Skip to main content

Advertisement

Log in

Molecular Pathways Governing Development of Vascular Endothelial Cells from ES/iPS Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Assembly of complex vascular networks occurs in numerous biological systems through morphogenetic processes such as vasculogenesis, angiogenesis and vascular remodeling. Pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any cell type, including endothelial cells (ECs), and have been extensively used as in vitro models to analyze molecular mechanisms underlying EC generation and differentiation. The emergence of these promising new approaches suggests that ECs could be used in clinical therapy. Much evidence suggests that ES/iPS cell differentiation into ECs in vitro mimics the in vivo vascular morphogenic process. Through sequential steps of maturation, ECs derived from ES/iPS cells can be further differentiated into arterial, venous, capillary and lymphatic ECs, as well as smooth muscle cells. Here, we review EC development from ES/iPS cells with special attention to molecular pathways functioning in EC specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patan, S. (2001). Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of Neuro-Oncology, 50(1–2), 1–15.

    Google Scholar 

  2. Benedito, R., Trindade, A., Hirashima, M., Henrique, D., da Costa, L. L., Rossant, J., et al. (2008). Loss of Notch signalling induced by Dll4 causes arterial calibre reduction by increasing endothelial cell response to angiogenic stimuli. BMC Developmental Biology, 8(117), 1–15.

    Google Scholar 

  3. Wang, H. U., Chen, Z. F., & Anderson, D. J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 93(5), 741–753.

    PubMed  CAS  Google Scholar 

  4. Chong, D. C., Koo, Y., Xu, K., Fu, S., & Cleaver, O. (2011). Stepwise arteriovenous fate acquisition during mammalian vasculogenesis. Developmental Dynamics, 240(9), 2153–2165.

    PubMed  Google Scholar 

  5. Hamada, K., Oike, Y., Ito, Y., Maekawa, H., Miyata, K., Shimomura, T., et al. (2003). Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(2), 190–197.

    PubMed  CAS  Google Scholar 

  6. Choi, K., Yu, J., Smuga-Otto, K., Salvagiotto, G., Rehrauer, W., Vodyanik, M., et al. (2009). Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells, 27, 559–567.

    PubMed  CAS  Google Scholar 

  7. Moyon, D., Pardanaud, L., Yuan, L., Breant, C., & Eichmann, A. (2001). Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development, 128, 3359–3370.

    PubMed  CAS  Google Scholar 

  8. Lawson, N. D., Vogel, A. M., & Weinstein, B. M. (2002). Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Developmental Cell, 3(1), 127–136.

    PubMed  CAS  Google Scholar 

  9. Liu, Z., Shirakawa, T., Li, Y., Soma, A., Oka, M., Dotto, G. P., et al. (2003). Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells : implications for modulating arteriogenesis and angiogenesis. Molecular and Cellular Biology, 23(1), 14–25.

    PubMed  Google Scholar 

  10. Risau, W., Sariola, H., Zerwes, H. G., Sasse, J., Ekblom, P., Kemler, R., et al. (1988). Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development, 102(3), 471–478.

    PubMed  CAS  Google Scholar 

  11. Walthall, S. L., Moses, M., & Horabin, J. I. (2007). A large complex containing patched and smoothened initiates hedgehog signaling in drosophila. Journal of Cell Science, 120(Pt 5), 826–837.

    PubMed  CAS  Google Scholar 

  12. Chen, Y., & Struhl, G. (1996). Dual roles for patched in sequestering and transducing hedgehog. Cell, 87(3), 553–563.

    PubMed  CAS  Google Scholar 

  13. Kanda, S., Mochizuki, Y., Suematsu, T., Miyata, Y., Nomata, K., & Kanetake, H. (2003). Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. The Journal of Biological Chemistry, 278(10), 8244–8249.

    PubMed  CAS  Google Scholar 

  14. Wilkinson, R. N., Koudijs, M. J., Patient, R. K., Ingham, P. W., Schulte-Merker, S., & van Eeden, F. J. (2012). Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish. Blood, 120(2), 477–488.

    PubMed  CAS  Google Scholar 

  15. Li, X., & Eriksson, U. (2011). Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D. The International Journal of Biochemistry & Cell Biology, 33(4), 421–426.

    Google Scholar 

  16. Lanahan, A. A., Hermans, K., Claes, F., Kerley-Hamilton, J. S., Zhuang, Z. W., Giordano, F. J., et al. (2010). VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Developmental Cell, 18(5), 713–724.

