Skip to main content
Log in

Molecular Mechanisms Controlling the Cell Cycle in Embryonic Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  3. Savatier, P., Lapillonne, H., Jirmanova, L., Vitelli, L., & Samarut, J. (2002). Analysis of the cell cycle in mouse embryonic stem cells. Methods in Molecular Biology, 185, 27–33.

    PubMed  CAS  Google Scholar 

  4. Stead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., et al. (2002). Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21(54), 8320–8333.

    Article  PubMed  CAS  Google Scholar 

  5. Becker, K. A., Ghule, P. N., Therrien, J. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., et al. (2006). Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. Journal of Cellular Physiology, 209(3), 883–893.

    Article  PubMed  CAS  Google Scholar 

  6. White, J., & Dalton, S. (2005). Cell cycle control of embryonic stem cells. Stem Cell Reviews, 1(2), 131–138.

    Article  PubMed  CAS  Google Scholar 

  7. Savatier, P., Huang, S., Szekely, L., Wiman, K. G., & Samarut, J. (1994). Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene, 9(3), 809–818.

    PubMed  CAS  Google Scholar 

  8. Faast, R., White, J., Cartwright, P., Crocker, L., Sarcevic, B., & Dalton, S. (2004). Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16 (INK4a). Oncogene, 23(2), 491–502.

    Article  PubMed  CAS  Google Scholar 

  9. Koledova, Z., Kramer, A., Kafkova, L. R., & Divoky, V. (2010). Cell-cycle regulation in embryonic stem cells: centrosomal decisions on self-renewal. Stem Cells and Development, 19(11), 1663–1678.

    Article  PubMed  CAS  Google Scholar 

  10. Ghule, P. N., Medina, R., Lengner, C. J., Mandeville, M., Qiao, M., Dominski, Z., et al. (2011). Reprogramming the pluripotent cell cycle: Restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. Journal of Cellular Physiology, 226(5), 1149–1156.

    Article  PubMed  CAS  Google Scholar 

  11. Ruiz, S., Panopoulos, A. D., Herrerias, A., Bissig, K. D., Lutz, M., Berggren, W. T., et al. (2011). A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Current Biology, 21(1), 45–52.

    Article  PubMed  CAS  Google Scholar 

  12. Fujii-Yamamoto, H., Kim, J. M., Arai, K., & Masai, H. (2005). Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. Journal of Biological Chemistry, 280(13), 12976–87.

    Article  PubMed  CAS  Google Scholar 

  13. Burdon, T., Smith, A., & Savatier, P. (2002). Signalling, cell cycle and pluripotency in embryonic stem cells. Trends in Cell Biology, 12(9), 432–438.

    Article  PubMed  CAS  Google Scholar 

  14. Sherr, C. J., & Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Development, 9(10), 1149–63.

    Article  CAS  Google Scholar 

  15. Blagosklonny, M. V., & Pardee, A. B. (2002). The restriction point of the cell cycle. Cell Cycle, 1(2), 103–110.

    PubMed  CAS  Google Scholar 

  16. Kapinas, K., Grandy, R., Ghule, P., Medina, R., Becker, K., Pardee, A., et al. (2013). The abbreviated pluripotent cell cycle. Journal of Cellular Physiology, 228(1), 9–20.

    Article  PubMed  CAS  Google Scholar 

  17. Graf, F., Mosch, B., Koehler, L., Bergmann, R., Wuest, F., & Pietzsch, J. (2010). Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: Perspectives in cancer therapy and imaging. Mini-Reviews in Medicinal Chemistry, 10(6), 527–539.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, Y., & Belloch, R. (2011). Cell cycle regulation by microRNAs in stem cells. In J. Z. Kubiak (Ed.), Cell cycle in development. Results and problems in cell differentiation (53rd ed., pp. 459–472). Heidelberg: Springer.

    Chapter  Google Scholar 

  19. Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501–1512.

    Article  CAS  Google Scholar 

  20. Becker, K. A., Stein, J. L., Lian, J. B., van Wijnen, A. J., & Stein, G. S. (2010). Human embryonic stem cells are pre-mitotically committed to self-renewal and acquire a lengthened G1 phase upon lineage programming. Journal of Cellular Physiology, 222(1), 103–110.

    Article  PubMed  CAS  Google Scholar 

  21. He, S., Nakada, D., & Morrison, S. J. (2009). Mechanisms of stem cell self renewal. Annual Review of Cell and Developmental Biology, 25, 377–406.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, R., & Guo, Y. L. (2012). Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells. Experimental Cell Research, 318(16), 2094–2104.

