Skip to main content
Log in

Characterisation of Human Limbal Side Population Cells Isolated Using an Optimised Protocol From an Immortalised Epithelial Cell Line and Primary Limbal Cultures

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The challenges in limbal stem cell biology largely remain in the process of identification, isolation and expansion of these adult corneal epithelial stem cells of the eye. Due to the absence of specific limbal stem cell markers, identification and isolation of putative limbal stem cells is a complicated task. The side population assay is an isolation method that utilises the ability of stem cells to efflux the DNA-binding dye Hoechst 33342 (or other vital dyes) combined with dual wavelength flow cytometry and is a valuable strategy to enrich for limbal stem cells. This assay has been used to successfully identify stem/ progenitor cell populations in a variety of tissues and cell lines. Here we optimise this assay to identify SP cell populations in both primary human limbal epithelial cultures and in an established human corneal epithelial cell line. The limbal SP fraction showed higher expression of ATP-binding cassette sub-family G member 2 (ABCG2), ΔNp63—a common limbal stem cell marker and the stem cell marker Sox2 compared to non-SP cells (NSP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodell, M., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  2. Dean, M. (2002). In M. Dean (Ed.), The human ATP-binding cassette (ABC) transporter superfamily. Bethesda (MD): National Center for Biotechnology Information (US).

    Google Scholar 

  3. Borst, P., & Elferink, R. O. (2002). Mammalian ABC transporters in health and disease. Annual Review of Biochemistry, 71(1), 537–592.

    Article  PubMed  CAS  Google Scholar 

  4. Dean, M. (2009). ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia, 14(1), 3–9.

    Article  PubMed  Google Scholar 

  5. Sarkadi, B., et al. (2006). Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiological Reviews, 86(4), 1179–1236.

    Article  PubMed  CAS  Google Scholar 

  6. Budak, M. T., et al. (2005). Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. Journal of Cell Science, 118(Pt 8), 1715–1724.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. de Paiva, C. S., et al. (2005). ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells, 23(1), 63–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Selver, O. B., et al. (2011). ABCG2-dependent dye exclusion activity and clonal potential in epithelial cells continuously growing for 1 month from limbal explants. Investigative Ophthalmology & Visual Science, 52(7), 4330–4337.

    Article  CAS  Google Scholar 

  9. Umemoto, T., et al. (2005). Rat limbal epithelial side population cells exhibit a distinct expression of stem cell markers that are lacking in side population cells from the central cornea. FEBS Letters, 579(29), 6569–6574.

    Article  PubMed  CAS  Google Scholar 

  10. Umemoto, T., et al. (2006). Limbal epithelial side-population cells have stem cell–like properties, including quiescent state. Stem Cells, 24(1), 86–94.

    Article  PubMed  Google Scholar 

  11. Chen, Z., et al. (2004). Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells, 22(3), 355–366.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Green, H., Rheinwald, J., & Sun, T. (1977). Properties of an epithelial cell type in culture: the epidermal keratinocyte and its dependence on products of the fibroblast. Progress in Clinical and Biological Research, 17, 493–500.

    PubMed  CAS  Google Scholar 

  13. Rheinwald, J., & Green, H. (1975). Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell, 6(3), 317–330.

    Article  PubMed  CAS  Google Scholar 

  14. Rheinwald, J., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6(3), 331–343.

    Article  PubMed  CAS  Google Scholar 

  15. Osei-Bempong, C., Henein, C., & Ahmad, S. (2009). Culture conditions for primary human limbal epithelial cells. Regenerative Medicine, 4(3), 461–470.

    Article  PubMed  CAS  Google Scholar 

  16. Notara, M., et al. (2007). A xenobiotic-free culture system for human limbal epithelial stem cells. Regenerative Medicine, 2(6), 919–927.

