., Rubin, J. P., & Donnenberg, A. D. (2013). Mesenchymal markers on human adipose stem/progenitor cells. Cytometry. Part A, 83(1), 134–140.

    Article  CAS  Google Scholar 

  36. Atalay, S., Coruh, A., & Deniz, K. (2014). Stromal vascular fraction improves deep partial thickness burn wound healing. Burns, 40(7), 1375–1383.

    Article  PubMed  Google Scholar 

  37. Guillaume-Jugnot, P., Daumas, A., Magalon, J., et al. (2016). Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis: 12-month follow-up. Rheumatology (Oxford), 55(2), 301–306.

    Article  Google Scholar 

  38. Madjd, Z., Erfani, E., Gheytanchi, E., Moradi-Lakeh, M., Shariftabrizi, A., & Asadi-Lari, M. (2016). Expression of CD133 cancer stem cell marker in melanoma: a systematic review and meta-analysis. The International Journal of Biological Markers, 31(2), e118–e125.

    Article  PubMed  Google Scholar 

  39. Sun, J. H., Luo, Q., Liu, L. L., & Song, G. B. (2016). Liver cancer stem cell markers: Progression and therapeutic implications. World Journal of Gastroenterology, 22(13), 3547–3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao, M., Kong, Y., Yang, G., Gao, L., & Shi, J. (2016). Multiple myeloma cancer stem cells. Oncotarget, 7(23), 35466–35477.

    PubMed  PubMed Central  Google Scholar 

  41. Codony-Servat, J., Verlicchi, A., & Rosell, R. (2016). Cancer stem cells in small cell lung cancer. Translational Lung Cancer Research, 5(1), 16–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Valent, P., Bonnet, D., De Maria, R., et al. (2012). Cancer stem cell definitions and terminology: the devil is in the details. National Reviews Cancer, 12(11), 767–775.

    Article  CAS  Google Scholar 

  43. Huang, R., Rofstad, E.K. (2016). Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget, doi: 10.18632/oncotarget.10169.

  44. Hani, H., Nazariah Allaudin, Z., Mohd-Lila, M.A., Sarsaifi, K., Tengku-Ibrahim, T.A., Mazni, Othman, A. (2016). Evaluation of isolated caprine pancreatic islets cytoarchitecture by laser scanning confocal microscopy and flow cytometry. Xenotransplantation, 23(2), 128–136.

  45. Kamentsky, L. A. (2001). Laser scanning cytometry. Methods in Cell Biology, 63, 51–87.

    Article  CAS  PubMed  Google Scholar 

  46. Henriksen, M. (2010). Quantitative imaging cytometry: instrumentation of choice for automated cellular and tissue analysis. Nature Methods. doi:10.1038/nmeth.f.302.

    Google Scholar 

  47. Henriksen, M., Miller, B., Newmark, J., Al-Kofahi, Y., & Holden, E. (2011). Laser scanning cytometry and its applications: a pioneering technology in the field of quantitative imaging cytometry. Methods in Cell Biology, 102, 161–205.

    PubMed  Google Scholar 

  48. Pozarowski, P., Holden, E., & Darzynkiewicz, Z. (2013). Laser scanning cytometry: principles and applications-an update. Methods in Molecular Biology, 931, 187–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, X., & Darzynkiewicz, Z. (1999). The Schrödinger's cat quandary in cell biology: Integration of live cell functional assays with measurements of fixed cells in analysis of apoptosis. Experimental Cell Research, 249, 404–412.

    Article  CAS  PubMed  Google Scholar 

  50. Basiji, D. A. (2016). Principles of Amnis imaging flow cytometry. Methods in Molecular Biology, 1389, 13–21.

    Article  PubMed  Google Scholar 

  51. Zuba-Surma, E. K., & Ratajczak, M. Z. (2011). Analytical capabilities of the ImageStream cytometer. Methods in Cell Biology, 102, 207–230.

    Article  PubMed  Google Scholar 

  52. Zuba-Surma, E.K., Ratajczak, M.Z. (2010). Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. Current Protocols in Cytometry, Chapter 9: Unit 9.29.