    Article  PubMed  CAS  Google Scholar 

  23. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., & Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 75(4), 805–816.

    Article  PubMed  CAS  Google Scholar 

  24. Neganova, I., Zhang, X., Atkinson, S., & Lako, M. (2009). Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene, 28(1), 20–30.

    Article  PubMed  CAS  Google Scholar 

  25. Ghule, P. N., Becker, K. A., Harper, J. W., Lian, J. B., Stein, J. L., van Wijnen, A. J., et al. (2007). Cell cycle dependent phosphorylation and subnuclear organization of the histone gene regulator p220NPAT in human embryonic stem cells. Journal of Cellular Physiology, 213(1), 9–17.

    Article  PubMed  CAS  Google Scholar 

  26. Neganova, I., Vilella, F., Atkinson, S. P., Lloret, M., Passos, J. F., von Zglinicki, T., et al. (2011). An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells. Stem Cells, 29, 651–659.

    Article  PubMed  CAS  Google Scholar 

  27. Barta, T., Vinarsky, V., Holubcova, Z., Dolezalova, D., Verner, J., Pospisilova, S., et al. (2010). Human embryonic stem cells are capable of executing G1/S checkpoint activation. Stem Cells, 28(7), 1143–52.

    PubMed  CAS  Google Scholar 

  28. Koledova, Z., Kafkova, L. R., Calabkova, L., Krystof, V., Dolezel, P., & Divoky, V. (2010). Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells and Development, 19(2), 181–193.

    Article  PubMed  CAS  Google Scholar 

  29. Khidr, L., & Chen, P. L. (2006). Rb, the conductor that orchestrates life, death and differentiation. Oncogene, 25(38), 5210–5219.

    Article  PubMed  CAS  Google Scholar 

  30. Sage, J., Mulligan, G. J., Attardi, L. D., Miller, A., Chen, S., Williams, B., et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes & Development, 14(23), 3037–3050.

    Article  CAS  Google Scholar 

  31. Sage, J. (2012). The retinoblastoma tumor suppressor and stem cell biology. Genes & Development, 26(13), 1409–20.

    Article  CAS  Google Scholar 

  32. Fluckiger, A. C., Marcy, G., Marchand, M., Negre, D., Cosset, F. L., Mitalipov, S., Wolf, D., Savatier, P., & Dehay, C. (2006). Cell cycle features of primate embryonic stem cells. Stem Cells, 24(3), 547–556.

    Article  PubMed  CAS  Google Scholar 

  33. Becker, K. A., Stein, J. L., Lian, J. B., van Wijnen, A. J., & Stein, G. S. (2007). Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells. Journal of Cellular Physiology, 210(2), 517–526.

    Article  PubMed  CAS  Google Scholar 

  34. Conklin, J. F., & Sage, J. (2009). Keeping an eye on retinoblastoma control of human embryonic stem cells. Journal of Cellular Biochemistry, 108(5), 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  35. Dannenberg, J. H., van Rossum, A., Schuijff, L., & te Riele, H. (2000). Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth-restricting conditions. Genes & Development, 14(23), 3051–3064.

    Article  CAS  Google Scholar 

  36. Zheng, L., Flesken-Nikitin, A., Chen, P. L., & Lee, W. H. (2002). Deficiency of Retinoblastoma gene in mouse embryonic stem cells leads to genetic instability. Cancer Research, 62(9), 2498–2502.

    PubMed  CAS  Google Scholar 

  37. Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell, 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  38. Wong, C., & Stearns, T. (2005). Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biology, 6(1), 6.

    Article  PubMed  Google Scholar 

  39. Kojima, K., Konopleva, M., Tsao, T., Nakakuma, H., & Andreeff, M. (2008). Concomitant inhibition of Mdm2-p53 interaction and Aurora kinases activates the p53-dependent postmitotic checkpoints and synergistically induces p53- mediated mitochondrial apoptosis along with reduced endoreduplication in acute myelogenous leukemia. Blood, 112(7), 2886–2895.

    Article  PubMed  CAS  Google Scholar 

  40. Aladjem, M. I., Spike, B. T., Rodewald, L. W., Hope, T. J., Klemm, M., Jaenisch, R., et al. (1998). ES cells do not activate p53-dependent stress responses and undergo p53 independent apoptosis in response to DNA damage. Current Biology, 8(3), 145–155.

    Article  PubMed  CAS  Google Scholar 

  41. Solozobova, V., Rolletschek, A., & Blattner, C. (2009). Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage. BMC Cell Biology, 10, 46.

