Skip to main content

Advertisement

Log in

Generation of Intermediate Porcine iPS Cells Under Culture Condition Favorable for Mesenchymal-to-Epithelial Transition

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

It has been demonstrated that naïve and primed pluripotency are determined by different extracellular signals. In this study, we investigated whether intermediate pluripotent states could be available by manipulating the culture condition during the process of generating pig induced pluripotent stem cells (piPSCs). By optimizing the culture condition that efficiently promotes mesenchymal-to-epithelial transition (MET), we found that combination of three growth factors (LIF, FGF2 and BMP4) and two inhibitors (2i: CHIR99021 and SB431542) could generate an intermediate pluripotent state of piPSCs, which were named as LFB2i-piPSCs. The LFB2i-piPSCs are stable and fulfill all the criteria of pluripotency, including expression of pluripotent genes, differentiation into three germ layers via embryoid bodies in vitro and teratoma in vivo. More importantly, the mRNA-sequencing data showed that LFB2i-piPSCs had a mixed transcriptome of naïve and primed pluripotency, which featured by expressing high levels of SOX2, L-MYC and ESRRB and relatively low levels of POU5F1, KLF4 and NANOG. Small RNA sequencing also demonstrated that LFB2i-piPSCs had a mixed microRNA profile of naïve and primed pluripotency, which featured by expressing high levels of miR-302b/367 cluster and miR-106a/363 cluster, and low levels of most let-7 family members and miR-17/92 cluster. Altogether, the LFB2i-piPSCs represent a stable intermediate pluripotent state with unique transcriptome and microRNA signatures. The LFB2i-piPSCs will provide a new tool to explore the mechanisms of pluripotency and reprogramming on pig species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nichols, J., & Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell, 4(6), 487–492.

    Article  CAS  PubMed  Google Scholar 

  2. Guo, G., Yang, J., Nichols, J., Hall, J. S., Eyres, I., Mansfield, W., et al. (2009). Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development, 136(7), 1063–1069.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Zhou, H. Y., Li, W. L., Zhu, S. Y., Joo, J. Y., Do, J. T., Xiong, W., et al. (2010). Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. Journal of Biological Chemistry, 285(39), 29676–29680.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194), 519–523.

    Article  CAS  PubMed  Google Scholar 

  5. Chou, Y.F., Chen, H.H., Eijpe, M., Yabuuchi, A., Chenoweth, J.G., Tesar, P., et al. (2008). The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells. 135(3), 449–461.

  6. Han, D. W., Greber, B., Wu, G., Tapia, N., Arauzo-Bravo, M. J., Ko, K., et al. (2011). Direct reprogramming of fibroblasts into epiblast stem cells. Nature Cell Biology, 13(1), 66–71.

    Article  CAS  PubMed  Google Scholar 

  7. Roberts, R. M., Telugu, B. P. V. L., & Ezashi, T. (2009). Induced pluripotent stem cells from swine (Sus scrofa) why they may prove to be important. Cell Cycle, 8(19), 3078–3081.

    Article  CAS  PubMed  Google Scholar 

  8. Esteban, M. A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. Journal of Biological Chemistry, 284(26), 17634–17640.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., et al. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 1(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  10. Montserrat, N., de Onate, L., Garreta, E., Gonzalez, F., Adamo, A., Eguizabal, C., et al. (2012). Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplantation, 21(5), 815–825.

    Article  PubMed  Google Scholar 

  11. Cheng, D., Guo, Y. J., Li, Z. Z., Liu, Y. J., Gao, X., Gao, Y., et al. (2012). Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PloS One, 7(12), e51778.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Thomson, A. J., Pierart, H., Meek, S., Bogerman, A., Sutherland, L., Murray, H., et al. (2012). Reprogramming pig fetal fibroblasts reveals a functional LIF signaling pathway. Cellular Reprogramming, 14(2), 112–122.

    CAS  PubMed  Google Scholar 

  13. Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., & Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 10993–10998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., et al. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 19(8), 1211–1220.

    Article  CAS  PubMed  Google Scholar 

  15. West, F. D., Uhl, E. W., Liu, Y., Stowe, H., Lu, Y., Yu, P., et al. (2011). Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 29(10), 1640–1643.

    Article  CAS  PubMed  Google Scholar 

  16. Plath, K., & Lowry, W. E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews. Genetics, 12(4), 253–265.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Li, R. H., Liang, J. L., Ni, S., Zhou, T., Qing, X. B., Li, H. P., et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7(1), 51–63.

    Article  CAS  PubMed  Google Scholar 

  18. Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H. K., Beyer, T. A., Datti, A., et al. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7(1), 64–77.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J., Liu, J., Yang, J., Chen, Y., Ni, S., Song, H., et al. (2011). BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. Cell Research, 21(1), 205–212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gao, Y., Guo, Y. J., Duan, A. Q., Cheng, D., Zhang, S. Q., & Wang, H. Y. (2014). Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA and Cell Biology, 33(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, S., Chen, S., Li, W., Guo, X., Zhao, P., Xu, J., et al. (2011). Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Human Molecular Genetics, 20(16), 3176–3187.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez, A., Allegrucci, C., & Alberio, R. (2012). Modulation of pluripotency in the porcine embryo and iPS cells. PloS One, 7(11), e49079.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fujishiro, S., Nakano, K., Mizukami, Y., Azami, T., Arai, Y., Matsunari, H., et al. (2013). Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells and Development, 22(3), 473–482.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Maherali, N., & Hochedlinger, K. (2009). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology, 19(20), 1718–1723.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Xiao, S., Xie, D., Cao, X. Y., Yu, P. F., Xing, X. Y., Chen, C. C., et al. (2012). Comparative epigenomic annotation of regulatory DNA. Cell, 149(6), 1381–1392.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cao, S., Han, J., Wu, J., Li, Q., Liu, S., Zhang, W., et al. (2014). Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics, 15, 4.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Telugu, B. P., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., et al. (2011). Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. Journal of Biological Chemistry, 286(33), 28948–28953.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Buganim, Y., Faddah, D. A., Cheng, A. W., Itskovich, E., Markoulaki, S., Ganz, K., et al. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150(6), 1209–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hassani, S. N., Totonchi, M., Gourabi, H., Scholer, H. R., & Baharvand, H. (2014). Signaling roadmap modulating naive and primed pluripotency. Stem Cells and Development, 23(3), 193–208.

