Skip to main content

Advertisement

Log in

Stem Cells in Canine Spinal Cord Injury – Promise for Regenerative Therapy in a Large Animal Model of Human Disease

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The use of cell transplantation for spinal cord injury is a rapidly evolving field in regenerative medicine. Numerous animal models are currently being used. However, translation to human patients is still a challenging step. Dogs are of increasing importance as a translational model for human disease since there is a greater awareness of the need to increase the quality of preclinical data. The use of dogs ultimately brings benefit to both human and veterinary medicine. In this review we analyze experimental and clinical studies using cell transplantation for canine spinal cord injury. Overall, in experimental studies, transplantation groups showed improvement over control groups. Improvements were measured at the functional, electrophysiological, histological, RNA and protein levels. Most clinical studies support beneficial effects of cell transplantation despite the fact that methodological limitations preclude definitive conclusions. However, the mechanisms of action and underlying the behavior of transplanted cells in the injured spinal cord remain unclear. Overall, we conclude here that stem cell interventions are a promising avenue for the treatment of spinal cord injury. Canines are a promising model that may help bridge the gap between translational research and human clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  1. Furlan, J. C., et al. (2013). Global incidence and prevalence of traumatic spinal cord injury. Canadian Journal of Neurological Sciences, 40(4), 456–64.

    PubMed  Google Scholar 

  2. van den Berg, M. E., et al. (2010). Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology, 34(3), 184–92. discussion 192.

    PubMed  Google Scholar 

  3. Gensel, J. C., Donnelly, D. J., & Popovich, P. G. (2011). Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opinion on Therapeutic Targets, 15(4), 505–18.

    PubMed  Google Scholar 

  4. Kwon, B. K., Sekhon, L. H., & Fehlings, M. G. (2010). Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine (Phila Pa 1976), 35(21 Suppl), S263–70.

    Google Scholar 

  5. Bradbury, E. J., & McMahon, S. B. (2006). Spinal cord repair strategies: why do they work? Nature Review Neuroscience, 7(8), 644–53.

    CAS  Google Scholar 

  6. Rossignol, S., & Frigon, A. (2011). Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annual Review of Neuroscience, 34, 413–40.

    CAS  PubMed  Google Scholar 

  7. Tohda, C., & Kuboyama, T. (2011). Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacology and Therapeutics, 132(1), 57–71.

    CAS  PubMed  Google Scholar 

  8. Kwon, B. K., Hillyer, J., & Tetzlaff, W. (2010). Translational research in spinal cord injury: a survey of opinion from the SCI community. Journal of Neurotrauma, 27(1), 21–33.

    PubMed  Google Scholar 

  9. Granger, N., R.J. Franklin, and N.D. Jeffery, Cell Therapy for Spinal Cord Injuries: What Is Really Going on? Neuroscientist, 2014.

  10. Bock, P., et al. (2013). Spatio-temporal development of axonopathy in canine intervertebral disc disease as a translational large animal model for nonexperimental spinal cord injury. Brain Pathology, 23(1), 82–99.

    CAS  PubMed  Google Scholar 

  11. Jeffery, N. D., Hamilton, L., & Granger, N. (2011). Designing clinical trials in canine spinal cord injury as a model to translate successful laboratory interventions into clinical practice. Veterinary Record, 168(4), 102–7.

    CAS  PubMed  Google Scholar 

  12. Lee-Liu, D., et al. (2013). Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis, 51(8), 529–44.

    PubMed  Google Scholar 

  13. Miller, R. H. (2006). The promise of stem cells for neural repair. Brain Research, 1091(1), 258–64.

    CAS  PubMed  Google Scholar 

  14. Donnelly, E. M., Lamanna, J., & Boulis, N. M. (2012). Stem cell therapy for the spinal cord. Stem Cell Research & Therapy, 3(4), 24.

    CAS  Google Scholar 

  15. Sahni, V., & Kessler, J. A. (2010). Stem cell therapies for spinal cord injury. Nature Reviews Neurology, 6(7), 363–72.

    PubMed Central  PubMed  Google Scholar 

  16. Goldschlager, T., et al. (2013). Current and future applications for stem cell therapies in spine surgery. Current Stem Cell Research & Therapy, 8(5), 381–93.