  53. Zuba-Surma, E. K., Kucia, M., & Abdel-Latif, A. (2008). Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. Journal of Cellular and Molecular Medicine, 12(1), 292–303.

    Article  PubMed  Google Scholar 

  54. Helios a CyTOF system Discover your inner cell (Helios brochure). https://www.fluidigm.com/binaries/content/documents/fluidigm/marketing/helios-brochure-br-101-0724/helios-brochure-br-101-0724/fluidigm%3Afile. Accessed 11 Dec 2016.

  55. Do, P., & Byrd, J. C. (2015). Mass cytometry: a high-throughput platform to visualize the heterogeneity of acute myeloid leukemia. Cancer Discovery, 5(9), 912–914.

    Article  CAS  PubMed  Google Scholar 

  56. Behbehani, G. K., Samusik, N., Bjornson, Z. B., Fantl, W. J., Medeiros, B. C., & Nolan, G. P. (2015). Mass cytometric functional profiling of acute myeloid leukemia defines cell-cycle and Immunophenotypic properties that correlate with known responses to therapy. Cancer Discovery, 5(9), 988–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zunder, E. R., Lujan, E., Goltsev, Y., Wernig, M., & Nolan, G. P. (2015). A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell, 16(3), 323–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Han, L., Qiu, P., Zeng, Z., et al. (2015). Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells. Cytometry. Part A, 87(4), 346–356.

    Article  CAS  Google Scholar 

  59. Waki, M., Ide, Y., Ishizaki I., et al. (2014). Single-cell time-of-flight secondary ion mass spectrometry reveals that human breast cancer stem cells have significantly lower content of palmitoleic acid compared to their counterpart non-stem cancer cells. Biochimie, 107 Pt A, 73–7.

  60. Laugwitz, K.L., Moretti, A., Lam, J., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433:647–653[Erratum, Nature 2007, 446, 934.]

  61. Domian, I. J., Chiravuri, M., van der Meer, P., et al. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326, 426–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rumman, M., Dhawan, J., & Kassem, M. (2015). Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells, 33(10), 2903–2912.

    Article  PubMed  Google Scholar 

  63. Posfai, E., Tam, O. H., & Rossant, J. (2014). Mechanisms of pluripotency in vivo and in vitro. Current Topics in Developmental Biology, 107, 1–37.

    Article  CAS  PubMed  Google Scholar 

  64. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  65. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  66. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  67. Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes and Development, 24(20), 2239–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, K., Song, Y., Yu, H., & Zhao, T. (2014). Understanding the roadmaps to induced pluripotency. Cell Death & Disease, 5, e1232.

    Article  CAS  Google Scholar 

  69. Tapia, N., & Schöler, H. R. (2016). Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell, 19(3), 298–309.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshihara, M., Hayashizaki, Y., & Murakawa, Y. (2016). Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Reviews and Reports. doi:10.1007/s12015-016-9680-6.

    PubMed Central  Google Scholar 

  71. Li, L., & Xie, T. (2005). Stem cell niche: structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.

    Article  CAS  PubMed  Google Scholar 

  72. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Inaba, M., Yamashita, Y. M., & Buszczak, M. (2016). Keeping stem cells under control: new insights into the mechanisms that limit niche-stem cell signaling within the reproductive system. Molecular Reproduction and Development. doi:10.1002/mrd.22682.

    PubMed  Google Scholar 

  74. Weiss, D. J. (2013). Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Annals of the American Thoracic Society, 10(5), S45–S97.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bianchi, G., Borgonovo, G., Pistoia, V., & Raffaghello, L. (2011). Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histology and Histopathology, 26, 941–951.

    CAS  PubMed  Google Scholar 

  76. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 714.

    Article  Google Scholar 

  77. Granero-Molto, F., Weis, J. A., Longobardi, L., & Spagnoli, A. (2008). Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opinion on Biological Therapy, 8, 255–268.

    Article  CAS  PubMed  Google Scholar 

  78. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28, 585–596.

    CAS  PubMed  Google Scholar 

  79. Dezawa, M., Ishikawa, H., Itokazu, Y., et al. (2005). Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309, 314–317.

    Article  CAS  PubMed  Google Scholar 

  80. Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sousa, B. R., Parreira, R. C., Fonseca, E. A., et al. (2014). Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry, 85, 43–77.

