Skip to main content

Advertisement

Log in

Medaka Oct4 is Essential for Pluripotency in Blastula Formation and ES Cell Derivation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The origin and evolution of molecular mechanisms underlying cellular pluripotency is a fundamental question in stem cell biology. The transcription factor Oct4 or Pou5f1 identified in mouse features pluripotency expression and activity in the inner cell mass and embryonic stem (ES) cells. Pou2 identified in zebrafish is the non-mammalian homolog prototype of mouse Oct4. The genes oct4 and pou2 have reportedly evolved by pou5 gene duplication in the common ancestor of vertebrates. Unlike mouse oct4, however, zebrafish pou2 lacks pluripotency expression and activity. Whether the presence of pluripotency expression and activity is specific for mammalian Oct4 or common to the ancestor of vertebrate Oct4 and Pou2 proteins has remained to be determined. Here we report that Oloct4, the medaka oct4/pou2, is essential for early embryogenesis and pluripotency maintenance. Oloct4 exists as a single copy gene and is orthologous to pou2 by sequence and chromosome synteny. Oloct4 expression occurs in early embryos, germ stem cells and ES cells like mouse oct4 but also in the brain and tail bud like zebrafish pou2. Importantly, OlOct4 depletion caused blastula lethality or blockage. We show that Oloct4 depletion abolishes ES cell derivation from midblastula embryos. Thus, Oloct4 has pluripotency expression and is essential for early embryogenesis and pluripotency maintenance. Our results demonstrate the conservation of pluripotency expression and activity in vertebrate Oct4 and Pou2 proteins. The finding that Oloct4 combines the features of mouse oct4 and zebrafish pou2 in expression and function suggests that Oloct4 might represent the ancestral prototype of vertebrate oct4 and pou2 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Dpc or hpc:

Day (s) or hour (s) post culture

Dpf or hpf:

Day (s) or hour (s) post fertilization

ES:

Embryonic stem

FISH:

Fluorescence in situ hybridization

IF:

Immunofluorescence

MBE:

Midblastula embryo

References

  1. Scholer, H. R., Balling, R., Hatzopoulos, A. K., Suzuki, N., & Gruss, P. (1989). Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. The EMBO Journal, 8, 2551–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K., & Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. Nature, 344, 435–9.

    Article  CAS  PubMed  Google Scholar 

  3. Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., & Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell, 60, 461–72.

    Article  CAS  PubMed  Google Scholar 

  4. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–6.

    Article  CAS  PubMed  Google Scholar 

  5. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., & Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–91.

    Article  CAS  PubMed  Google Scholar 

  6. Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomeli, H., Nagy, A., McLaughlin, K. J., Scholer, H. R., & Tomilin, A. (2004). Oct4 is required for primordial germ cell survival. EMBO Reports, 5, 1078–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–76.

    Article  CAS  PubMed  Google Scholar 

  8. Takeda, H., Matsuzaki, T., Oki, T., Miyagawa, T., & Amanuma, H. (1994). A novel POU domain gene, zebrafish pou2: expression and roles of two alternatively spliced twin products in early development. Genes and Development, 8, 45–59.

    Article  CAS  PubMed  Google Scholar 

  9. Frankenberg, S., & Renfree, M. B. (2013). On the origin of POU5F1. BMC Biology, 11, 56.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Niwa, H., Sekita, Y., Tsend-Ayush, E., & Grutzner, F. (2008). Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals. Evolution and Development, 10, 671–82.

    Article  CAS  PubMed  Google Scholar 

  11. Frankenberg, S., Pask, A., & Renfree, M. B. (2010). The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. Developmental Biology, 337, 162–70.

    Article  CAS  PubMed  Google Scholar 

  12. Onichtchouk, D. (2012). Pou5f1/oct4 in pluripotency control: insights from zebrafish. Genesis, 50, 75–85.

    Article  CAS  PubMed  Google Scholar 

  13. Tapia, N., Reinhardt, P., Duemmler, A., Wu, G., Arauzo-Bravo, M. J., Esch, D., Greber, B., Cojocaru, V., Rascon, C. A., Tazaki, A., Kump, K., Voss, R., Tanaka, E. M., & Scholer, H. R. (2012). Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins. Nature Communications, 3, 1279.

    Article  PubMed  Google Scholar 

  14. Boiani, M., & Scholer, H. R. (2005). Regulatory networks in embryo-derived pluripotent stem cells. Nature Reviews. Molecular Cell Biology, 6, 872–84.

    Article  CAS  PubMed  Google Scholar 

  15. Reim, G., & Brand, M. (2002). Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development, 129, 917–33.

    CAS  PubMed  Google Scholar 

  16. Lachnit, M., Kur, E., & Driever, W. (2008). Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Developmental Biology, 315, 1–17.

    Article  CAS  PubMed  Google Scholar 

  17. Reim, G., & Brand, M. (2006). Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development, 133, 2757–70.

    Article  CAS  PubMed  Google Scholar 

  18. Lunde, K., Belting, H. G., & Driever, W. (2004). Zebrafish pou5f1/pou2, homolog of mammalian Oct4, functions in the endoderm specification cascade. Current Biology, 14, 48–55.

