Skip to main content

Advertisement

Log in

Comparison of Reprogramming Genes in Induced Pluripotent Stem Cells and Nuclear Transfer Cloned Embryos

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The most effective reprogramming methods, somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs), are widely used in biological research and regenerative medicine, yet the mechanism that reprograms somatic cells to totipotency remains unclear and thus reprogramming efficiency is still low. Microarray technology has been employed in analyzing the transcriptomes changes during iPS reprogramming. Unfortunately, it is difficult to obtain enough DNA from SCNT reconstructed embryos to take advantage of this technology. In this study, we aimed to identify critical genes from the transcriptional profile for iPS reprogramming and compared expression levels of these genes in SCNT reprogramming. By integrating gene expression information from microarray databases and published studies comparing somatic cells with either miPSCs or mouse embryonic stem cells (ESCs), we obtained two lists of co-upregulated genes. The gene ontology (GO) enriched analysis of these two lists demonstrated that the reprogramming process is associated with numerous biological processes. Specifically, we selected 32 genes related to heterochromatin, embryonic development, and cell cycle from our co-upregulated gene datasets and examined the gene expression level in iPSCs and SCNT embryos by qPCR. The results revealed that some reprogramming related genes in iPSCs were also expressed in SCNT reprogramming. We established the network of gene interactions that occur with genes differentially expressed in iPS and SCNT reprogramming and then performed GO analysis on the genes in the network. The network genes function in chromatin organization, heterochromatin, transcriptional regulation, and cell cycle. Further researches to improve reprogramming efficiency, especially in SCNT, will focus on functional studies of these selected genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feng, R., & Lengner, C. (2013). Application of Stem Cell Technology in Dental Regenerative Medicine. Adv Wound Care (New Rochelle), 2(6), 296–305. doi:10.1089/wound.2012.0375.

    Article  Google Scholar 

  2. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable Offspring Derived from Fetal and Adult Mammalian Cells. Nature, 385(6619), 810–813. doi:10.1038/385810a0.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, K., & Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  4. Pralong, D., Trounson, A. O., & Verma, P. J. (2006). Cell Fusion for Reprogramming Pluripotency: Toward Elimination of the Pluripotent Genome. Stem Cell Reviews, 2(4), 331–340.

    Article  CAS  PubMed  Google Scholar 

  5. Xu, Y. N., Guan, N., Wang, Z. D., Shan, Z. Y., Shen, J. L., Zhang, Q. H., Jin, L. H., & Lei, L. (2009). ES Cell Extract-Induced Expression of Pluripotent Factors in Somatic Cells. Anat Rec (Hoboken), 292(8), 1229–1234. doi:10.1002/ar.20919.

    Article  CAS  Google Scholar 

  6. Fulka, J., Jr., & Fulka, H. (2007). Somatic Cell Nuclear Transfer (SCNT) in Mammals: The Cytoplast and its Reprogramming Activities. Advances in Experimental Medicine and Biology, 591, 93–102. doi:10.1007/978–0–387–37754–4_7.

    Article  PubMed  Google Scholar 

  7. Wakayama, S., & Wakayama, T. (2010). Improvement of Mouse Cloning Using Nuclear Transfer-Derived Embryonic Stem Cells and/or Histone Deacetylase Inhibitor. The International Journal of Developmental Biology, 54(11–12), 1641–1648.

    Article  CAS  PubMed  Google Scholar 

  8. Teng, H. F., Kuo, Y. L., Loo, M. R., Li, C. L., Chu, T. W., Suo, H., Liu, H. S., Lin, K. H., & Chen, S. L. (2010). Valproic Acid Enhances Oct4 Promoter Activity in Myogenic Cells. Journal of Cellular Biochemistry, 110(4), 995–1004. doi:10.1002/jcb.22613.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  10. Kang, L., Kou, Z., Zhang, Y., & Gao, S. (2010). Induced Pluripotent Stem Cells (iPSCs) a new era of Reprogramming. Journal of Genetics and Genomics, 37(7), 415–421.