    Article  PubMed  CAS  Google Scholar 

  82. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  83. Eaves, C. J. (2015). Hematopoietic stem cells: concepts, definitions, and the new reality. Blood, 125(17), 2605–2613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaplan, D., Kaye, N., Liu, F., et al. (2013). The functional duality of HoxB4 in hematopoietic reconstituting cells. Cytometry. Part A, 83(1), 127–133.

    Article  CAS  Google Scholar 

  85. Zipori, D. (2006). The stem state: Mesenchymal plasticity as a paradigm. Current Stem Cell Research & Therapy, 1, 95–102.

    Article  CAS  Google Scholar 

  86. Donnenberg, A. D., Hicks, J. B., Wigler, M., & Donnenberg, V. S. (2013). The cancer stem cell: Cell type or cell state? Cytometry. Part A, 83(1), 5–7.

    Article  CAS  Google Scholar 

  87. Gordon-Keylock, S., & Medvinsky, A. (2011). Endothelio-hematopoietic relationship: getting closer to the beginnings. BMC Biology, 9, 88.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Park, T. S., Zimmerlin, L., & Zambidis, E. T. (2013). Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells. Cytometry. Part A, 83(1), 114–126.

    Article  CAS  Google Scholar 

  89. Daniel, M.G., Pereira, C.F., Lemischka, I.R., Moore, K.A. (2016). Trends in cell biology, 26(3), 202–214

  90. Liu, M. L., Zang, T., Zou, Y., et al. (2013). Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nature Communications, 4, 2183. doi:10.1038/ncomms3183.

  91. Federation, A. J., Bradner, J. E., & Meissner, A. (2014). The use of small molecules in somatic-cell reprogramming. Trends in Cell Biology, 24, 179–187.

    Article  CAS  PubMed  Google Scholar 

  92. Fábián, Á., Vereb, G., & Szöllősi, J. (2013). The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy. Cytometry. Part A, 83(1), 62–71.

    Article  CAS  Google Scholar 

  93. Wicha, M. S. (2006). Cancer stem cells and metastasis: lethal seeds. Clinical Cancer Research, 12, 5606–5607.

    Article  PubMed  Google Scholar 

  94. Li, F., Tiede, B., Massague, J., & Kang, Y. (2007). Beyond tumorigenesis: cancer stem cells in metastasis. Cell Research, 17, 3–14.

    Article  CAS  PubMed  Google Scholar 

  95. Dalerba, P., & Clarke, M. F. (2007). Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell, 1, 241–242.

    Article  CAS  PubMed  Google Scholar 

  96. Keysar, S. B., & Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Molecular Cancer Therapeutics, 9(9), 2450–2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gunjal, P., Pedziwiatr, D., Ismail, A.A., Kakar, S.S., Ratajczak, M.Z. (2015). An emerging question about putative cancer stem cells in established cell lines-are they true stem cells or a fluctuating cell phenotype? Journal of Cancer Stem Cell Research, 3, e1004.

  98. Kucia, M., Halasa, M., Wysoczynski, M., et al. (2007). Morphological and molecular characterization of novel population of CXCR4+ SSEA-4 +Oct-4+ very small embryonic-like cells purified from human cord blood: Preliminary report. Leukemia, 21, 297–303.

    Article  CAS  PubMed  Google Scholar 

  99. Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., & Ratajczak, M. Z. (2006). A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+)Oct-4(+) stem cells identified in adult bone marrow. Leukemia, 20, 857–869.

    Article  CAS  PubMed  Google Scholar 

  100. Danova-Alt, R., Heider, A., Egger, D., Cross, M., & Alt, R. (2012). Very small embryonic-like stem cells purified from umbilical cord blood lack stem cell characteristics. PLoS One, 7(4), e34899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Heider, A., Danova-Alt, R., Egger, D., Cross, M., & Alt, R. (2013). Murine and human very small embryonic-like cells: a perspective. Cytometry Part A, 83, 72–75.

    Article  CAS  Google Scholar 

  102. Suszynska, M., Zuba-Surma, E. K., Maj, M., et al. (2014). The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells and Development, 23(7), 702–713.