    Article  CAS  PubMed  Google Scholar 

  19. Hong, Y., & Schartl, M. (1996). Establishment and growth responses of early medakafish (Oryzias latipes) embryonic cells in feeder layer-free cultures. Molecular Marine Biology and Biotechnology, 5, 93–104.

    CAS  Google Scholar 

  20. Hong, Y., Winkler, C., & Schartl, M. (1998). Production of medakafish chimeras from a stable embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America, 95, 3679–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hong, Y., Liu, T., Zhao, H., Xu, H., Wang, W., Liu, R., Chen, T., Deng, J., & Gui, J. (2004). Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proceedings of the National Academy of Sciences of the United States of America, 101, 8011–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yi, M., Hong, N., & Hong, Y. (2009). Generation of medaka fish haploid embryonic stem cells. Science, 326, 430–3.

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, M Li, N Hong, M Yi and Y Hong. (2014). Formation and cultivation of medaka primordial germ cells. Cell Tissue Res

  24. Sanchez-Sanchez, A. V., Camp, E., Garcia-Espana, A., Leal-Tassias, A., & Mullor, J. L. (2010). Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads. Developmental Dynamics, 239, 672–9.

    Article  CAS  PubMed  Google Scholar 

  25. Froschauer, A., Khatun, M. M., Sprott, D., Franz, A., Rieger, C., Pfennig, F., & Gutzeit, H. O. (2013). oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka. Molecular Reproduction and Development, 80, 48–58.

    Article  CAS  PubMed  Google Scholar 

  26. Hong, Y., Winkler, C., & Schartl, M. (1996). Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mechanisms of Development, 60, 33–44.

    Article  CAS  PubMed  Google Scholar 

  27. Hong N, S Chen, R Ge, J Song, M Yi and Y Hong. (2012). Interordinal Chimera Formation Between Medaka and Zebrafish for Analyzing Stem Cell Differentiation. Stem Cells Dev

  28. Hong, N., Li, M., Zeng, Z., Yi, M., Deng, J., Gui, J., Winkler, C., Schartl, M., & Hong, Y. (2010). Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos. Cellular and Molecular Life Sciences, 67, 1189–1202.

    Article  CAS  PubMed  Google Scholar 

  29. Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes. Mechanisms of Development, 121, 605–18.

    Article  CAS  PubMed  Google Scholar 

  30. Xu, H., Gui, J., & Hong, Y. (2005). Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Developmental Dynamics, 233, 872–82.

    Article  CAS  PubMed  Google Scholar 

  31. Yan, Y., Hong, N., Chen, T., Li, M., Wang, T., Guan, G., Qiao, Y., Chen, S., Schartl, M., Li, C. M., & Hong, Y. (2013). p53 gene targeting by homologous recombination in fish ES cells. PLoS ONE, 8, e59400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Li, M., Hong, N., Xu, H., Yi, M., Li, C., Gui, J., & Hong, Y. (2009). Medaka vasa is required for migration but not survival of primordial germ cells. Mechanisms of Development, 126, 366–81.

    Article  CAS  PubMed  Google Scholar 

  33. Xu, H., Li, Z., Li, M., Wang, L., & Hong, Y. (2009). Boule is present in fish and bisexually expressed in adult and embryonic germ cells of medaka. PLoS ONE, 4, e6097.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Xu, H., Li, M., Gui, J., & Hong, Y. (2007). Cloning and expression of medaka dazl during embryogenesis and gametogenesis. Gene Expression Patterns, 7, 332–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, H., Hong, N., Lu, W., Zeng, H., Song, J., & Hong, Y. (2012). Fusion gene vectors allowing for simultaneous drug selection, cell Labeling, and reporter assay in vitro and in vivo. Anal: Chem.

    Google Scholar 

  36. Hong, Y., Chen, S., Gui, J., & Schartl, M. (2004). Retention of the developmental pluripotency in medaka embryonic stem cells after gene transfer and long-term drug selection for gene targeting in fish. Transgenic Research, 13, 41–50.

    Article  CAS  PubMed  Google Scholar 

  37. Li, M., Hong, N., Gui, J., & Hong, Y. (2012). Medaka piwi is Essential for Primordial Germ Cell Migration. Current Molecular Medicine, 12, 1040–9.

    Article  PubMed  Google Scholar 

  38. Hong, Y., & Schartl, M. (1996). Establishment and growth responses of early medaka (Oryzias latipes) embryonic cells in feeder layer-free culture. Molecular Marine Biology and Biotechnology, 5, 93–104.

    CAS  Google Scholar 

  39. Yuan, Y., Li, M., Hong, N., & Hong, Y. (2014). Correlative light and electron microscopic analyses of mitochondrial distribution in blastomeres of early fish embryos. The FASEB Journal, 28, 577–85.

    Article  CAS  Google Scholar 

  40. Amores, A., Force, A., Yan, Y. L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y. L., Westerfield, M., Ekker, M., & Postlethwait, J. H. (1998). Zebrafish hox clusters and vertebrate genome evolution. Science, 282, 1711–4.