    PubMed  CAS  Google Scholar 

  17. Petrova, T. V., Makinen, T., & Alitalo, K. (1999). Signaling via vascular endothelial growth factor receptors. Experimental Cell Research, 253(1), 117–130.

    PubMed  CAS  Google Scholar 

  18. Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y., Adamis, A. P., & Amore, P. A. D. (1996). The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. The Journal of Biological Chemistry, 271(7), 3877–3883.

    PubMed  CAS  Google Scholar 

  19. Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowiczs, D., Fiddes, J. C., et al. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. The Journal of Biological Chemistry, 266(18), 11947–11954.

    PubMed  CAS  Google Scholar 

  20. Ng, Y., Rohan, R., Sunday, M. E., Demello, D. E., & Amore, P. A. D. (2001). Differential expression of VEGF isoforms in mouse during development and in the adult. Developmental Dynamics, 220, 112–121.

    PubMed  CAS  Google Scholar 

  21. Stalmans, I., Ng, Y., Rohan, R., Fruttiger, M., Bouché, A., Ÿuce, A., et al. (2002). Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. The Journal of Clinical Investigation, 109(3), 327–336.

    PubMed  CAS  Google Scholar 

  22. Lai, E. C. (2004). Notch signaling: control of cell communication and cell fate. Development, 131(5), 965–973.

    PubMed  CAS  Google Scholar 

  23. Fischer, A., Schumacher, N., Maier, M., Sendtner, M., & Gessler, M. (2004). The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes & Development, 18(8), 901–911.

    CAS  Google Scholar 

  24. Kokubo, H., Miyagawa-Tomita, S., Nakazawa, M., Saga, Y., & Johnson, R. L. (2005). Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Developmental Biology, 278(2), 301–309.

    PubMed  CAS  Google Scholar 

  25. Iso, T., Hamamori, Y., & Kedes, L. (2003). Notch signaling in vascular development. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(4), 543–553.

    PubMed  CAS  Google Scholar 

  26. Villa, N., Walker, L., Lindsell, C. E., Gasson, J., Iruela-Arispe, M. L., & Weinmaster, G. (2001). Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mechanisms of Development, 108(1–2), 161–164.

    PubMed  CAS  Google Scholar 

  27. Shutter, J. R., Scully, S., Fan, W., Richards, W. G., Kitajewski, J., Deblandre, G. A., et al. (2000). Dll4, a novel Notch ligand expressed in arterial endothelium. Genes & Development, 14(11), 1313–1318.

    CAS  Google Scholar 

  28. Liu, Z. J., Shirakawa, T., Li, Y., Soma, A., Oka, M., Dotto, G. P., et al. (2003). Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Molecular Cell. Biology, 23(1), 14–25.

    Google Scholar 

  29. Hong, C. C., Peterson, Q. P., Hong, J. Y., & Peterson, R. T. (2006). Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Current Biology, 16(13), 1366–1372.

    PubMed  CAS  Google Scholar 

  30. Hayashi, H., & Kume, T. (2008). Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One, 3(6), e2401.

    PubMed  Google Scholar 

  31. Gessler, M., Knobeloch, K. P., Helisch, A., Amann, K., Schumacher, N., Rohde, E., et al. (2002). Mouse gridlock: no aortic coarctation or deficiency, but fatal cardiac defects in Hey2 −/− mice. Current Biology, 12(18), 1601–1604.

    PubMed  CAS  Google Scholar 

  32. Donovan, J., Kordylewska, A., Jan, Y. N., & Utset, M. F. (2002). Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Current Biology, 12(18), 1605–1610.

    PubMed  CAS  Google Scholar 

  33. Sakata, Y., Kamei, Y. C. N., Nakagami, H., Bronson, R., Liao, J. K., & Chin, M. T. (2002). Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16197–16202.

    PubMed  CAS  Google Scholar 

  34. Diez, H., Fischer, A., Winkler, A., Hu, C.-J., Hatzopoulos, A. K., Breier, G., et al. (2007). Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Experimental Cell Research, 313(1), 1–9.

    PubMed  CAS  Google Scholar 

  35. You, L., Lin, F., Lee, C. T., DeMayo, F. J., Tsai, M., & Tsai, S. Y. (2005). Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature Biotechnology, 435, 98–104.