    Article  CAS  PubMed  Google Scholar 

  11. Nagata, N., & Yamanaka, S. (2014). Perspectives for Induced Pluripotent Stem Cell Technology: new Insights into Human Physiology Involved in Somatic Mosaicism. Circulation Research, 114(3), 505–510.

    Article  CAS  PubMed  Google Scholar 

  12. Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N. V., Wakayama, S., Bui, H. T., & Wakayama, T. (2006). Significant Improvement of Mouse Cloning Technique by Treatment With Trichostatin a After Somatic Nuclear Transfer. Biochemical and Biophysical Research Communications, 340(1), 183–189.

    Article  CAS  PubMed  Google Scholar 

  13. Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A Comparison of Normalization Methods for High Density Oligonucleotide Array Data Based on Variance and Bias. Bioinformatics, 19(2), 185–193.

    Article  CAS  PubMed  Google Scholar 

  14. Tseng, G. C., Ghosh, D., & Feingold, E. (2012). Comprehensive Literature Review and Statistical Considerations for Microarray Meta-Analysis. Nucleic Acids Research, 40(9), 3785–3799.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Assou, S., Le Carrour, T., Tondeur, S., Strom, S., Gabelle, A., Marty, S., Nadal, L., Pantesco, V., Reme, T., Hugnot, J. P., Gasca, S., Hovatta, O., Hamamah, S., Klein, B., & De Vos, J. (2007). A Meta-Analysis of Human Embryonic Stem Cells Transcriptome Integrated into a web-Based Expression Atlas. Stem Cells, 25(4), 961–973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li, Y., & Ghosh, D. (2012). Assumption Weighting for Incorporating Heterogeneity into Meta-Analysis of Genomic Data. Bioinformatics, 28(6), 807–814.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wren, J. D., & Conway, T. (2006). Meta-Analysis of Published Transcriptional and Translational Fold Changes Reveals a Preference for low-Fold Inductions. OMICS, 10(1), 15–27. doi:10.1089/omi.2006.10.15.

    Article  CAS  PubMed  Google Scholar 

  18. Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology, 4(5), P3.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8 (5):R95. doi:gb-2007–8–5-r95

  20. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., & Ideker, T. (2011). Cytoscape 2.8: new Features for Data Integration and Network Visualization. Bioinformatics, 27(3), 431–432.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Shan, Z. Y., Wu, Y. S., Li, X., Shen, X. H., Wang, Z. D., Liu, Z. H., Shen, J. L., & Lei, L. (2014). Continuous Passages Accelerate the Reprogramming of Mouse Induced Pluripotent Stem Cells. Cellular Reprogramming, 16(1), 77–83. doi:10.1089/cell.2013.0067.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, Z., Jia, J. L., Bou, G., Hu, L. L., Wang, Z. D., Shen, X. H., Shan, Z. Y., Shen, J. L., Liu, Z. H., & Lei, L. (2012). The Journal of Biological Chemistry, 287(24), 19949–19960.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tesarik, J., Rienzi, L., Ubaldi, F., Mendoza, C., & Greco, E. (2002). Use of a Modified Intracytoplasmic Sperm Injection Technique to Overcome Sperm-Borne and Oocyte-Borne Oocyte Activation Failures. Fertility and Sterility, 78(3), 619–624.

    Article  PubMed  Google Scholar 

  24. Araki, Y., Yoshizawa, M., Abe, H., & Murase, Y. (2004). Use of Mouse Oocytes to Evaluate the Ability of Human Sperm to Activate Oocytes After Failure of Activation by Intracytoplasmic Sperm Injection. Zygote, 12(2), 111–116.

    Article  PubMed  Google Scholar 

  25. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods, 25(4), 402–408. doi:10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  26. Sridharan, R., Tchieu, J., Mason, M. J., Yachechko, R., Kuoy, E., Horvath, S., Zhou, Q., & Plath, K. (2009). Role of the Murine Reprogramming Factors in the Induction of Pluripotency. Cell, 136(2), 364–377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., Plath, K., & Hochedlinger, K. (2007). Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodeling and Widespread Tissue Contribution. Cell Stem Cell, 1(1), 55–70.