    Article  PubMed  CAS  Google Scholar 

  17. Shortt, A. J., et al. (2007). Transplantation of ex vivo cultured limbal epithelial stem cells: A review of techniques and clinical results. Survey of Ophthalmology, 52(5), 483–502.

    Article  PubMed  Google Scholar 

  18. Meyer-Blazejewska, E., et al. (2010). Preservation of the limbal stem cell phenotype by appropriate culture techniques. Investigative Ophthalmology & Visual Science, 51(2), 765–774.

    Article  Google Scholar 

  19. Robertson, D. M., Ho, S.-I., & Cavanagh, H. D. (2008). Characterization of ΔNp63 isoforms in normal cornea and telomerase-immortalized human corneal epithelial cells. Experimental Eye Research, 86(4), 576–585.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Robertson, D. M., et al. (2011). A reconstituted telomerase-immortalized human corneal epithelium in vivo: A pilot study. Current Eye Research, 36(8), 706–712.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Robertson, D. M., et al. (2005). Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Investigative Ophthalmology & Visual Science, 46(2), 470–478.

    Article  Google Scholar 

  22. Meeson, A. P., et al. (2004). Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells, 22(7), 1305–1320.

    Article  PubMed  CAS  Google Scholar 

  23. Lechner, A., et al. (2002). Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochemical and Biophysical Research Communications, 293(2), 670–674.

    Article  PubMed  CAS  Google Scholar 

  24. Martin, C. M., et al. (2004). Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 265(1), 262–275.

    Article  PubMed  CAS  Google Scholar 

  25. Britton, K. M., et al. (2011). Cancer stem cells and side population cells in breast cancer and metastasis. Cancers, 3(2), 2106–2130.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Scharenberg, C. W., Harkey, M. A., & Torok-Storb, B. (2002). The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 99(2), 507–512.

    Article  PubMed  CAS  Google Scholar 

  27. Rizzo, S., et al. (2011). Ovarian cancer stem cell–like side populations are enriched following chemotherapy and overexpress EZH2. Molecular Cancer Therapeutics, 10(2), 325–335.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Hirschmann-Jax, C., et al. (2005). A distinct “side population” of cells in human tumor cells: Implications for tumor biology and therapy. Cell Cycle, 4(2), 206–208.

    Article  Google Scholar 

  29. Hadnagy, A., et al. (2006). SP analysis may be used to identify cancer stem cell populations. Experimental Cell Research, 312(19), 3701–3710.

    Article  PubMed  CAS  Google Scholar 

  30. Golebiewska, A., et al. (2011). Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell, 8(2), 136–147.

    Article  PubMed  CAS  Google Scholar 

  31. Pfister, O., et al. (2010). In R. J. Lee (Ed.), Isolation of resident cardiac progenitor cells by Hoechst 33342 staining stem cells for myocardial regeneration (pp. 53–63). New York: Humana Press.

    Google Scholar 

  32. Meeson, A., et al. (2013). Optimised protocols for the identification of the murine cardiac side population. Stem Cell Reviews and Reports, 1–9.

  33. Montanaro, F., et al. (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Experimental Cell Research, 298(1), 144–154.

    Article  PubMed  CAS  Google Scholar 

  34. Asakura, A., & Rudnicki, M. A. (2002). Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Experimental Hematology, 30(11), 1339–1345.

    Article  PubMed  Google Scholar 

  35. Akinci, M. A. M., et al. (2009). Differential gene expression in the pig limbal side population: Implications for stem cell cycling, replication, and survival. Investigative Ophthalmology & Visual Science, 50(12), 5630–5638.

    Article  Google Scholar 

  36. Tropepe, V., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287(5460), 2032–2036.

    Article  PubMed  CAS  Google Scholar 

  37. Friedenstein, A., Chailakhyan, R., & Gerasimov, U. (1987). Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell and Tissue Kinetics, 20(3), 263–272.