    CAS  Google Scholar 

  36. Lee, C. T. (2005). Loss of the nuclear orphan receptor COUP-TFII results in the formation of arteriovenous malformations. University of Alberta Health Sciences Journal, 2(2), 3–6.

    Google Scholar 

  37. Bach, T. L., Barsigian, C., Chalupowicz, D. G., Busler, D., Yaen, C. H., Grant, D. S., et al. (1998). VE-Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Experimental Cell Research, 238(2), 324–334.

    PubMed  CAS  Google Scholar 

  38. Fung, Y. C. (1969). Blood flow in the capillary bed. Journal of Biomechanics, 2(4), 353–372.

    PubMed  CAS  Google Scholar 

  39. Ross, M. H., & Pawlina, W. (2010). Histology: A text and atlas. Baltimore: Wolters Kluwer.

    Google Scholar 

  40. Svistounov, D., Zykova, S. N., Cogger, V. C., Warren, A., McMahon, A. C., Fraser, R., et al. (2012). In P. R. Kelishadi (Ed.), Liver sinusoidal endothelial cells and regulation of blood lipoproteins, in dyslipidemia - from prevention to treatment, InTech.

  41. Svistounov, D., Warren, A., McNerney, G. P., Owen, D. M., Zencak, D., Zykova, S. N., et al. (2012). The relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells. PloS One, 7(9), e46134.

    PubMed  CAS  Google Scholar 

  42. Ding, B., Nolan, D. J., Butler, J. M., James, D., Alexander, O., Rosenwaks, Z., et al. (2010). Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 468(7321), 310–315.

    PubMed  CAS  Google Scholar 

  43. Gordon, E. J., Gale, N. W., & Harvey, N. L. (2008). Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Developmental Dynamics, 237(7), 1901–1909.

    PubMed  CAS  Google Scholar 

  44. Mouta Carreira, C., Nasser, S. M., di Tomaso, E., Padera, T. P., Boucher, Y., Tomarev, S. I., et al. (2001). LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Research, 61(22), 8079–8084.

    PubMed  CAS  Google Scholar 

  45. Glienke, J., Sturz, A., Menrad, A., & Thierauch, K. H. (2002). CRIM1 is involved in endothelial cell capillary formation in vitro and is expressed in blood vessels in vivo. Mechanisms of Development, 119(2), 165–175.

    PubMed  CAS  Google Scholar 

  46. Zhou, Q., Heinke, J., Vargas, A., Winnik, S., Krauss, T., Bode, C., et al. (2007). ERK signaling is a central regulator for BMP-4 dependent capillary sprouting. Cardiovascular Research, 76(3), 390–399.

    PubMed  CAS  Google Scholar 

  47. Oliver, G., & Srinivasan, R. S. (2010). Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development (Cambridge, England), 137(3), 363–372.

    CAS  Google Scholar 

  48. Pepper, M. S., & Skobe, M. (2003). Lymphatic endothelium: morphological, molecular and functional properties. The Journal of Cell Biology, 163(2), 209–213.

    PubMed  CAS  Google Scholar 

  49. Wang, Y., & Oliver, G. (2010). Current views on the function of the lymphatic vasculature in health and disease. Genes & Development, 24(19), 2115–2126.

    CAS  Google Scholar 

  50. Srinivasan, R. S., Dillard, M. E., Lagutin, O. V., Lin, F., Tsai, S., Tsai, M., et al. (2007). Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes & Development, 21(19), 2422–2432.

    CAS  Google Scholar 

  51. François, M., Caprini, A., Hosking, B., Orsenigo, F., Wilhelm, D., Browne, C., et al. (2008). Sox18 induces development of the lymphatic vasculature in mice. Nature, 456(7222), 643–647.

    PubMed  Google Scholar 

  52. Yang, Y., García-Verdugo, J. M., Soriano-Navarro, M., Srinivasan, R. S., Scallan, J. P., Singh, M. K., et al. (2012). Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood, 120(11), 2340–2348.

    PubMed  CAS  Google Scholar 

  53. Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V., et al. (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunology, 5(1), 74–80.

    PubMed  CAS  Google Scholar 

  54. Srinivasan, R. S., Geng, X., Yang, Y., Wang, Y., Mukatira, S., Studer, M., et al. (2010). The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes & Development, 24(7), 696–707.