    Article  CAS  PubMed  Google Scholar 

  28. Li, H. Y., Chien, Y., Chen, Y. J., Chen, S. F., Chang, Y. L., Chiang, C. H., Jeng, S. Y., Chang, C. M., Wang, M. L., Chen, L. K., Hung, S. I., Huo, T. I., Lee, S. D., & Chiou, S. H. (2011). Reprogramming Induced Pluripotent Stem Cells in the Absence of c-Myc for Differentiation into Hepatocyte-Like Cells. Biomaterials, 32(26), 5994–6005.

    CAS  PubMed  Google Scholar 

  29. Laherty, C. D., Billin, A. N., Lavinsky, R. M., Yochum, G. S., Bush, A. C., Sun, J. M., Mullen, T. M., Davie, J. R., Rose, D. W., Glass, C. K., Rosenfeld, M. G., Ayer, D. E., & Eisenman, R. N. (1998). SAP30, a Component of the mSin3 Corepressor Complex Involved in N-CoR-Mediated Repression by Specific Transcription Factors. Molecular Cell, 2(1), 33–42.

    Article  CAS  PubMed  Google Scholar 

  30. Fan, R., Bonde, S., Gao, P., Sotomayor, B., Chen, C., Mouw, T., Zavazava, N., & Tan, K. (2012). Dynamic HoxB4-Regulatory Network During Embryonic Stem Cell Differentiation to Hematopoietic Cells. Blood, 119(19), e139–147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Williams, K., Christensen, J., Pedersen, M. T., Johansen, J. V., Cloos, P. A., Rappsilber, J., & Helin, K. (2011). TET1 and Hydroxymethylcytosine in Transcription and DNA Methylation Fidelity. Nature, 473(7347), 343–348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li, L., Zheng, P., & Dean, J. (2010). Maternal Control of Early Mouse Development. Development, 137(6), 859–870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pierre, A., Gautier, M., Callebaut, I., Bontoux, M., Jeanpierre, E., Pontarotti, P., & Monget, P. (2007). Atypical Structure and Phylogenomic Evolution of the new Eutherian Oocyte and Embryo-Expressed KHDC1/DPPA5/ECAT1/OOEP Gene Family. Genomics, 90(5), 583–594.

    Article  CAS  PubMed  Google Scholar 

  34. Schumacher, A., & Doerfler, W. (2004). Influence of in Vitro Manipulation on the Stability of Methylation Patterns in the Snurf/Snrpn-Imprinting Region in Mouse Embryonic Stem Cells. Nucleic Acids Research, 32(4), 1566–1576. doi:10.1093/nar/gkh322 32/4/1566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dong, F., Song, Z., Zhang, J., Lu, Y., Song, C., Jiang, B., Zhang, B., Cong, P., Sun, H., Shi, F., & Liu, H. (2013). Global Transcriptional Analysis of Nuclear Reprogramming in the Transition from MEFs to iPSCs. Genes to Cells, 18(1), 42–55.

    Article  CAS  PubMed  Google Scholar 

  36. Comes, S., Gagliardi, M., Laprano, N., Fico, A., Cimmino, A., Palamidessi, A., De Cesare, D., De Falco, S., Angelini, C., Scita, G., Patriarca, E. J., Matarazzo, M. R., & Minchiotti, G. (2013). L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation. Stem Cell Reports, 1(4), 307–321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Huggins, C. J., Malik, R., Lee, S., Salotti, J., Thomas, S., Martin, N., Quinones, O. A., Alvord, W. G., Olanich, M. E., Keller, J. R., & Johnson, P. F. (2013). C/EBPgamma Suppresses Senescence and Inflammatory Gene Expression by Heterodimerizing With C/EBPbeta. Molecular and Cellular Biology, 33(16), 3242–3258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ho, R., Papp, B., Hoffman, J. A., Merrill, B. J., & Plath, K. (2013). Stage-Specific Regulation of Reprogramming to Induced Pluripotent Stem Cells by Wnt Signaling and T Cell Factor Proteins. Cell Reports, 3(6), 2113–2126.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Martinez-Fernandez, A., Li, X., Hartjes, K. A., Terzic, A., & Nelson, T. J. (2013). Natural Cardiogenesis-Based Template Predicts Cardiogenic Potential of Induced Pluripotent Stem Cell Lines. Circulation. Cardiovascular Genetics, 6(5), 462–471.