    Article  CAS  PubMed  Google Scholar 

  41. Lippok, B., Song, S., & Driever, W. (2014). Pou5f1 protein expression and posttranslational modification during early zebrafish development. Developmental Dynamics, 243, 468–77.

    Article  CAS  PubMed  Google Scholar 

  42. Li, M., Shen, Q., Wong, F. M., Xu, H., Hong, N., Zeng, L., Liu, L., Wei, Q., & Hong, Y. (2011). Germ cell sex prior to meiosis in the rainbow trout. Protein & Cell, 2, 48–54.

    Article  Google Scholar 

  43. Li, M., Shen, Q., Xu, H., Wong, F. M., Cui, J., Li, Z., Hong, N., Wang, L., Zhao, H., Ma, B., & Hong, Y. (2011). Differential conservation and divergence of fertility genes boule and dazl in the rainbow trout. PLoS ONE, 6, e15910.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Millane, R. C., Kanska, J., Duffy, D. J., Seoighe, C., Cunningham, S., Plickert, G., & Frank, U. (2011). Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. Development, 138, 2429–39.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, D., Manali, D., Wang, T., Bhat, N., Hong, N., Li, Z., Wang, L., Yan, Y., Liu, R., & Hong, Y. (2011). Identification of pluripotency genes in the fish medaka. International Journal of Biological Sciences, 7, 440–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Mohapatra, C., Patra, S. K., Panda, R. P., Mohanta, R., Saha, A., Saha, J. N., Mahapatra, K. D., Jayasankar, P., & Barman, H. K. (2014). Gene structure and identification of minimal promoter of Pou2 expressed in spermatogonial cells of rohu carp. Mol Biol Rep: Labeo rohita.

    Google Scholar 

  47. Ye, H., Du, H., Chen, X. H., Cao, H., Liu, T., & Li, C. J. (2012). Identification of a pou2 ortholog in Chinese sturgeon, Acipenser sinensis and its expression patterns in tissues, immature individuals and during embryogenesis. Fish Physiology and Biochemistry, 38, 929–42.

    Article  CAS  PubMed  Google Scholar 

  48. Rodda, D. J., Chew, J. L., Lim, L. H., Loh, Y. H., Wang, B., Ng, H. H., & Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. The Journal of Biological Chemistry, 280, 24731–7.

    Article  CAS  PubMed  Google Scholar 

  49. Chew, J. L., Loh, Y. H., Zhang, W., Chen, X., Tam, W. L., Yeap, L. S., Li, P., Ang, Y. S., Lim, B., Robson, P., & Ng, H. H. (2005). Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Molecular and Cellular Biology, 25, 6031–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B., & Ng, H. H. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–40.

    Article  CAS  PubMed  Google Scholar 

  51. Yeo, J. C., & Ng, H. H. (2013). The transcriptional regulation of pluripotency. Cell Research, 23, 20–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Li, M., Zhu, F., & Hong, Y. (2013). Differential evolution of duplicated medakafish mitf genes. International Journal of Biological Sciences, 9, 496–508.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hong N, M Schartl and Y Hong. (2014). Derivation of stable zebrafish ES-like cells in feeder-free culture. Cell Tissue Res.

Download references

Acknowledgments

We thank J. Deng for fish breeding, Choy Mei Foong and Veronica Wong for laboratory management. This work was supported by the National Research Foundation Singapore (NRF-CRP7-2010-03).

Author Disclosure Statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhan Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cloning and sequence of Oloct4. (A) Cloning strategy and steps. arrowheads, positions and directions of primers. (B) Sequence. Start codon and stop codon are shown in bold. Primer sequences are underlined with arrows depicting their directions. Amino acid sequences for degenerate primers Pou5 and Pou3 are framed. POUs, POU-specific domain; POUh, POU homeodomain. Primers PR53 and Psb were used for RT-PCR, while PR51 and Psb define the sequence of DNA and RNA probes used in Southern and in situ hybridization. (TIFF 1260 kb)

High Resolution (GIF 286 kb)

Fig.S2

Amino acid sequence alignment. Two POU subdomains and the linker between them are defined by arrowheads. The antigenic sequence within the linker used for the production of a polyclonal antibody (αOct4) is underlined. At the end of the alignment are species common names, percentage identity values for full length sequences (full) and partial sequences spanning POU domains (POU). Accession numbers are AY639946.1 for Ol (Oryzias latipes, medaka), NP_571187.1 for Dr (Danio rerio, zebrafish), NP_001081342.1 for Xl (Xenopus laevis), AAT09163.1 for Am (Ambystoma mexicanum, axolotl), ABK27428.1 for Gg (Gallus gallus, chicken), NP_038661 for Mm (Mus musculus, mouse) and CAA77951 for Hs (Homo sapiens, human). (TIFF 940 kb)

High Resolution (GIF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Li, M., Li, Z. et al. Medaka Oct4 is Essential for Pluripotency in Blastula Formation and ES Cell Derivation. Stem Cell Rev and Rep 11, 11–23 (2015). https://doi.org/10.1007/s12015-014-9523-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9523-2

Keywords

Navigation