    CAS  Google Scholar 

  55. Yamazaki, T., Yoshimatsu, Y., Morishita, Y., Miyazono, K., & Watabe, T. (2009). COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes to Cells: Devoted to Molecular and Cellular Mechanisms, 14(3), 425–434.

    CAS  Google Scholar 

  56. Tsuji-Tamura, K., Sakamoto, H., & Ogawa, M. (2011). ES cell differentiation as a model to study cell biological regulation of vascular development. In C. Atwood (Ed.), Embryonic stem cells: The hormonal regulation of pluripotency and embryogenesis (pp. 581–606). Vienna: INTECH.

    Google Scholar 

  57. Bai, H., & Wang, Z. Z. (2008). Directing human embryonic stem cells to generate vascular progenitor cells generation of blood vessels from hESC. Gene Therapy, 15(89–95).

    Google Scholar 

  58. Kane, N. M., Xiao, Q., Baker, A. H., Luo, Z., Xu, Q., & Emanueli, C. (2011). Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacological Therapy, 129(1), 29–49.

    CAS  Google Scholar 

  59. Yamamizu, K., Matsunaga, T., Katayama, S., Kataoka, H., Takayama, N., Eto, K., et al. (2012). PKA/CREB signaling triggers initiation of endothelial and hematopoietic cell differentiation via Etv2 induction. Stem Cells, 30(4), 687–696.

    PubMed  CAS  Google Scholar 

  60. Rungarunlert, S., Techakumphu, M., Pirity, M. K., & Dinnyes, A. (2009). Embryoid body formation from embryonic and induced pluripotent stem cells. Benefits of Bioreactors, 1(1), 11–21.

    Google Scholar 

  61. Kurosawa, H. (2007). Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering, 103(5), 389–398.

    PubMed  CAS  Google Scholar 

  62. Vittet, D., Prandini, M. H., Berthier, R., Schweitzer, A., Martin-Sisteron, H., Uzan, G., et al. (1996). Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood, 88(9), 3424–3431.

    PubMed  CAS  Google Scholar 

  63. Niwa, H., Ogawa, K., Shimosato, D., & Adachi, K. (2009). A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature Biotechnology, 460, 118–122.

    CAS  Google Scholar 

  64. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., & Kemler, R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Journal of Embryology and Experimental Morphology, 87, 27–45.

    PubMed  CAS  Google Scholar 

  65. Kim, G. D., Kim, G. J., Seok, J. H., Chung, H. M., Chee, K. M., & Rhee, G. S. (2008). Differentiation of endothelial cells derived from mouse embryoid bodies: a possible in vitro vasculogenesis model. Toxicology Letter, 180(3), 166–173.

    CAS  Google Scholar 

  66. Trivier, E., Kurz, D. J., Hong, Y., Huang, H. L., & Erusalimsky, J. D. (2004). Differential regulation of telomerase in endothelial cells by fibroblast growth factor-2 and vascular endothelial growth factor-a: association with replicative life span. Annals of the New York Academy of Sciences, 1019, 111–115.

    PubMed  CAS  Google Scholar 

  67. Vittet, D., Buchou, T., Schweitzer, A., Dejana, E., & Huber, P. (1997). Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proceedings of the National Academy of Sciences of the United States of America, 94, 6273–6278.

    PubMed  CAS  Google Scholar 

  68. Yamaguchi, T. P., Dumont, D. J., Conlon, R. A., Breitman, M. L., & Rossant, J. (1993). flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development, 118(2), 489–498.

    PubMed  CAS  Google Scholar 

  69. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine (Cambridge, Mass.), 6(2), 88–95.

    CAS  Google Scholar 

  70. Levenberg, S., Huang, N. F., Lavik, E., Rogers, A. B., Itskovitz-Eldor, J., & Langer, R. (2003). Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proceedings of the National Academy of Sciences, 100(22)), 12741–12746.

    CAS  Google Scholar 

  71. Levenberg, S., Zoldan, J., Basevitch, Y., & Langer, R. (2007). Endothelial potential of human embryonic stem cells. Blood, 110(3), 806–814.

    PubMed  CAS  Google Scholar 

  72. Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., et al. (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1), 31–41.

    PubMed  CAS  Google Scholar 

  73. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academic of Sciences, 99(7), 4391–4396.