    CAS  Google Scholar 

  17. Neirinckx, V., et al., Spinal cord injuries - how could adult mesenchymal and neural crest stem cells take up the challenge? Stem Cells, 2013.

  18. Li, J., & Lepski, G. (2013). Cell transplantation for spinal cord injury: a systematic review. Biomedical Research International, 2013, 786475.

    Google Scholar 

  19. Webb, A. A., Ngan, S., & Fowler, J. D. (2010). Spinal cord injury I: a synopsis of the basic science. Canadian Veterinary Journal, 51(5), 485–92.

    Google Scholar 

  20. Olby, N. (2010). The pathogenesis and treatment of acute spinal cord injuries in dogs. The Veterinary Clinics of North America. Small Animal Practice, 40(5), 791–807.

    PubMed  Google Scholar 

  21. Kwo, S., Young, W., & Decrescito, V. (1989). Spinal cord sodium, potassium, calcium, and water concentration changes in rats after graded contusion injury. Journal of Neurotrauma, 6(1), 13–24.

    CAS  PubMed  Google Scholar 

  22. Tator, C. H., & Fehlings, M. G. (1991). Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. Journal of Neurosurgery, 75(1), 15–26.

    CAS  PubMed  Google Scholar 

  23. Webb, A. A., & Muir, G. D. (2000). The blood–brain barrier and its role in inflammation. Journal of Veterinary Internal Medicine, 14(4), 399–411.

    CAS  PubMed  Google Scholar 

  24. Yip, P. K., & Malaspina, A. (2012). Spinal cord trauma and the molecular point of no return. Molecular Neurodegeneration, 7, 6.

    PubMed Central  PubMed  Google Scholar 

  25. Boekhoff, T. M., et al. (2012). Microglial contribution to secondary injury evaluated in a large animal model of human spinal cord trauma. Journal of Neurotrauma, 29(5), 1000–11.

    PubMed  Google Scholar 

  26. Levine, J. M., et al. (2011). Naturally occurring disk herniation in dogs: an opportunity for pre-clinical spinal cord injury research. Journal of Neurotrauma, 28(4), 675–88.

    PubMed Central  PubMed  Google Scholar 

  27. Smith, P. M., et al. (2002). Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Experimental Neurology, 176(2), 402–6.

    CAS  PubMed  Google Scholar 

  28. Spitzbarth, I., Baumgartner, W., & Beineke, A. (2012). The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Veterinary Immunology and Immunopathology, 147(1–2), 6–24.

    CAS  PubMed  Google Scholar 

  29. Jeffery, N. D., et al. (2006). Clinical canine spinal cord injury provides an opportunity to examine the issues in translating laboratory techniques into practical therapy. Spinal Cord, 44(10), 584–93.

    CAS  PubMed  Google Scholar 

  30. Ferretti, P. (2011). Is there a relationship between adult neurogenesis and neuron generation following injury across evolution? European Journal of Neuroscience, 34(6), 951–62.

    PubMed  Google Scholar 

  31. Benraiss, A., et al. (1999). Neurogenesis during caudal spinal cord regeneration in adult newts. Development Genes and Evolution, 209(6), 363–9.

    CAS  PubMed  Google Scholar 

  32. Reimer, M. M., et al. (2008). Motor neuron regeneration in adult zebrafish. Journal of Neuroscience, 28(34), 8510–6.

    CAS  PubMed  Google Scholar 

  33. McHedlishvili, L., et al. (2012). Reconstitution of the central and peripheral nervous system during salamander tail regeneration. Proceedings of the National Academy of Sciences of the United States of America, 109(34), E2258–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Horner, P. J., et al. (2000). Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. Journal of Neuroscience, 20(6), 2218–28.

    CAS  PubMed  Google Scholar 

  35. Barnabe-Heider, F., et al. (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, 7(4), 470–82.

    CAS  PubMed  Google Scholar 

  36. Avci, H. X., et al. (2012). Thyroid hormone triggers the developmental loss of axonal regenerative capacity via thyroid hormone receptor alpha1 and kruppel-like factor 9 in Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14206–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Zukor, K. A., Kent, D. T., & Odelberg, S. J. (2011). Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Development, 6(1), 1.