    Article  CAS  PubMed  Google Scholar 

  40. Teske, B. F., Fusakio, M. E., Zhou, D., Shan, J., McClintick, J. N., Kilberg, M. S., & Wek, R. C. (2013). CHOP Induces Activating Transcription Factor 5 (ATF5) to Trigger Apoptosis in Response to Perturbations in Protein Homeostasis. Molecular Biology of the Cell, 24(15), 2477–2490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Oda, M., Kumaki, Y., Shigeta, M., Jakt, L. M., Matsuoka, C., Yamagiwa, A., Niwa, H., & Okano, M. (2013). DNA Methylation Restricts Lineage-Specific Functions of Transcription Factor Gata4 During Embryonic Stem Cell Differentiation. PLoS Genetics, 9(6), e1003574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yeung, F., Ramirez, C. M., Mateos-Gomez, P. A., Pinzaru, A., Ceccarini, G., Kabir, S., Fernandez-Hernando, C., & Sfeir, A. (2013). Nontelomeric Role for Rap1 in Regulating Metabolism and Protecting Against Obesity. Cell Reports, 3(6), 1847–1856.

    Article  CAS  PubMed  Google Scholar 

  43. Li, W., Shuai, L., Wan, H., Dong, M., Wang, M., Sang, L., Feng, C., Luo, G. Z., Li, T., Li, X., Wang, L., Zheng, Q. Y., Sheng, C., Wu, H. J., Liu, Z., Liu, L., Wang, X. J., Zhao, X. Y., & Zhou, Q. (2012). Androgenetic Haploid Embryonic Stem Cells Produce Live Transgenic Mice. Nature, 490(7420), 407–411.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, J., Ding, G., Lin, J., Zhang, M., Shi, L., Lv, W., Yang, H., Xiao, H., Pei, G., Li, Y., Wu, J., & Li, J. (2011). Different Developmental Potential of Pluripotent Stem Cells Generated by Different Reprogramming Strategies. Journal of Molecular Cell Biology, 3(3), 197–199.