    CAS  Google Scholar 

  74. James, D., Nam, H., Seandel, M., Nolan, D., Janovitz, T., Tomishima, M., et al. (2010). Expansion and maintenance of human embryonic stem cell - derived endothelial cells by TGFb inhibition is Id1 dependent. Nature Biotechnology, 28(2), 161–167.

    PubMed  CAS  Google Scholar 

  75. Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., et al. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature, 408, 92–96.

    PubMed  CAS  Google Scholar 

  76. Li, Z., Wu, J. C., Sheikh, A. Y., Kraft, D., Cao, F., Xie, X., et al. (2007). Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation, 116(11), I46–I54.

    PubMed  Google Scholar 

  77. Wary, K. K., Thakker, G. D., Humtsoe, J. O., & Yang, J. (2003). Analysis of VEGF-responsive genes involved in the activation of endothelial cells. Molecular Cancer, 2(25), 1–12.

    Google Scholar 

  78. Park, S. H., Sakamoto, H., Tsuji-Tamura, K., Furuyama, T., & Ogawa, M. (2009). Foxo1 is essential for in vitro vascular formation from embryonic stem cells. Biochemical and Biophysical Research Communications, 390(3), 861–866.

    PubMed  CAS  Google Scholar 

  79. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., et al. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America, 92(17), 7844–7848.

    PubMed  CAS  Google Scholar 

  80. Sone, M., Itoh, H., Yamashita, J., Yurugi-Kobayashi, T., Suzuki, Y., Kondo, Y., et al. (2003). Different differentiation kinetics of vascular progenitor cells in primate and mouse embryonic stem cells. Circulation, 107(16), 2085–2088.

    PubMed  CAS  Google Scholar 

  81. Sone, M., Itoh, H., Yamahara, K., Yamashita, J. K., Yurugi-Kobayashi, T., Nonoguchi, A., et al. (2007). Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 10, 2127–2134.

    Google Scholar 

  82. Gerecht-Nir, S., Ziskind, A., Cohen, S., & Itskovitz-Eldor, J. (2003). Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Laboratory Investigation, 83(12), 1811–1120.

    PubMed  Google Scholar 

  83. Yamamizu, K., & Yamashita, J. K. (2011). Roles of cyclic adenosine monophosphate signaling in endothelial cell differentiation and arterial-venous specification during vascular development. Circulation Journal, 75(2), 253–260.

    PubMed  CAS  Google Scholar 

  84. Zhu, P., Huang, L., Ge, X., Yan, F., Wu, R., & Ao, Q. (2006). Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. International Journal of Experimental Pathology, 87(6), 463–474.

    PubMed  CAS  Google Scholar 

  85. Marchetti, S., Gimond, C., Iljin, K., Bourcier, C., Alitalo, K., Pouysségur, J., et al. (2002). Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. Journal of Cell Science, 115(Pt 10), 2075–2085.

    PubMed  CAS  Google Scholar 

  86. Niwa, A., Umeda, K., Chang, H., Saito, M., Okita, K., Takahashi, K., et al. (2009). Orderly hematopoietic development of induced pluripotent stem cells via Flk-1(+) hemoangiogenic progenitors. Journal of Cellular Physiology, 221(2), 367–377.

    PubMed  CAS  Google Scholar 

  87. Joo, H. J., Kim, H., Park, S. W., Cho, H. J., Kim, H. S., Lim, D. S., et al. (2011). Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells. Blood, 118(8), 2094–2101.

    PubMed  CAS  Google Scholar 

  88. Suzuki, H., Shibata, R., Kito, T., Ishii, M., Li, P., Yoshikai, T., et al. (2010). Therapeutic angiogenesis by transplantation of induced pluripotent stem cell-derived Flk-1 positive cells. BMC Cell Biology, 11(72), 1–10.

    Google Scholar 

  89. Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118(5), 498–506.

    PubMed  Google Scholar 

  90. Taura, D., Sone, M., Homma, K., Oyamada, N., Takahashi, K., Tamura, N., et al. (2009). Induction and isolation of vascular cells from human induced pluripotent stem cells–brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(7), 1100–1103.

    PubMed  CAS  Google Scholar 

  91. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, N.Y.), 318(5858), 1917–1920.

    CAS  Google Scholar 

  92. Byrd, N., Becker, S., Maye, P., Narasimhaiah, R., St-Jacques, B., Zhang, X., et al. (2002). Hedgehog is required for murine yolk sac angiogenesis. Development, 129(2), 361–372.