    PubMed Central  PubMed  Google Scholar 

  38. Goldshmit, Y., et al. (2012). Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. Journal of Neuroscience, 32(22), 7477–92.

    CAS  PubMed  Google Scholar 

  39. Yiu, G., & He, Z. (2006). Glial inhibition of CNS axon regeneration. Nature Review Neuroscience, 7(8), 617–27.

    CAS  Google Scholar 

  40. Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathologica, 119(1), 7–35.

    PubMed Central  PubMed  Google Scholar 

  41. Zamanian, J. L., et al. (2012). Genomic analysis of reactive astrogliosis. Journal of Neuroscience, 32(18), 6391–410.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. O’Hara, C. M., Egar, M. W., & Chernoff, E. A. (1992). Reorganization of the ependyma during axolotl spinal cord regeneration: changes in intermediate filament and fibronectin expression. Developmental Dynamics, 193(2), 103–15.

    PubMed  Google Scholar 

  43. Gurtner, G. C., et al. (2008). Wound repair and regeneration. Nature, 453(7193), 314–21.

    CAS  PubMed  Google Scholar 

  44. Pineau, I., & Lacroix, S. (2007). Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. Journal of Comparative Neurology, 500(2), 267–85.

    CAS  PubMed  Google Scholar 

  45. Pineau, I., et al. (2010). Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain, Behavior, and Immunity, 24(4), 540–53.

    CAS  PubMed  Google Scholar 

  46. Pruss, H., et al. (2011). Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathology, 21(6), 652–60.

    PubMed  Google Scholar 

  47. Donnelly, D. J., & Popovich, P. G. (2008). Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 209(2), 378–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Popovich, P. G., Wei, P., & Stokes, B. T. (1997). Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. Journal of Comparative Neurology, 377(3), 443–64.

    CAS  PubMed  Google Scholar 

  49. Schmitt, A. B., et al. (2000). Major histocompatibility complex class II expression by activated microglia caudal to lesions of descending tracts in the human spinal cord is not associated with a T cell response. Acta Neuropathologica, 100(5), 528–36.

    CAS  PubMed  Google Scholar 

  50. Spitzbarth, I., et al. (2011). Prominent microglial activation in the early proinflammatory immune response in naturally occurring canine spinal cord injury. Journal of Neuropathology and Experimental Neurology, 70(8), 703–14.

    PubMed  Google Scholar 

  51. David, S., & Kroner, A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nature Review Neuroscience, 12(7), 388–99.

    CAS  Google Scholar 

  52. Kokaia, Z., et al. (2012). Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nature Neuroscience, 15(8), 1078–87.

    CAS  PubMed  Google Scholar 

  53. Kyritsis, N., et al. (2012). Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science, 338(6112), 1353–6.

    CAS  PubMed  Google Scholar 

  54. Krishna, V., et al. (2013). Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: a systematic review. Journal of Spinal Cord Medicine, 36(3), 174–90.

    PubMed Central  PubMed  Google Scholar 

  55. Silva, N.A., et al., From basics to clinical: A comprehensive review on spinal cord injury. Prog Neurobiol, 2013.

  56. Dietz, V. and K. Fouad, Restoration of sensorimotor functions after spinal cord injury. Brain, 2013.

  57. Ko, H. Y., et al. (2004). Gross quantitative measurements of spinal cord segments in human. Spinal Cord, 42(1), 35–40.

    PubMed  Google Scholar 

  58. Noble, L. J., & Wrathall, J. R. (1985). Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord. Experimental Neurology, 88(1), 135–49.

    CAS  PubMed  Google Scholar 

  59. Kepler, C. K., et al. (2013). The molecular basis of intervertebral disc degeneration. The Spine Journal, 13(3), 318–30.

    PubMed  Google Scholar 

  60. Mogensen, M. S., et al. (2011). Genome-wide association study in Dachshund: identification of a major locus affecting intervertebral disc calcification. Journal of Heredity, 102(Suppl 1), S81–6.

    PubMed  Google Scholar 

  61. Stigen, O., & Christensen, K. (1993). Calcification of intervertebral discs in the dachshund: an estimation of heritability. Acta Veterinaria Scandinavica, 34(4), 357–61.

