Skip to main content
Log in

Transmyocardial Revascularization Enhances Bone Marrow Stem Cell Engraftment in Infarcted Hearts Through SCF—C-kit and SDF-1—CXCR4 Signaling Axes

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

We investigated the roles of stem cell factor (SCF)–c-kit and stromal derived factor-1 (SDF-1)–CXCR4 signaling axes in transmyocardial revascularization (TMR)-enhanced engraftment of transplanted bone marrow stem cells (BMSCs) in infarcted hearts.

Methods

3 weeks after LAD ligation, female Lewis rats underwent 10-channel needle-TMR, followed by daily IV injections of 1 million male donor BMSC for 5 days, either wild type (WT) or with knockdown (K/D) of c-kit or CXCR4, accomplished via a shRNA + plasmid in a lentiviral vector (N = 6/group).

Results

In our rat infarct model, 3 days after last BMSC injection, the number of BMSCs that homed into infarct was affected by both TMR and donor cell type, with greater BMSC engraftment with TMR and with WT BMSC (TMR, cell type, and interaction, P < 0.05). At 1 week, these differences persisted (TMR and cell type, P < 0.05). At 3 days, TMR significantly upregulated transcription of c-kit (TMR, p < 0.05), SCF (TMR and cell type, P < 0.05), CXCR4 (TMR and cell type, p < 0.05), and SDF-1 (TMR and cell type, P < 0.05). At 1 week, we saw similar declines in expression of c-kit (cell type, P < 0.05), SCF (TMR, P < 0.05), CXCR4 (TMR and cell type, P < 0.05), and SDF-1 (TMR, P < 0.05). At 1 week, TMR improved LV ejection fraction (LVEF) (N = 5) when WT BMSCs were infused, but knockdown of either c-kit or CXCR4 completely abrogated this TMR-mediated augmentation of BMSC reparative effect (TMR and cell type, P < 0.05).

Conclusions

Downregulation of either c-kit or CXCR4 in BMSC decreased engraftment of circulating BMSC and inhibited reparative effects of TMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109(8), 923–940.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Yousef, Z. R., Redwood, S. R., & Marber, M. S. (2000). Postinfarction left ventricular remodeling: a pathophysiological and therapeutic review. Cardiovascular Drugs and Therapy, 14(3), 243–252.

    Article  CAS  PubMed  Google Scholar 

  3. Sutton, M. G. S. J., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation, 101(25), 2981–2988.

    Article  CAS  PubMed  Google Scholar 

  4. Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032–1043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., Keating, S. C. J., et al. (2008). Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells, 26(11), 2884–2892.

    Article  CAS  PubMed  Google Scholar 

  6. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, M., Pittenger, M. F., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Annals of Thoracic Surgery, 73, 1919–1926.

    Article  PubMed  Google Scholar 

  7. Kim, S. H., Moon, H. H., Kim, H. A., Hwang, K. C., Lee, M., & Choi, D. (2009). Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Molecular Therapy, 19(4), 741–750.

    Article  Google Scholar 

  8. Yau, T. M., Kim, C., Li, G., Zhang, Y., Weisel, R. D., & Li, R. K. (2005). Maximizing ventricular function with multimodal cell-based gene therapy. Circulation, 112(9 Suppl), I123–I128.

    PubMed  Google Scholar 

  9. Yau, T. M., Kim, C., Li, G., Zhang, Y., Fazel, S., Spiegelstein, D., Weisel, R. D., et al. (2007). Enhanced angiogenesis with multimodal cell-based gene therapy. Annals of Thoracic Surgery, 83(3), 1110–1119.

    Article  PubMed  Google Scholar 

  10. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., Fichtner, S., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–148.

    Article  PubMed  Google Scholar 

  11. Lunde, K., Solheim, S., Aakhus, S., Arnesen, H., Abdelnoor, M., & Forfang, K. (2005). Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scandinavian Cardiovascular Journal, 39(3), 150–158.

    Article  CAS  PubMed  Google Scholar 

  12. Dill, T., Schaechinger, V., Rolf, A., Mollmann, S., Thiele, H., Tillmanns, H., Assmus, B., et al. (2009). Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. American Heart Journal, 157(3), 541–547.

    Article  PubMed  Google Scholar 

  13. Perin, E. C., Willerson, J. T., Pepine, C. J., Henry, T. D., Ellis, S. G., Zhao, D. X., Silva, G. V., et al. (2012). Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA, 307(16), 1717–1726.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hare, J. M., Fishman, J. E., Gerstenblith, G., DiFede Velazquez, D. L., Zambrano, J. P., Suncion, V. Y., Tracy, M., et al. (2012). Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA, 308(22), 2369–2379.