    PubMed  CAS  Google Scholar 

  38. Gronthos, S., et al. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25), 13625–13630.

    Article  CAS  Google Scholar 

  39. Watanabe, K., et al. (2004). Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Letters, 565(1–3), 6–10.

    Article  PubMed  CAS  Google Scholar 

  40. Kubota, M., et al. (2010). The anti-oxidative role of ABCG2 in corneal epithelial cells. Investigative Ophthalmology & Visual Science, 51(11), 5617–5622.

    Article  Google Scholar 

  41. Chen, W., et al. (2003). Wistar rat palpebral conjunctiva contains more slow-cycling stem cells that have larger proliferative capacity: Implication for conjunctival epithelial homeostasis. Japanese Journal of Ophthalmology, 47(2), 119–128.

    Article  PubMed  Google Scholar 

  42. Tani, H., Morris, R. J., & Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences, 97(20), 10960–10965.

    Article  CAS  Google Scholar 

  43. Cotsarelis, G., Sun, T.-T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61(7), 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  44. Li, J., et al. (2008). Enrichment of putative human epidermal stem cells based on cell size and collagen type IV adhesiveness. Cell Research, 18(360–371).

    Google Scholar 

  45. Tavaluc, R. T., et al. (2007). Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines. Cell Cycle, 6(20), 2554–2562.

    Article  PubMed  CAS  Google Scholar 

  46. Kabashima, A., et al. (2009). Side population of pancreatic cancer cells predominates in TGF-β-mediated epithelial to mesenchymal transition and invasion. International Journal of Cancer, 124(12), 2771–2779.

    Article  CAS  Google Scholar 

  47. Ostrowska, A., et al. (2011). Corneal Spheres derived from human embryonic and human pluripotent parthenogenetic stem cells. Journal of Stem Cell Research & Therapy, S2–006.

  48. Chao, T.-T., et al. (2013). Adherent culture conditions enrich the side population obtained from the cochlear modiolus-derived stem/progenitor cells. International Journal of Pediatric Otorhinolaryngology, 77(5), 779–784.

    Article  PubMed  Google Scholar 

  49. Yamazaki, T., et al. (2008). Presence of side-population cells in an immortalized nontumorigenic human liver epithelial cell line. Vitro Cellular & Developmental Biology–Animal, 44(1–2), 6–9.

    Article  CAS  Google Scholar 

  50. Park, K.-S., et al. (2006). The side population cells in the rabbit limbus sensitively increased in response to the central cornea wounding. Investigative Ophthalmology & Visual Science, 47(3), 892–900.

    Article  Google Scholar 

Download references

Acknowledgments

Supported by grants from the Ministry of Higher Education, Malaysia and partially by Universiti Sains Malaysia, Pulau Pinang, Malaysia. The authors thank Lisa Hodgson and the staff at Flow cytometry Core Facility Unit, Newcastle University, Institute of Genetic Medicine, International Centre for Life, Newcastle Upon-Tyne, United Kingdom, for their assistance throughout this study.

Conflict of interest

Authors do not have actual or potential conflict of interest including any financial, personal or other relationships with other people or organisations that could inappropriately influence, or be perceived to influence our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakiah Shaharuddin.

Additional information

Authors’ Contribution

1. Bakiah Shaharuddin: Conception and design, Collection and/or assembly of data, Manuscript writing

2. Sajjad Ahmad: Conception and design

3. Ian Harvey: Conception and design, Collection and/or assembly of data, Manuscript writing

4. Simi Ali: Conception and design

5. Annette Meeson: Conception and design, Collection and/or assembly of data, Manuscript writing, Final approval of manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaharuddin, B., Harvey, I., Ahmad, S. et al. Characterisation of Human Limbal Side Population Cells Isolated Using an Optimised Protocol From an Immortalised Epithelial Cell Line and Primary Limbal Cultures. Stem Cell Rev and Rep 10, 240–250 (2014). https://doi.org/10.1007/s12015-013-9481-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9481-0

Keywords

Navigation