    Article  PubMed  Google Scholar 

  103. Kucia, M., Masternak, M., Liu, R., et al. (2013). The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age (Dordrecht, Netherlands), 35(2), 315–330.

    Article  CAS  Google Scholar 

  104. Sovalat, H., Scrofani, M., Eidenschenk, A., & Hénon, P. (2016). Human very small embryonic-like stem cells are present in normal peripheral blood of young, middle-aged, and aged subjects. Stem Cells International. doi:10.1155/2016/7651645.

    PubMed  Google Scholar 

  105. Kim, Y., Jeong, J., Kang, H., et al. (2014). The molecular nature of very small embryonic-like stem cells in adult tissues. International Journal of Stem Cells, 7(2), 55–6266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Parte, S., Bhartiya, D., Telang, J., et al. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells and Development, 20(8), 1451–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bhartiya, D., Unni, S., Parte ,S., Anand, S. (2013). Very small embryonic-like stem cells: implications in reproductive biology. BioMed Research International, doi:10.1155/2013/682326.

  108. Sun, L., Li, H., Qu, L., et al. (2014). Immobilized lentivirus vector on chondroitin sulfate-hyaluronate acid-silk fibroin hybrid scaffold for tissue-engineered ligament-bone junction. BioMed Research International. doi:10.1155/2014/816979.

    Google Scholar 

  109. Ratajczak, M.Z., Ratajczak, J., Suszynska, M., Miller, D.M., Kucia, M., Shin, D.M. (2016). A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulation Research. (in press).

  110. Darzynkiewicz, Z., & Balazs, E. A. (2012). Genome integrity, stem cells and hyaluronan. Aging, 4(2), 78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, H., Tanaka, T., Mitlitski, V., Heeter, J., Balazs, E. A., & Darzynkiewicz, Z. (2008). Protective effect of hyaluronate on oxidative DNA damage in WI-38 and A549 cells. International Journal of Oncology, 32, 1159–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Halicka, H. D., Mitlitski, V., Heeter, J., Balazs, E. A., & Darzynkiewicz, Z. (2009). Attenuation of the oxidative burst induced DNA damage in human leukocytes by hyaluronate. International Journal of Molecular Medicine, 23, 695–699.

    CAS  PubMed  Google Scholar 

  113. Liu, C.-M., Yu, C.-H., Chang, C.-H., Hsu, C.-C., & Huang, L. L. H. (2008). Hyaluronan substratum holds mesenchymal stem cells in slow-cycling mode by prolonging G1 phase. Cell and Tissue Research, 334, 435–443.

    Article  PubMed  Google Scholar 

  114. Kim, B. S., Choi, J. S., Kim, J. D., Yeo, T. Y., & Cho, Y. W. (2010). Improvement of stem cell viability in hyaluronic acid hydrogels using dextran microspheres. Journal of Biomaterials Science, Polymer Edition, 21, 1701–1711.

    Article  CAS  Google Scholar 

  115. Rossi, C. A., Flaibani, M., Blaauw, B., et al. (2011). In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in photopolymerizable hydrogel. FASEB Journal, 25, 2296–2304.

    Article  CAS  PubMed  Google Scholar 

  116. Lei, Y., Golgini, S., Lam, J., & Segura, T. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32, 39–47.

    Article  CAS  PubMed  Google Scholar 

  117. Ratliff, B.B., Ghaly, T., Brudnicki, P., Yasuda, K., Rajdev, M., Bank M., Mares, J. (2010). Hatzopoulos A.K, Goligorski M.S. Endothelial progenitors encapsulated in bioartificial niches are insulated from systemic cytotoxicity and are angiogenesis competent. The American Journal of Physiology - Renal Physiology, 299, F178-F186.

  118. Matrosova, V. Y., Orlovskaya, I. A., Serobyan, N., & Khaldoyanidi, S. K. (2004). Hyaluronic acid facilitates the recovery of hematopoiesis following 5-fluorouracil administration. Stem Cells, 22, 544–585.

    Article  CAS  PubMed  Google Scholar 

  119. Haylock, D. N., & Nilsson, S. K. (2006). The role of hyaluronic acid in hematopoietic stem cell biology. Regenerative Medicine, 1, 437–445.