    CAS  PubMed  Google Scholar 

  62. Jeffery, N. D., et al. (2013). Intervertebral disk degeneration in dogs: consequences, diagnosis, treatment, and future directions. Journal of Veterinary Internal Medicine, 27(6), 1318–33.

    CAS  PubMed  Google Scholar 

  63. Levine, J. M., et al. (2009). Magnetic resonance imaging in dogs with neurologic impairment due to acute thoracic and lumbar intervertebral disk herniation. Journal of Veterinary Internal Medicine, 23(6), 1220–6.

    CAS  PubMed  Google Scholar 

  64. Smith, P. M., & Jeffery, N. D. (2006). Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury. Brain Pathology, 16(2), 99–109.

    PubMed  Google Scholar 

  65. Lee, S. H., et al. (2009). Effects of human neural stem cell transplantation in canine spinal cord hemisection. Neurological Research, 31(9), 996–1002.

    PubMed  Google Scholar 

  66. Kim, B. G., et al. (2010). Implantation of polymer scaffolds seeded with neural stem cells in a canine spinal cord injury model. Cytotherapy, 12(6), 841–5.

    CAS  PubMed  Google Scholar 

  67. Lim, J. H., et al. (2007). Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. Journal of Veterinary Science, 8(3), 275–82.

    PubMed Central  PubMed  Google Scholar 

  68. Salgado, A. J., et al. (2013). Tissue engineering and regenerative medicine: past, present, and future. International Review of Neurobiology, 108, 1–33.

    CAS  PubMed  Google Scholar 

  69. Chen, T. H. (2014). Tissue regeneration: from Synthetic Scaffold to Self-Organizing Morphogenesis. Current Stem Cell Research & Therapy, 9(5), 432–43.

    CAS  Google Scholar 

  70. Perale, G., et al. (2011). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2(7), 336–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Silva, N. A., et al. (2010). Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair. Tissue Engineering Part A, 16(1), 45–54.

    CAS  PubMed  Google Scholar 

  72. Reynolds, L. F., et al. (2008). Transplantation of porous tubes following spinal cord transection improves hindlimb function in the rat. Spinal Cord, 46(1), 58–64.

    CAS  PubMed  Google Scholar 

  73. Cerqueira, S. R., et al. (2013). Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small, 9(5), 738–49.

    CAS  PubMed  Google Scholar 

  74. Shi, Y., et al. (2010). Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nature Nanotechnology, 5(1), 80–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Oliveira, A. L., et al. (2012). Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. Journal of Materials Science Materials in Medicine, 23(11), 2821–30.

    CAS  PubMed  Google Scholar 

  76. Silva, N. A., et al. (2013). Benefits of spine stabilization with biodegradable scaffolds in spinal cord injured rats. Tissue Engineering. Part C, Methods, 19(2), 101–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Ryu, H. H., et al. (2009). Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. Journal of Veterinary Science, 10(4), 273–84.

    PubMed Central  PubMed  Google Scholar 

  78. Jung, D. I., et al. (2009). A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. Journal of Neurological Sciences, 285(1–2), 67–77.

    Google Scholar 

  79. Lee, J. H., et al. (2009). Percutaneous transplantation of human umbilical cord blood-derived multipotent stem cells in a canine model of spinal cord injury. Journal of Neurosurgery: Spine, 11(6), 749–57.

    PubMed  Google Scholar 

  80. Lee, J. H., et al. (2011). Schwann cell-like remyelination following transplantation of human umbilical cord blood (hUCB)-derived mesenchymal stem cells in dogs with acute spinal cord injury. Journal of Neurological Sciences, 300(1–2), 86–96.

    Google Scholar 

  81. Park, S. S., et al. (2011). Comparison of canine umbilical cord blood-derived mesenchymal stem cell transplantation times: involvement of astrogliosis, inflammation, intracellular actin cytoskeleton pathways, and neurotrophin-3. Cell Transplantation, 20(11–12), 1867–80.

    PubMed  Google Scholar 

  82. Park, S. S., et al. (2012). Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells. Cytotherapy, 14(5), 584–97.

    CAS  PubMed  Google Scholar 

  83. Ryu, H. H., et al. (2012). Comparison of mesenchymal stem cells derived from fat, bone marrow, wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. Journal of Veterinary Medical Science, 74(12), 1617–30.