    PubMed  CAS  Google Scholar 

  93. Kelly, M. A., & Hirschi, K. K. (2009). Signaling hierarchy regulating human endothelial cell development. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(5), 718–724.

    PubMed  CAS  Google Scholar 

  94. Boyd, N. L., Dhara, S. K., Rekaya, R., Godbey, E. A., Hasneen, K., Rao, R. R., et al. (2007). BMP4 promotes formation of primitive vascular networks in human embryonic stem cell-derived embryoid bodies. Experimental Biology and Medicine (Maywood), 232(6), 833–843.

    CAS  Google Scholar 

  95. Banerjee, S., Dhara, S. K., & Bacanamwo, M. (2012). Endoglin is a novel endothelial cell specification gene. Stem Cell Research, 8(1), 85–96.

    PubMed  CAS  Google Scholar 

  96. Li, D. Y., Sorensen, L. K., Brooke, B. S., Urness, L. D., Davis, E. C., Taylor, D. G., et al. (1999). Defective angiogenesis in mice lacking endoglin. Science, 284(5419), 1534–1537.

    PubMed  CAS  Google Scholar 

  97. Carvalho, R. L., Jonker, L., Goumans, M. J., Larsson, J., Bouwman, P., Karlsson, S., et al. (2004). Defective paracrine signalling by TGFbeta in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development, 131(24)), 6237–6247.

    PubMed  CAS  Google Scholar 

  98. Lanner, F., Sohl, M., & Farnebo, F. (2007). Functional arterial and venous fate is determined by graded VEGF signaling and notch status during embryonic stem cell differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(3), 487–493.

    PubMed  CAS  Google Scholar 

  99. Yurugi-Kobayashi, T., Itoh, H., Schroeder, T., Nakano, A., Narazaki, G., Kita, F., et al. (2006). Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(9), 1977–1984.

    PubMed  CAS  Google Scholar 

  100. Masumura, T., Yamamoto, K., Shimizu, N., Obi, S., & Ando, J. (2009). Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(12), 2125–2131.

    PubMed  CAS  Google Scholar 

  101. Era, T., Izumi, N., Hayashi, M., Tada, S., Nishikawa, S., & Nishikawa, S. (2008). Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells, 26(2), 401–411.

    PubMed  CAS  Google Scholar 

  102. Chiang, P. M., & Wong, P. C. (2011). Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4. Development, 138(13), 2833–2843.

    PubMed  CAS  Google Scholar 

  103. Harada, K., Yamazaki, T., Iwata, C., Yoshimatsu, Y., Sase, H., Mishima, K., et al. (2009). Identification of targets of Prox1 during in vitro vascular differentiation from embryonic stem cells: functional roles of HoxD8 in lymphangiogenesis. Journal of Cell Science, 122(Pt 21), 3923–3930.

    PubMed  CAS  Google Scholar 

  104. Sasaki, T., Mizuochi, C., Horio, Y., Nakao, K., Akashi, K., & Sugiyama, D. (2010). Regulation of hematopoietic cell clusters in the placental niche through SCF/Kit signaling in embryonic mouse. Development, 137(23), 3941–3952.

    PubMed  CAS  Google Scholar 

  105. Sugiyama, D., Kulkeaw, K., & Mizuochi, C. (2012). TGF-beta-1 up-regulates extra-cellular matrix production in mouse hepatoblasts. Mechanisms of Development, 30(2–3), 195–206.

    Google Scholar 

Download references

Acknowledgments

We thank Drs. Kenzaburo Tani and Koichi Akashi and Sugiyama lab members for discussion, Dr. Elise Lamar for editing the manuscript, and the Ministry of Education, Culture, Sports, Science and Technology, the Ministry of Health, Labor and Welfare, the Japan Society for the Promotion of Science, the Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical care, and Institute of Molecular Embryology and Genetics for grant support. Keai Sinn Tan is a recipient of scholarship from The Tokyo Biochemical Research Foundation, Japan and MyPhD scholarship from Ministry of Higher Education (MOHE), Malaysia.

Conflict of Interest Statement

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, K.S., Tamura, K., Lai, M.I. et al. Molecular Pathways Governing Development of Vascular Endothelial Cells from ES/iPS Cells. Stem Cell Rev and Rep 9, 586–598 (2013). https://doi.org/10.1007/s12015-013-9450-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9450-7

Keywords

Navigation