    Article  CAS  PubMed  Google Scholar 

  120. Pilarski, L. M., Pruski, E., Wizniak, J., et al. (1999). Potential role for the hyaluronan receptor RHAMM in mobilizing and trafficking of hematopoietic progenitor cells. Blood, 83, 2818–2927.

    Google Scholar 

  121. Choudhary, M., Zhang, X., Stojkovic, P., et al. (2007). Putative role of hyaluronan and its ferated genes, HAS2 and RHAMM, in human early preimplantation embryogenesis and embryonic stem cell characterization. Stem Cells, 25, 3045–3057.

    Article  CAS  PubMed  Google Scholar 

  122. Ratajczak, J., Miekus, K., & Kucia, M. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20(5), 847–856.

    Article  CAS  PubMed  Google Scholar 

  123. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.

    Article  CAS  PubMed  Google Scholar 

  124. Skog, J., Würdinger, T., van Rijn, S., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ratajczak, J., Miekus, K., Kucia, M., et al. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20(5), 847–856.

    Article  CAS  PubMed  Google Scholar 

  126. Ratajczak, M. Z., & Ratajczak, J. (2016). Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clinical and Translational Medicine, 5(1), 7.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lowry, M. C., Gallagher, W. M., & O'Driscoll, L. (2015). The role of exosomes in breast cancer. Clinical Chemistry, 61(12), 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  128. Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Camussi, G. (2016). Stem cell-derived extracellular vesicles and immune-modulation. Frontiers in Cell and Developmental Biology, 4, 83.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). Cardiac extracellular vesicles in normal and infarcted heart. International Journal of Molecular Sciences, 17, E63.

    Article  PubMed  CAS  Google Scholar 

  130. Itkin, T., Gur-Cohen, S., Spencer, J. A., et al. (2016). Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 532(7599), 323–328.

    Article  CAS  PubMed  Google Scholar 

  131. Yuniadi, Y., Kusnadi, Y., Sandhow, L., et al. (2016). Progenitor hematopoietic cells implantation improves functional capacity of end stage coronary artery disease patients with advanced heart failure. Cardiology Research and Practice. doi:10.1155/2016/3942605.

    PubMed  PubMed Central  Google Scholar 

  132. Fisher, S. A., Brunskill, S. J., Doree, C., Mathur, A., Taggart, D. P., & Martin-Rendon, E. (2014). Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD007888.pub2.

    PubMed Central  Google Scholar 

  133. Zhu, K., Li, J., Wang, Y., Lai, H., & Wang, C. (2016). Nanoparticles-assisted stem cell therapy for ischemic heart disease. Stem Cells International, 2016, 1384658.

    PubMed  Google Scholar 

  134. Kriegstein, A., & Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience, 32, 149–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dupin, E., & Coelho-Aguiar, J. M. (2013). Isolation and differentiation properties of neural crest stem cells. Cytometry. Part A, 83(1), 38–47.

    Article  CAS  Google Scholar 

  136. Motohashi, T., & Kunisada, T. (2015). Extended multipotency of neural crest cells and neural crest-derived cells. Current Topics in Developmental Biology, 111, 69–95.

    Article  PubMed  Google Scholar 

  137. Bronner, M. (2015). Confetti clarifies controversy: neural crest stem cells are multipotent. Cell Stem Cell, 16(3), 217–218.

    Article  CAS  PubMed  Google Scholar 

  138. Baggiolini, A., Varum, S., Mateos, J. M., et al. (2015). Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell, 16(3), 314–322.

    Article  CAS  PubMed  Google Scholar 

  139. Kristóf, E., Doan-Xuan, Q. M., Bai, P., Bacso, Z., & Fésüs, L. (2015). Laser-scanning cytometry can quantify human adipocyte browning and proves effectiveness of irisin. Scientific Reports, 5, 12540.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Waldman, M., Bellner, L., Vanella, L., et al. (2016). Epoxyeicosatrienoic acids regulate adipocyte differentiation of mouse 3T3 cells, via PGC-1α activation, which is required for HO-1 expression and increased mitochondrial function. Stem Cells and Development, 25, 1084–1094.