    Article  CAS  PubMed  Google Scholar 

  30. Heinrich, E. M., & Dimmeler, S. (2012). MicroRNAs and stem cells control of pluripotency, reprogramming, and lineage commitment. Circulation Research, 110(7), 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  31. Worringer, K. A., Rand, T. A., Hayashi, Y., Sami, S., Takahashi, K., Tanabe, K., et al. (2014). The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell, 14(1), 40–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tsukiyama, T., & Ohinata, Y. (2014). A modified EpiSC culture condition containing a GSK3 inhibitor can support germline-competent pluripotency in mice. PloS One, 9(4), e95329.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Chang, K. H., & Li, M. (2013). Clonal isolation of an intermediate pluripotent stem cell state. Stem Cells, 31(5), 918–927.

    Article  CAS  PubMed  Google Scholar 

  34. Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben-Yosef, D., et al. (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature, 504(7479), 282–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ware, C. B., Nelson, A. M., Mecham, B., Hesson, J., Zhou, W. Y., Jonlin, E. C., et al. (2014). Derivation of naive human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111(12), 4484–4489.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172.

    Article  CAS  PubMed  Google Scholar 

  37. Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., et al. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5(5), 491–503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  39. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., de Sousa, C., Lopes, S. M., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150), 191–5.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, J. Y., Mumaw, J. L., Liu, Y. B., Stice, S. L., & West, F. D. (2013). SSEA4-positive pig induced pluripotent stem cells are primed for differentiation into neural cells. Cell Transplantation, 22(6), 945–959.

    Article  PubMed  Google Scholar 

  41. Festuccia, N., Osorno, R., Halbritter, F., Karwacki-Neisius, V., Navarro, P., Colby, D., et al. (2012). Esrrb is a direct nanog target gene that can substitute for nanog function in pluripotent cells. Cell Stem Cell, 11(4), 477–490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Feng, B., Jiang, J., Kraus, P., Ng, J. H., Heng, J. C., Chan, Y. S., et al. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 11(2), 197–203.

    Article  CAS  PubMed  Google Scholar 

  43. Martello, G., Sugimoto, T., Diamanti, E., Joshi, A., Hannah, R., Ohtsuka, S., et al. (2012). Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell, 11(4), 491–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Greve, T. S., Judson, R. L., & Blelloch, R. (2013). microRNA control of mouse and human pluripotent stem cell behavior. Annual Review of Cell and Developmental Biology, 29, 213–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. West for providing the RNA lysate of FGF2-piPSCs. This work was supported by the National Natural Science Foundation of China (No. 31371505, 31301218); the National Basic Research Program of China (2011CBA01002) and the Northwest A&F University research start-up grant (No. 201104050355).

Author Contribution

S.Z., Y.G.: conception and design, collection and/or assembly of data, data analysis and interpretation, and manuscript writing; S.Z. and Y.G. contributed equally to this article. Y.L.: analysis of RNA-seq data; Y.C.: analysis of small RNA-seq data; T.Y.: collection and/or assembly of data; H.W.: conception and design, financial support, administrative support, data analysis and interpretation, manuscript writing, and final approval of manuscript.

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(A) Genomic DNA PCR analysis of transgene integration in two piPSC lines LFB2i-piPSC-1 and LFB2i-piPSC-2. (B) Quantitative RT-PCR analysis of endogenous expression of POU5F1, SOX2, NANOG and ESRRB in LFB2i-piPSC-1 and LFB2i-piPSC-2. The y-axis represents the fold change vs. PEFs. (C) Karyotype analysis of LFB2i-piPSC-2. (D) Growth curve of LFB2i-piPSC-1 and PEFs. (GIF 74 kb)

High resolution image (TIFF 2814 kb)

Figure S2

RT-PCR analysis of genes expression in embryoid bodies (EBs) derived from LFB2i-piPSCs. The undifferentiated cells were used as negative control. NESTIN is for ectoderm marker; AFP for endoderm marker; DESMIN for mesoderm marker. GAPDH is used as internal control. (GIF 20 kb)

High resolution image (TIFF 1072 kb)

Table S1

(DOC 36 kb)

Table S2

(DOC 32 kb)

Table S3

(XLS 1326 kb)

Table S4

(XLS 449 kb)

Table S5

(XLS 400 kb)

Table S6

(XLS 21 kb)

Table S7

(XLS 35 kb)

Table S8

(XLS 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Guo, Y., Cui, Y. et al. Generation of Intermediate Porcine iPS Cells Under Culture Condition Favorable for Mesenchymal-to-Epithelial Transition. Stem Cell Rev and Rep 11, 24–38 (2015). https://doi.org/10.1007/s12015-014-9552-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9552-x

Keywords

Navigation