    Article  PubMed  Google Scholar 

  42. Lin, T., Chao, C., Saito, S., Mazur, S. J., Murphy, M. E., Appella, E., et al. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biology, 7(2), 165–171.

    Article  PubMed  CAS  Google Scholar 

  43. Qin, H., Yu, T., Qing, T., Liu, Y., Zhao, Y., Cai, J., et al. (2007). Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. The Journal of Biological Chemistry, 282(8), 5842–5852.

    Article  PubMed  CAS  Google Scholar 

  44. Abdelalim, E. M., & Tooyama, I. (2012). The p53 inhibitor, pifithrin-α, suppresses self-renewal of embryonic stem cells. Biochemical and Biophysical Research Communications, 420(3), 605–10.

    Article  PubMed  CAS  Google Scholar 

  45. Corbet, S. W., Clarke, A. R., Gledhill, S., & Wyllie, A. H. (1999). P53-dependent and -independent links between DNA-damage, apoptosis and mutation frequency in ES cells. Oncogene, 18(8), 1537–1544.

    Article  PubMed  CAS  Google Scholar 

  46. Maimets, T., Neganova, I., Armstrong, L., & Lako, M. (2008). Activation of p53 by nultin leads to rapid differentiation of human embryonic stem cells. Oncogene, 27(40), 5277–87.

    Article  PubMed  CAS  Google Scholar 

  47. Filion, T. M., Qiao, M., Ghule, P. N., Mandeville, M., van Wijnen, A. J., Stein, J. L., et al. (2009). Survival responses of human embryonic stem cells to DNA damage. Journal of Cellular Physiology, 220(3), 586–592.

    Article  PubMed  CAS  Google Scholar 

  48. Momcilovic, O., Choi, S., Varum, S., Bakkenist, C., Schatten, G., & Navara, C. (2009). Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G(2) but not G(1) cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells, 27(8), 1822–1835.

    Article  PubMed  CAS  Google Scholar 

  49. Jain, A. K., Allton, K., Lacovino, M., Mahen, E., Milczarek, R. J., Zwaka, T. P., et al. (2012). P53 regulates cell cycle and microRNAs to promote differentiation o human embryonic stem cells. PloS Biology, 10, e1001268.

    Article  PubMed  CAS  Google Scholar 

  50. Dolezalova, D., Mraz, M., Barta, T., Plevova, K., Vinarsky, V., Holubcova, Z., et al. (2012). MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells, 30(7), 1362–72.

    Article  PubMed  CAS  Google Scholar 

  51. Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40(12), 1478–1483.

    Article  PubMed  CAS  Google Scholar 

  52. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism and function. Cell, 116(2), 281–97.

    Article  PubMed  CAS  Google Scholar 

  53. Pillai, R. S., Bhattacharyya, S. N., & Filipowicz, W. (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends in Cell Biology, 17(3), 118–26.

    Article  PubMed  CAS  Google Scholar 

  54. Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Development, 19(4), 489–501.

    Article  CAS  Google Scholar 

  55. Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., & Hannon, G. J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102(34), 12135–40.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, Y., Medvid, R., Melton, C., Jaenisch, R., & Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 39(3), 380–385.

    Article  PubMed  CAS  Google Scholar 

  57. Melton, C., Judson, R., & Blelloch, R. (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 463(7281), 621–6.

    Article  PubMed  CAS  Google Scholar 

  58. Qi, J., Yu, J. Y., Shcherbata, H. R., Mathieu, J., Wang, A. J., Seal, S., et al. (2009). microRNAs regulate human embryonic stem cell division. Cell Cycle, 8, 3729–3741.

    Article  PubMed  CAS  Google Scholar 

  59. Li, C., Andrake, M., Dunbrack, R., & Enders, G. H. (2010). A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export. Molecular and Celularl Biology, 30(1), 116–130.

    Article  Google Scholar 

  60. Sengupta, S., Nie, J., Wagner, R. J., Yang, C., Stewart, R., & Thomson, J. A. (2009). MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells, 27(7), 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  61. Card, D. A., Hebbar, P. B., Li, L., Trotter, K. W., Komatsu, Y., Mishina, Y., et al. (2008). Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Molecular and Cellular Biology, 28(20), 6426–6438.

    Article  PubMed  Google Scholar 

  62. Nishi, T., Oikawa, Y., Ishida, Y., Kawaichi, M., & Matsuda, E. (2012). CtBP-interacting BTB zinc finger protein (CIBZ) promotes proliferation and G1/S transition in embryonic stem cells via Nanog. The Journal of Biological Chemistry, 287(15), 12417–24.