    Article  CAS  PubMed  Google Scholar 

  15. Hou, D., Youssef, E.A., Brinton, T.J., Zhang, P., Rogers, P., Price, E.T., et al. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: Implications for current clinical trials. Circulation, 112[suppl I], I-150-I-156.

  16. Gyongyosi, M., Blanco, J., Marian, T., Tron, L., Petnehazy, O., Petrasi, Z., et al. (2008). Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circulation. Cardiovascular Imaging, 1, 94–103.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Allen, K. B., Kelly, J., Borkon, A. M., Stuart, R. S., Daon, E., Pak, A. F., Zorn, G. L., et al. (2008). Transmyocardial laser revascularization: from randomized trials to clinical practice. A review of techniques, evidence-based outcomes, and future directions. Anesthesiology Clinics, 26(3), 501–519.

    Article  PubMed  Google Scholar 

  18. Estvold, S. K., Mordini, F., Zhou, Y., Yu, Z. X., Sachdev, V., Arai, A., & Horvath, K. A. (2010). Does laser type impact myocardial function following transmyocardial laser revascularization. Lasers in Surgery and Medicine, 42(10), 746–751.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Horvath, K. A., Belkind, N., Wu, I., Greene, R., Doukas, J., Lomasney, J. W., McPherson, D. D., et al. (2001). Functional comparison of transmyocardial revascularization by mechanical and laser means. Annals of Thoracic Surgery, 72(6), 1997–2002.

    Article  CAS  PubMed  Google Scholar 

  20. Al-Sheikh, T., Allen, K. B., Straka, S. P., Heimansohn, D. A., Fain, R. L., Hutchins, G. D., Sawada, S. G., et al. (1999). Cardiac sympathetic denervation after transmyocardial laser revascularization. Circulation, 100(2), 135–140.

    Article  CAS  PubMed  Google Scholar 

  21. Cooley, D. A., Frazier, O. H., Kadipasaoglu, K. A., Pehlivanoglu, S., Shannon, R. L., & Angelini, P. (1994). Transmyocardial laser revascularization. Anatomic evidence of long-term channel patency. Texas Heart Institute Journal, 21(3), 220–224.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Patel, A. N., Spadaccio, C., Kuzman, M., Park, E., Fischer, D. W., Stice, S. L., et al. (2007). Improved cell survival in infarcted myocardium using a novel combination transmyocardial laser and cell delivery system. Cell Transplantation, 16(9), 899–905.

    Article  PubMed  Google Scholar 

  23. Zhang, G. W., Liu, X. C., Li-Ling, J., Luan, Y., Ying, Y. N., Wu, X. S., et al. (2011). Mechanisms of the protective effects of BMSCs promoted by TMDR with heparanizied bFGF-incorporated stent in pig model of acute myocardial ischemia. Journal of Cellular and Molecular Medicine, 15(5), 1075–1086.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yang, Z., Wu, Y., Zhang, H., Jin, P., Wang, W., Hou, J., et al. (2011). Low-level laser irradiation alters cardiac cytokine expression following acute myocardial infarction: a potential mechanism for laser therapy. Photomedicine and Laser Surgery, 29(6), 391–398.

    Article  CAS  PubMed  Google Scholar 

  25. Spiegelstein, D., Kim, C., Zhang, Y., Li, G., Weisel, R. D., Li, R. K., & Yau, T. M. (2007). Combined transmyocardial revascularization and cell-based angiogenic gene therapy increases transplanted cell survival. American Journal of Physiology Heart and Circulatory Physiology, 293(6), H3311–H3316.

    Article  CAS  PubMed  Google Scholar 

  26. Shahzad, U., Li, G., Zhang, Y., & Yau, T. M. (2012). Transmyocardial revascularization induces mesenchymal stem cell engraftment in infarcted hearts. Annals of Thoracic Surgery, 94(2), 556–562.

    Article  PubMed  Google Scholar 

  27. Sordi, V., Malosio, M. L., Marcheesi, F., Mercalli, A., Melzi, R., Giordano, T., et al. (2005). Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106(2), 419–427.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, G. W., Wen, T., Gu, T. X., Li-Ling, J., Wang, C., Zhao, Y., Liu, J., et al. (2012). Transmyocardial drilling revascularization combined with heparinized bFGF-incorporating stent activates resident cardiac stem cells via SDF-1/CXCR4 axis. Experimental Cell Research, 318(4), 391–399.