    CAS  PubMed  Google Scholar 

  84. Tarlov, I. M., Klinger, H., & Vitale, S. (1953). Spinal cord compression studies. I. Experimental techniques to produce acute and gradual compression. AMA Archives of Neurology and Psychiatry, 70(6), 813–9.

    CAS  PubMed  Google Scholar 

  85. Tarlov, I. M., & Klinger, H. (1954). Spinal cord compression studies. II. Time limits for recovery after acute compression in dogs. AMA Archives of Neurology and Psychiatry, 71(3), 271–90.

    CAS  PubMed  Google Scholar 

  86. Tarlov, I. M. (1954). Spinal cord compression studies. III. Time limits for recovery after gradual compression in dogs. AMA Archives of Neurology and Psychiatry, 71(5), 588–97.

    CAS  PubMed  Google Scholar 

  87. Tarlov, I. M., & Herz, E. (1954). Spinal cord compression studies. IV. Outlook with complete paralysis in man. AMA Archives of Neurology and Psychiatry, 72(1), 43–59.

    CAS  PubMed  Google Scholar 

  88. Fukuda, S., et al. (2005). New canine spinal cord injury model free from laminectomy. Brain Research. Brain Research Protocols, 14(3), 171–80.

    PubMed  Google Scholar 

  89. Guest, J., et al. (2011). Technical aspects of spinal cord injections for cell transplantation. Clinical and translational considerations. Brain Research Bulletin, 84(4–5), 267–79.

    PubMed  Google Scholar 

  90. Serigano, K., et al. (2010). Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model. Journal of Orthopaedic Research, 28(10), 1267–75.

    PubMed  Google Scholar 

  91. Webb, A. A., et al. (2004). Behavioural analysis of the efficacy of treatments for injuries to the spinal cord in animals. Veterinary Record, 155(8), 225–30.

    CAS  PubMed  Google Scholar 

  92. Basso, D. M., Beattie, M. S., & Bresnahan, J. C. (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of Neurotrauma, 12(1), 1–21.

    CAS  PubMed  Google Scholar 

  93. Olby, N. J., et al. (2001). Development of a functional scoring system in dogs with acute spinal cord injuries. American Journal of Veterinary Research, 62(10), 1624–8.

    CAS  PubMed  Google Scholar 

  94. Hamilton, L., Franklin, R. J., & Jeffery, N. D. (2007). Development of a universal measure of quadrupedal forelimb-hindlimb coordination using digital motion capture and computerised analysis. BMC Neuroscience, 8, 77.

    PubMed Central  PubMed  Google Scholar 

  95. Hamilton, L., Franklin, R. J., & Jeffery, N. D. (2008). Quantification of deficits in lateral paw positioning after spinal cord injury in dogs. BMC Veterinary Research, 4, 47.

    PubMed Central  PubMed  Google Scholar 

  96. Montzka, K., et al. (2009). Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neuroscience, 10, 16.

    PubMed Central  PubMed  Google Scholar 

  97. Olson, S. D., et al. (2012). Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington’s disease. Molecular Neurobiology, 45(1), 87–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Gahan, P. B., & Stroun, M. (2010). The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochemistry and Function, 28(7), 529–38.

    CAS  PubMed  Google Scholar 

  99. Gerdes, H. H., & Carvalho, R. N. (2008). Intercellular transfer mediated by tunneling nanotubes. Current Opinion in Cell Biology, 20(4), 470–5.

    CAS  PubMed  Google Scholar 

  100. Simons, M., & Raposo, G. (2009). Exosomes–vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21(4), 575–81.

    CAS  PubMed  Google Scholar 

  101. Hardy, S. A., Maltman, D. J., & Przyborski, S. A. (2008). Mesenchymal stem cells as mediators of neural differentiation. Current Stem Cell Research & Therapy, 3(1), 43–52.

    CAS  Google Scholar 

  102. Jeffery, N. D., Lakatos, A., & Franklin, R. J. (2005). Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. Journal of Neurotrauma, 22(11), 1282–93.

    PubMed  Google Scholar 

  103. Nishida, H., et al. (2011). Evaluation of transplantation of autologous bone marrow stromal cells into the cerebrospinal fluid for treatment of chronic spinal cord injury in dogs. American Journal of Veterinary Research, 72(8), 1118–23.