    Article  Google Scholar 

  63. Chae, H. D., Lee, M. R., & Broxmeyer, H. E. (2012). 5-aminoimidazole-4-carboxyamide ribonucleoside induces G1/S arrest and Nanog downregulation via p53 and enhances erythroid differentiation. Stem Cells, 30(2), 140–149.

    Article  PubMed  CAS  Google Scholar 

  64. Jirmanova, L., Bulavin, D. V., & Fornace, A. J., Jr. (2005). Inhibition of the ATR/Chk1 pathway induces a p38-dependent S-phase delay in mouse embryonic stem cells. Cell Cycle, 4(10), 1428–34.

    Article  PubMed  CAS  Google Scholar 

  65. Abdelalim, E. M., & Tooyama, I. (2009). BNP signaling is crucial for embryonic stem cell proliferation. PloS One, 4(4), e5341.

    Article  PubMed  Google Scholar 

  66. Abdelalim, E. M., & Tooyama, I. (2011). BNP is a Novel Regulator of Embryonic Stem Cell Proliferation, Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis, Craig Atwood (Ed.), ISBN: 978-953-307-196-1, InTech.

  67. Gu, B., Zhang, J., Wu, Y., Zhang, X., Tan, Z., Lin, Y., et al. (2011). Proteomic analyses reveal common promiscuous patterns of cell surface proteins on human embryonic stem cells and sperms. PloS One, 6(5), e19386.

    Article  PubMed  CAS  Google Scholar 

  68. Abdelalim, E. M., & Tooyama, I. (2011). NPR-A regulates self-renewal and pluripotency of embryonic stem cells. Cell Death and Disease, 2, e127.

    Article  PubMed  CAS  Google Scholar 

  69. Abdelalim, E. M., & Tooyama, I. (2012). Regulation of self-renewal and pluripotency of embryonic stem cells: role of natriuretic peptide receptor A. In M. A. Hayat (Ed.), Stem cells and cancer stem cells; therapeutic applications in disease and injury, vol. 8 (pp. 123–131). New York: Springer. ISBN 978-94-007-4797-5.

    Chapter  Google Scholar 

  70. Andang, M., Hjerling-Leffler, J., Moliner, A., Lundgren, T. K., Castelo-Branco, G., Nanou, E., et al. (2008). Histone H2AX-dependent GABA(A) receptor regulation of stem cell proliferation. Nature, 451(7177), 460–464.

    Article  PubMed  Google Scholar 

  71. Kapur, N., Mignery, G. A., & Banach, K. (2007). Cell cycle-dependent calcium oscillations in mouse embryonic stem cells. American Journal of Physiology-Cell Physiology, 292(4), C1510–8.

    Article  PubMed  CAS  Google Scholar 

  72. Wong, C. K., So, W. Y., Law, S. K., Leung, F. P., Yau, K. L., Yao, X., et al. (2012). Estrogen controls embryonic stem cell proliferation via store-operated calcium entry and the nuclear factor of activated T-cells (NFAT). Journal of Cellular Physiology, 227(6), 2519–2530.

    Article  PubMed  CAS  Google Scholar 

  73. Savatier, P., Lapillonne, H., van Grunsven, L. A., Rudkin, B. B., & Samarut, J. (1996). Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene, 12(2), 309–22.

    PubMed  CAS  Google Scholar 

  74. Chen, K., Hsu, L. T., Wu, C. Y., Chang, S. Y., Huang, H. T., & Chen, W. (2013). CBARA1 plays a role in stemness and proliferation of human embryonic stem cells. PloS One, 8(5), e63653.

    Article  PubMed  CAS  Google Scholar 

  75. Jirmanova, L., Afanassieff, M., Gobert-Gosse, S., Markossian, S., & Savatier, P. (2002). Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene, 21(36), 5515–5528.

    Article  PubMed  CAS  Google Scholar 

  76. Neganova, I., & Lako, M. (2008). G1 to S phase cell cycle transition in somatic and embryonic stem cells. Journal of Anatomy, 213(1), 30–44.

    Article  PubMed  CAS  Google Scholar 

  77. Wang, Y., & Blelloch, R. (2009). Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Research, 69(10), 4093–4096.

    Article  PubMed  CAS  Google Scholar 

  78. Lee, J., Go, Y., Kang, I., Han, Y. M., & Kim, J. (2010). Oct-4 controls cell-cycle progression of embryonic stem cells. Biochemical Journal, 426(2), 171–181.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang, X., Neganova, I., Przyborski, S., Yang, C., Cooke, M., Atkinson, S. P., et al. (2009). A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. The Journal of Cell Biology, 184(1), 67–82.