    Article  CAS  PubMed  Google Scholar 

  29. Ashman, L. K. (1999). The biology of stem cell factor and its receptor C-kit. International Journal of Biochemistry and Cell Biology, 31, 1037–1051.

    Article  CAS  PubMed  Google Scholar 

  30. Gagari, E., Rand, M. K., Tayari, L., Vastardis, H., Sharma, P., Hauschka, P. V., & Damoulis, P. D. (2006). Expression of stem cell factor and its receptor, c-kit, in human oral mesenchymal cells. European Journal of Oral Sciences, 114(5), 409–415.

    Article  CAS  PubMed  Google Scholar 

  31. Carson, W. E., Haldar, S., Baiocchi, R. A., Croce, C. M., & Caligiuri, M. A. (1994). The c-kit ligand suppresses apoptosis of human natural killer cells through the upregulation of bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 91, 7553–7557.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ghadge, S. K., Mühlstedt, S., Özcelik, C., & Bader, M. (2011). SDF-1α as a therapeutic stem cell homing factor in myocardial infarction. Pharmacology and Therapeutics, 129(1), 97–108.

    Article  CAS  PubMed  Google Scholar 

  33. Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-Wieczorek, A., Ratajczak, J., et al. (2005). Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 23(7), 879–894.

    Article  CAS  PubMed  Google Scholar 

  34. Petit, I., Jin, D., & Rafii, S. (2007). The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends in Immunology, 28(7), 299–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wang, Y., Deng, Y., & Zhou, G. Q. (2008). SDF-1α/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Research, 1195, 104–112.

    Article  CAS  PubMed  Google Scholar 

  36. Teichholz, L. E., Kreulen, T., Herman, M. V., & Gorlin, R. (1976). Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence or absence of asynergy. American Journal of Cardiology, 37, 7–11.

    Article  CAS  PubMed  Google Scholar 

  37. Wandt, B., Bojo, L., Tolagen, K., & Wranne, B. (1999). Echocardiographic assessment of ejection fraction in left ventricular hypertrophy. Heart, 82, 192–198.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Luo, Y., Zhao, X., Zhou, X., Ji, W., Zhang, L., Luo, T., Liu, H., et al. (2013). Short-term intermittent administration of CXCR4 antagonist AMD3100 facilitates myocardial repair in experimental myocardial infarction. Acta Biochimica et Biophysica Sinica, 45(7), 561–569.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Z., Pan, X., Yao, Y., Yan, F., Chen, L., Huang, R., & Ma, M. (2014). Regulation of c-kit + progenitor cells by stromal cell derived factor-1α in adult murine heart. Heart, Lung & Circulation, 23(1), 75–81.

    Article  CAS  Google Scholar 

  40. Chen, Z., Pan, X., Yao, Y., Yan, F., Chen, L., Huang, R., & Ma, G. (2013). Epigenetic regulation of cardiac progenitor cells marker c-kit by stromal cell derived factor-1α. PLoS One, 8(7), e69134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Cheng, M., Zhou, J., Wu, M., Boriboun, C., Thorne, T., Liu, T., Xiang, Z., et al. (2010). CXCR4-mediated bone marrow progenitor cell maintenance and mobilization are modulated by c-kit activity. Circulation Research, 107(9), 1083–1093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Koenig, A., Yakisan, E., Reuter, M., Huang, M., Sykora, K., Corbacioglu, S., & Welte, K. (1994). Differential regulation of stem cell factor mRNA expression in human endothelial cells by bacterial pathogens: an in vitro model of inflammation. Blood, 83(10), 2836–2843.

    CAS  PubMed  Google Scholar 

  43. Koenig, A., Corbacioglu, S., Ballmaier, M., & Welte, K. (1997). Downregulation of c-kit expression in human endothelial cells by inflammatory stimuli. Blood, 90(1), 148–15.

    CAS  Google Scholar 

  44. Potapova, I. A., Brink, P. R., Cohen, I. S., & Doronin, S. V. (2008). Culturuing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of CXCR4 that regulates adhesion to endothelial cells. Journal of Biological Chemistry, 283, 13100–13107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

TMY holds the Angelo & Lorenza DeGasperis Chair in Cardiovascular Surgery Research.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence M. Yau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, U., Li, G., Zhang, Y. et al. Transmyocardial Revascularization Enhances Bone Marrow Stem Cell Engraftment in Infarcted Hearts Through SCF—C-kit and SDF-1—CXCR4 Signaling Axes. Stem Cell Rev and Rep 11, 332–346 (2015). https://doi.org/10.1007/s12015-014-9571-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9571-7

Keywords

Navigation