    Article  CAS  PubMed  Google Scholar 

  141. Kaur, S., Soto-Pantoja, D. R., Stein, E. V., et al. (2013). Thrombospondin-1 signaling through CD47 inhibits self-renewal by regulating c-Myc and other stem cell transcription factors. Scientific Reports - Nature, 3, 1673.

    Article  CAS  Google Scholar 

  142. Jaiswal, S., Jamieson, C. H., Pang, W. W., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138, 271–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Majeti, R., Chao, M. P., Alizadeh, A. A., et al. (2009). CD47 is an adverse prognostic factor and therapeutic antibody target on human myeloid leukemia stem cells. Cell, 138, 286–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tseng, D., Volkmer, J. P., Willingham, S. B., et al. (2013). Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proceedings of the National Academy of Sciences, 110, 11103–11108.

    Article  CAS  Google Scholar 

  145. McCracken, M. N., Cha, A. C., & Weissman, I. L. (2015). Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 "Don't eat me" signals. Clinical Cancer Research, 21(16), 3597601.

    Article  CAS  Google Scholar 

  146. Barriers to Treatment–Developing CD47 Antibody Therapy. http://curesearch.org/Barriers-to-Treatment. Accessed 11 Dec 2016.

  147. Ho, C. C., Guo, N., Sockolosky, J. T., et al. (2015). “Velcro” engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. The Journal of Biological Chemistry, 290(20), 12650–12663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kershaw, M. H., Westwood, J. A., Slaney, C. Y., et al. (2014). Clinical application of genetically modified T cells in cancer therapy. Clinical and Translational Immunology, 3, e16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Pan, Q., Li, Q., Liu, S., et al. (2015). Concise review: targeting cancer stem cells using immunologic approaches. Stem Cells, 33(7), 2085–2092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Canter, R. J., Grossenbacher, S. K., Ames, E., & Murphy, W. J. (2016). Immune targeting of cancer stem cells in gastrointestinal oncology. Journal of Gastrointestinal Oncology, 7(Suppl 1), S1–S10.

    PubMed  PubMed Central  Google Scholar 

  151. Grossenbacher, S. K., Canter, R. J., & Murphy, W. J. (2016). Natural killer cell immunotherapy to target stem-like tumor cells. Journal for ImmunoTherapy of Cancer, 4, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ames, E., Canter, R. J., Grossenbacher, S. K., et al. (2015). NK cells preferentially target tumor cells with a cancer stem cell phenotype. Journal of Immunology, 195(8), 4010–4019.

    Article  CAS  Google Scholar 

  153. Ames, E., Canter, R. J., Grossenbacher, S. K., et al. (2015). Enhanced targeting of stem-like solid tumor cells with radiation and natural killer cells. Oncoimmunology, 4(9), e1036212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141, 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Qian, B., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PloS One, 4(8), e6562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Hanna, R. N., Cekic, C., Sag, D., et al. (2015). Patrolling monocytes control tumor metastasis to the lung. Science, 350(6263), 985–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Malladi, S., Macalinao, D. G., Jin, X., et al. (2016). Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell, 165(1), 45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pollard, J. W. (2016). Defining metastatic cell latency. New England Journal of Medicine, 375(3), 280–282.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Levine, J. H., Simonds, E. F., Bendall, S. C., et al. (2015). Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell, 162(1), 184–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Behbehani, G. K., Samusik, N., Bjornson, Z. B., et al. (2015). Cytometric functional profiling of acute myeloid leukemia defines cell-cycle and Immunophenotypic properties that correlate with known responses to therapy. Cancer Discovery, 5(9), 988–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lehoczky, J. A., Robert, B., & Tabin, C. J. (2011). Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proceedings of the National Academy of Sciences, 108, 20609–20614.

    Article  CAS  Google Scholar 

  162. Park, D., Spencer, J. A., Koh, B. I., et al. (2012). Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell, 10, 259–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Le Douarin, N. M., Calloni, G. W., & Dupin, E. (2008). The stem cells of the neural crest. Cell Cycle, 7, 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  164. Li, X., Upadhyay, A. K., Bullock, A. J., et al. (2013). Skin stem cell hypotheses and long term clone survival—explored using agent-based modelling. Scientific Reports, 3, 1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Villeda, S. A., Plambeck, K. E., Middeldorp, J., et al. (2014). Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Medicine, 20(6), 659–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ratajczak, M.Z., Bartke, A., Darzynkiewicz, Z. (2017) Prolonged growth hormone/insulin/insulin-like growth factor nutrient response signaling pathway as a silent killer of stem cells and a culprit in aging. Stem Cell Rev Reports. doi:10.1007/s12015-017-9728-2.