    Article  PubMed  CAS  Google Scholar 

  80. Chavez, L., Bais, A. S., Vingron, M., Lehrach, H., Adjaye, J., & Herwig, R. (2009). In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach. BMC Genomics, 10, 314.

    Article  PubMed  Google Scholar 

  81. Campbell, P. A., Perez-Iratxeta, C., Andrade-Navarro, M. A., & Rudnicki, M. A. (2007). Oct4 targets regulatory nodes to modulate stem cell function. PloS One, 2(6), e553.

    Article  PubMed  Google Scholar 

  82. Keyes, W. M., Wu, Y., Vogel, H., Guo, X., Lowe, S. W., & Mills, A. A. (2005). p63 deficiency activates a program of cellular senescence and leads to accelerating aging. Genes & Development, 19(17), 1986–1999.

    Article  CAS  Google Scholar 

  83. Smith, K. N., Singh, A. M., & Dalton, S. (2010). Myc represses primitive endoderm differentiation in pluripotent stem cells. Cell Stem Cell, 7(3), 343–354.

    Article  PubMed  CAS  Google Scholar 

  84. Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6), 1106–1117.

    Article  PubMed  CAS  Google Scholar 

  85. Kidder, B. L., Yang, J., & Palmer, S. (2008). Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS. ONE, 3, e3932.

    Article  PubMed  Google Scholar 

  86. Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6), 1049–1061.

    Article  PubMed  CAS  Google Scholar 

  87. Varlakhanova, N. V., Cotterman, R. F., deVries, W. N., Morgan, J., Donahue, L. R., Murray, S., et al. (2010). Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation, 80(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  88. Filipczyk, A. A., Laslett, A. L., Mummery, C., & Pera, M. F. (2007). Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells. Stem Cell Research, 1(1), 45–60.

    Article  PubMed  CAS  Google Scholar 

  89. Kim, Y., Deshpande, A., Dai, Y., Kim, J. J., Lindgren, A., Conway, A., et al. (2009). Cyclin-dependent kinase 2-associating protein 1 commits murine embryonic stem cell differentiation through retinoblastoma protein regulation. Journal of Biological Chemistry, 284(35), 23405–23414.

    Article  PubMed  CAS  Google Scholar 

  90. Armstrong, L., Lako, M., von Herpe, I., Evans, J., Saretzki, G., & Hole, N. (2004). A role for nucleoprotein Zap3 in the reduction of telomerase activity during embryonic stem cell differentiation. Mechanisms of Development, 121(12), 1509–1522.

    Article  PubMed  CAS  Google Scholar 

  91. Yang, C., Przyborski, S., Cooke, M. J., Zhang, X., Stewart, R., Anyfantis, G., et al. (2008). A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells, 26(4), 850–863.

    Article  PubMed  CAS  Google Scholar 

  92. Paling, N. R., Wheadon, H., Bone, H. K., & Welham, M. J. (2004). Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signalling. Journal of Biological Chemistry, 279(46), 48063–48070.

    Article  PubMed  CAS  Google Scholar 

  93. Storm, M. P., Bone, H. K., Beck, C. G., Bourillot, P. Y., Schreiber, V., Damiano, T., et al. (2007). Regulation of Nanog expression by phosphoinsitide 3-kinase-dependent signaling in murine embryonic stem cells. Journal of Biological Chemistry, 282(9), 6265–6273.

    Article  PubMed  CAS  Google Scholar 

  94. Ema, M., Mori, D., Niwa, H., Hasegawa, Y., Yamanaka, Y., Hitoshi, S., et al. (2008). Kruppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell, 3(5), 555–567.

    Article  PubMed  CAS  Google Scholar 

  95. Coronado, D., Godet, M., Bourillot, P. Y., Tapponnier, Y., Bernat, A., Petit, M., et al. (2013). A short G1 phase is an intrinsic determinant of naïve embryonic stem cell pluripotency. Stem Cell Research, 10(1), 118–131.

    Article  PubMed  Google Scholar 

  96. Li, V. C., Ballabeni, A., & Kirschner, M. W. (2012). Gap 1 phase length and mouse embryonic stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12550–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

I declare no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam M. Abdelalim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelalim, E.M. Molecular Mechanisms Controlling the Cell Cycle in Embryonic Stem Cells. Stem Cell Rev and Rep 9, 764–773 (2013). https://doi.org/10.1007/s12015-013-9469-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9469-9

Keywords

Navigation