    Article  CAS  PubMed  Google Scholar 

  45. Matsui, T., Takano, M., Yoshida, K., Ono, S., Fujisaki, C., Matsuzaki, Y., Toyama, Y., Nakamura, M., Okano, H., & Akamatsu, W. (2012). Neural Stem Cells Directly Differentiated from Partially Reprogrammed Fibroblasts Rapidly Acquire Gliogenic Competency. Stem Cells, 30(6), 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  46. Kuckenberg, P., Peitz, M., Kubaczka, C., Becker, A., Egert, A., Wardelmann, E., Zimmer, A., Brustle, O., & Schorle, H. (2011). Lineage Conversion of Murine Extraembryonic Trophoblast Stem Cells to Pluripotent Stem Cells. Molecular and Cellular Biology, 31(8), 1748–1756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nakagawa, S., Ip, J. Y., Shioi, G., Tripathi, V., Zong, X., Hirose, T., & Prasanth, K. V. (2012). Malat1 is not an Essential Component of Nuclear Speckles in Mice. RNA, 18(8), 1487–1499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Chen, J., Liu, J., Han, Q., Qin, D., Xu, J., Chen, Y., Yang, J., Song, H., Yang, D., Peng, M., He, W., Li, R., Wang, H., Gan, Y., Ding, K., Zeng, L., Lai, L., Esteban, M. A., & Pei, D. (2010). Towards an Optimized Culture Medium for the Generation of Mouse Induced Pluripotent Stem Cells. The Journal of Biological Chemistry, 285(40), 31066–31072.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Yang, H., Shi, L., Wang, B. A., Liang, D., Zhong, C., Liu, W., Nie, Y., Liu, J., Zhao, J., Gao, X., Li, D., Xu, G. L., & Li, J. (2012). Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem Cells. Cell, 149(3), 605–617.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu, B. M., Kang, K., Yu, J. H., Chen, W., Smith, H. E., Lee, D., Sun, H. W., Wei, L., & Hennighausen, L. (2012). Genome-Wide Analyses Reveal the Extent of Opportunistic STAT5 Binding That Does not Yield Transcriptional Activation of Neighboring Genes. Nucleic Acids Research, 40(10), 4461–4472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Faustino, R. S., Chiriac, A., Niederlander, N. J., Nelson, T. J., Behfar, A., Mishra, P. K., Macura, S., Michalak, M., Terzic, A., & Perez-Terzic, C. (2010). Decoded Calreticulin-Deficient Embryonic Stem Cell Transcriptome Resolves Latent Cardiophenotype. Stem Cells, 28(7), 1281–1291.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Liu, J., Johnson, K., Li, J., Piamonte, V., Steffy, B. M., Hsieh, M. H., Ng, N., Zhang, J., Walker, J. R., Ding, S., Muneoka, K., Wu, X., Glynne, R., & Schultz, P. G. (2011). Regenerative Phenotype in Mice With a Point Mutation in Transforming Growth Factor Beta Type I Receptor (TGFBR1). Proceedings of the National Academy of Sciences of the United States of America, 108(35), 14560–14565.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Kleger, A., Seufferlein, T., Malan, D., Tischendorf, M., Storch, A., Wolheim, A., Latz, S., Protze, S., Porzner, M., Proepper, C., Brunner, C., Katz, S. F., Varma Pusapati, G., Bullinger, L., Franz, W. M., Koehntop, R., Giehl, K., Spyrantis, A., Wittekindt, O., Lin, Q., Zenke, M., Fleischmann, B. K., Wartenberg, M., Wobus, A. M., Boeckers, T. M., & Liebau, S. (2010). Modulation of Calcium-Activated Potassium Channels Induces Cardiogenesis of Pluripotent Stem Cells and Enrichment of Pacemaker-Like Cells. Circulation, 122(18), 1823–1836.

    Article  CAS  PubMed  Google Scholar 

  54. Takii, R., Inouye, S., Fujimoto, M., Nakamura, T., Shinkawa, T., Prakasam, R., Tan, K., Hayashida, N., Ichikawa, H., Hai, T., & Nakai, A. (2010). Heat Shock Transcription Factor 1 Inhibits Expression of IL-6 Through Activating Transcription Factor 3. The Journal of Immunology, 184(2), 1041–1048.

    Article  CAS  PubMed  Google Scholar 

  55. Ko, K., Tapia, N., Wu, G., Kim, J. B., Bravo, M. J., Sasse, P., Glaser, T., Ruau, D., Han, D. W., Greber, B., Hausdorfer, K., Sebastiano, V., Stehling, M., Fleischmann, B. K., Brustle, O., Zenke, M., & Scholer, H. R. (2009). Induction of Pluripotency in Adult Unipotent Germline Stem Cells. Cell Stem Cell, 5(1), 87–96.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, L., Luo, G. Z., Yang, W., Zhao, X., Zheng, Q., Lv, Z., Li, W., Wu, H. J., Wang, L., Wang, X. J., & Zhou, Q. (2010). Activation of the Imprinted Dlk1-Dio3 Region Correlates With Pluripotency Levels of Mouse Stem Cells. The Journal of Biological Chemistry, 285(25), 19483–19490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Zhao, X. Y., Li, W., Lv, Z., Liu, L., Tong, M., Hai, T., Hao, J., Guo, C. L., Ma, Q. W., Wang, L., Zeng, F., & Zhou, Q. (2009). iPS Cells Produce Viable Mice Through Tetraploid Complementation. Nature, 461(7260), 86–90.