  167. Halicka, H. D., Zhao, H., Li, J., et al. (2012). Potential antiaging agents suppress the level of constitutive DNA damage- and mTOR- signaling. Aging, 4, 952–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Darzynkiewicz, Z., Zhao, H., Halicka, H. D., et al. (2014). In search of anti-aging modalities: evaluation of mTOR- and ROS/DNA damage- signaling by cytometry. Cytometry. Part A, 85A, 386–599.

    Article  CAS  Google Scholar 

  169. Halicka, H. D., Garcia, J., Li, J., Zhao, H., & Darzynkiewicz, Z. (2016). Synergy of 2-deoxy-D-glucose combined with berberine in inducing the lysosome/autophagy and transglutaminase activation-facilitated apoptosis. Apoptosis. doi:10.1007/s10495-016-1315-5.

    Google Scholar 

  170. Anisimov, V. N. (2015). Metformin for cancer and aging prevention: is it a time to make the long story short? Oncotarget, 6, 39398–39407.

    PubMed  PubMed Central  Google Scholar 

  171. Newman, J. C., Milman, S., Hashmi, S. K., et al. (2016). Strategies and challenges in clinical trials targeting human aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 71(11), 1424–1434.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Leontieva, O. V., Demidenko, Z. N., & Blagosklonny, M. V. (2015). Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program). Oncotarget, 6, 23238–23248.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zhao, H., Halicka, H. D., Li, J., & Darzynkiewicz, Z. (2013). Berberine suppresses gero-conversion from cell cycle arrest to senescence. Aging, 6, 633–636.

    Google Scholar 

  174. Bartke, A. (2016). Healthspan and longevity can be extended by suppression of growth hormone signaling. Mammalian Genome, 27, 289–299.

    Article  CAS  PubMed  Google Scholar 

  175. Metformin in Longevity Study. https://clinicaltrials.gov/ct2/show/NCT02432287. Accessed 12 Dec 2016.

  176. Rodgers, B. D. (2016). The immateriality of circulating GDF11. Circulation Research, 118(10), 1472–1474.

    Article  CAS  PubMed  Google Scholar 

  177. Du, G. Q., Shao, Z. B., & Wu, J. (2017). Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury. Basic Research in Cardiology, 112(1), 7.

    Article  PubMed  CAS  Google Scholar 

  178. Hinken, A. C., Powers, J. M., Luo, G., Holt, J. A., Billin, A. N., & Russell, A. J. (2016). Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells. Aging Cell, 15, 582–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Liu, L. (2017). Linking telomere regulation to stem cell pluripotency. Trends in Genetics, 33, 16–33.

    Article  PubMed  CAS  Google Scholar 

  180. Shay, J. W. (2016). Role of telomeres and telomerase in aging and cancer. Cancer Discovery, 6, 584–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Martínez, P., Blasco, M.A. (2017) Telomere-driven diseases and telomere-targeting therapies. The Journal of Cell Biology. doi:10.1083/jcb.201610111.

  182. Li, J. S., Miralles Fusté, J., Simavorian, T., et al. (2017). TZAP: a telomere-associated protein involved in telomere length control. Science, 355, 638–641.

    Article  CAS  PubMed  Google Scholar 

  183. Zhou, Q., & Melton, D. A. (2008). Extreme makeover: converting one cell into another. Cell Stem Cell, 3, 382–388.

    Article  CAS  PubMed  Google Scholar 

  184. Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481, 295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Darzynkiewicz.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkowski, D., Ratajczak, M.Z., Kocki, J. et al. Of Cytometry, Stem Cells and Fountain of Youth. Stem Cell Rev and Rep 13, 465–481 (2017). https://doi.org/10.1007/s12015-017-9733-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9733-5

Keywords

Navigation