    PubMed  Google Scholar 

  104. Nishida, H., et al. (2012). Safety of autologous bone marrow stromal cell transplantation in dogs with acute spinal cord injury. Veterinary Surgery, 41(4), 437–42.

    PubMed  Google Scholar 

  105. Tamura, K., et al. (2012). Autotransplanting of bone marrow-derived mononuclear cells for complete cases of canine paraplegia and loss of pain perception, secondary to intervertebral disc herniation. Experimental and Clinical Transplantation, 10(3), 263–72.

    PubMed  Google Scholar 

  106. Chung, W. H., et al. (2013). Percutaneous transplantation of human umbilical cord-derived mesenchymal stem cells in a dog suspected to have fibrocartilaginous embolic myelopathy. Journal of Veterinary Science, 14(4), 495–7.

    PubMed Central  PubMed  Google Scholar 

  107. Walton, R. M., et al. (2008). Transplantation and magnetic resonance imaging of canine neural progenitor cell grafts in the postnatal dog brain. Journal of Neuropathology and Experimental Neurology, 67(10), 954–62.

    PubMed Central  PubMed  Google Scholar 

  108. Lu, S. S., et al. (2013). In vivo MR imaging of intraarterially delivered magnetically labeled mesenchymal stem cells in a canine stroke model. PLoS ONE, 8(2), e54963.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Chung, D. J., et al. (2009). Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. Journal of Neuroscience Research, 87(16), 3554–67.

    CAS  PubMed  Google Scholar 

  110. Levine, G. J., et al. (2009). Description and repeatability of a newly developed spinal cord injury scale for dogs. Preventive Veterinary Medicine, 89(1–2), 121–7.

    PubMed  Google Scholar 

  111. Granger, N., et al. (2012). Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain, 135(Pt 11), 3227–37.

    PubMed Central  PubMed  Google Scholar 

  112. Penha, E. M., et al. (2014). Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem Cells International, 2014, 437521.

    PubMed Central  PubMed  Google Scholar 

  113. Ramon-Cueto, A., & Nieto-Sampedro, M. (1994). Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Experimental Neurology, 127(2), 232–44.

    CAS  PubMed  Google Scholar 

  114. Kawaja, M. D., et al. (2009). Technical strategies to isolate olfactory ensheathing cells for intraspinal implantation. Journal of Neurotrauma, 26(2), 155–77.

    PubMed  Google Scholar 

  115. Wewetzer, K., et al. (2011). Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Experimental Neurology, 229(1), 80–7.

    PubMed  Google Scholar 

  116. Paul, C., et al. (2009). Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine (Phila Pa 1976), 34(4), 328–34.

    Google Scholar 

  117. Fletcher, T. F., & Kitchell, R. L. (1966). Anatomical studies on the spinal cord segments of the dog. American Journal of Veterinary Research, 27(121), 1759–67.

    CAS  PubMed  Google Scholar 

  118. Beattie, M. S., et al. (1997). Endogenous repair after spinal cord contusion injuries in the rat. Experimental Neurology, 148(2), 453–63.

    CAS  PubMed  Google Scholar 

  119. Zhang, H., et al. (2011). Role of matrix metalloproteinases and therapeutic benefits of their inhibition in spinal cord injury. Neurotherapeutics, 8(2), 206–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Kakulas, B. A. (1999). The applied neuropathology of human spinal cord injury. Spinal Cord, 37(2), 79–88.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Center for Equine Health, University of California Davis, Mr. Dick and Mrs. Carolyn Randall, and Fundacao para a Ciencia e a Tecnologia, Ministerio da Educacao e Ciencia, Grant, SFRH/ BD/ 64871/2009, Portugal (BG), and Medical Research Council Grant 22358, UK (MSB); for their financial support through research grants.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly K. Sturges.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMahill, B.G., Borjesson, D.L., Sieber-Blum, M. et al. Stem Cells in Canine Spinal Cord Injury – Promise for Regenerative Therapy in a Large Animal Model of Human Disease. Stem Cell Rev and Rep 11, 180–193 (2015). https://doi.org/10.1007/s12015-014-9553-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9553-9

Keywords

Navigation