    Article  CAS  PubMed  Google Scholar 

  58. Labalette, C., Nouet, Y., Sobczak-Thepot, J., Armengol, C., Levillayer, F., Gendron, M. C., Renard, C. A., Regnault, B., Chen, J., Buendia, M. A., & Wei, Y. (2008). The LIM-Only Protein FHL2 Regulates Cyclin D1 Expression and Cell Proliferation. The Journal of Biological Chemistry, 283(22), 15201–15208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Labalette, C., Nouet, Y., Levillayer, F., Armengol, C., Renard, C. A., Soubigou, G., Xia, T., Buendia, M. A., & Wei, Y. (2008). The LIM-Only Protein FHL2 Mediates ras-Induced Transformation Through Cyclin D1 and p53 Pathways. PloS One, 3(11), e3761.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Kim, J. B., Zaehres, H., Wu, G., Gentile, L., Ko, K., Sebastiano, V., Arauzo-Bravo, M. J., Ruau, D., Han, D. W., Zenke, M., & Scholer, H. R. (2008). Pluripotent Stem Cells Induced from Adult Neural Stem Cells by Reprogramming With two Factors. Nature, 454(7204), 646–650.

    Article  CAS  PubMed  Google Scholar 

  61. Ralston, A., Cox, B. J., Nishioka, N., Sasaki, H., Chea, E., Rugg-Gunn, P., Guo, G., Robson, P., Draper, J. S., & Rossant, J. (2010). Gata3 Regulates Trophoblast Development Downstream of Tead4 and in Parallel to Cdx2. Development, 137(3), 395–403.

    Article  CAS  PubMed  Google Scholar 

  62. Rampon, C., Bouillot, S., Climescu-Haulica, A., Prandini, M. H., Cand, F., Vandenbrouck, Y., & Huber, P. (2008). Protocadherin 12 Deficiency Alters Morphogenesis and Transcriptional Profile of the Placenta. Physiological Genomics, 34(2), 193–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Faustino, R. S., Behfar, A., Perez-Terzic, C., & Terzic, A. (2008). Genomic Chart Guiding Embryonic Stem Cell Cardiopoiesis. Genome Biology, 9(1), R6.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Hui, L., Bakiri, L., Mairhorfer, A., Schweifer, N., Haslinger, C., Kenner, L., Komnenovic, V., Scheuch, H., Beug, H., & Wagner, E. F. (2007). p38alpha Suppresses Normal and Cancer Cell Proliferation by Antagonizing the JNK-c-Jun Pathway. Nature Genetics, 39(6), 741–749.

    Article  CAS  PubMed  Google Scholar 

  65. Klose, R. J., Yan, Q., Tothova, Z., Yamane, K., Erdjument-Bromage, H., Tempst, P., Gilliland, D. G., Zhang, Y., & Kaelin, W. G., Jr. (2007). The Retinoblastoma Binding Protein RBP2 is an H3K4 Demethylase. Cell, 128(5), 889–900.

    Article  CAS  PubMed  Google Scholar 

  66. Koziczak-Holbro, M., Joyce, C., Gluck, A., Kinzel, B., Muller, M., Tschopp, C., Mathison, J. C., Davis, C. N., & Gram, H. (2007). IRAK-4 Kinase Activity is Required for Interleukin-1 (IL-1) Receptor and Toll-Like Receptor 7-Mediated Signaling and Gene Expression. The Journal of Biological Chemistry, 282(18), 13552–13560.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (31271590), the National Basic Science Research Program of China (973 Program) (grant no. 2012CBA01303), and Yu Weihan Academician Fund of Harbin Medicine University.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianhong Jin or Lei Lei.

Additional information

Lian Duan and Zhendong Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 12.5 kb)

ESM 2

(XLSX 1.28 MB)

ESM 3

(XLSX 1.09 MB)

ESM 4

(XLSX 10.4 KB)

ESM 5

(XLSX 45.7 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Wang, Z., Shen, J. et al. Comparison of Reprogramming Genes in Induced Pluripotent Stem Cells and Nuclear Transfer Cloned Embryos. Stem Cell Rev and Rep 10, 548–560 (2014). https://doi.org/10.1007/s12015-014-9516-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9516-1

Keywords

Navigation