Skip to main content

Advertisement

Log in

Stem Cells in Liver Regeneration and Their Potential Clinical Applications

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cells constitute a population of “primitive cells” with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-AAF:

2-acetylaminofluorene

AFP:

Alpha fetoprotein

ALB:

Albumin

BM:

Bone marrow

BM-MSC:

Bone marrow derived mesenchymal stem cell

BM-SC:

Bone marrow stem cell

CCl4 :

Carbon tetrachloride

CK:

Cytokeratin

EB:

Embryoid body

ESC:

Embryonic stem cell

FAH:

Fumarylacetoacetate hydrolase

G-CSF:

Granulocyte colony stimulating factor

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HEV:

Hepatitis E virus

hHpSCs:

Human hepatic stem cells

HNF:

Hepatocyte nuclear factor

HNF-3β:

Hepatocyte nuclear factor 3 beta

HSC:

Hematopoietic stem cell

ICG:

Indocyanine green

iPSC:

Induced pluripotent stem cell

LIF:

Leukemia inhibiting factor

MAPC:

Multipotent adult progenitor cell

MEFC:

Mouse embryonic fibroblast cell

MMP:

Metalloproteinase

MSC:

Mesenchymal stem cell

MSC-CM:

Mesenchymal stem cell conditioned medium

NTBC:

2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC)

PH:

Partial hepatectomy

rha-FGF:

Recombinant human acidic fibroblast growth factor

rhb-FGF:

Recombinant human basic fibroblast growth factor

rHGF:

Recombinant hepatocyte growth factor

TTR:

Transthyretin

UCB:

Umbilical cord blood

UCB-HSC:

Umbilical cord blood derived hematopoietic stem cell

UCB-MSC:

Umbilical cord blood derived mesenchymal stem cell

uPA:

Urokinase plasminogen activator

γ-GT:

Gamma glutamyltransferase

References

  1. Grisham, J. W. (1962). A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Research, 22, 842–849.

    PubMed  CAS  Google Scholar 

  2. O’Leary, J. G., Lepe, R., & Davis, G. L. (2008). Indications for liver transplantation. Gastroenterology, 134, 1764–1776.

    PubMed  Google Scholar 

  3. Tarnowski, M., & Sieron, A. L. (2006). Adult stem cells and their ability to differentiate. Medical Science Monitor, 12, RA154–RA163.

    PubMed  Google Scholar 

  4. Kolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration, 85, 3–10.

    PubMed  Google Scholar 

  5. Tremblay, K. D., & Zaret, K. S. (2005). Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Developmental Biology, 280, 87–99.

    PubMed  CAS  Google Scholar 

  6. North, T. E., & Goessling, W. (2011). Endoderm specification, liver development, and regeneration. Methods in Cell Biology, 101, 205–223.

    PubMed  Google Scholar 

  7. Lemaigre, F., & Zaret, K. S. (2004). Liver development update: new embryo models, cell lineage control, and morphogenesis. Current Opinion in Genetics and Development, 14, 582–590.

    PubMed  CAS  Google Scholar 

  8. Kuwahara, R., Kofman, A. V., Landis, C. S., Swenson, E. S., Barendswaard, E., & Theise, N. D. (2008). The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology, 47, 1994–2002.

    PubMed  Google Scholar 

  9. Sicklick, J. K., Li, Y. X., Melhem, A., et al. (2006). Hedgehog signaling maintains resident hepatic progenitors throughout life. American Journal of Physiology. Gastrointestinal and Liver Physiology, 290, G859–G870.

    PubMed  CAS  Google Scholar 

  10. Theise, N. D., Saxena, R., Portmann, B. C., et al. (1999). The canals of Hering and hepatic stem cells in humans. Hepatology, 30, 1425–1433.

    PubMed  CAS  Google Scholar 

  11. Zhang, L., Theise, N., Chua, M., & Reid, L. M. (2008). The stem cell niche of human livers: symmetry between development and regeneration. Hepatology, 48, 1598–1607.

    PubMed  CAS  Google Scholar 

  12. Germain, L., Blouin, M. J., & Marceau, N. (1988). Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, alpha-fetoprotein, albumin, and cell surface-exposed components. Cancer Research, 48, 4909–4918.

    PubMed  CAS  Google Scholar 

  13. Shiojiri, N., Inujima, S., Ishikawa, K., Terada, K., & Mori, M. (2001). Cell lineage analysis during liver development using the spf(ash)-heterozygous mouse. Laboratory Investigation, 81, 17–25.

    PubMed  CAS  Google Scholar 

  14. Kung J. W., Currie I. S., Forbes S. J., & Ross J. A. (2010). Liver development, regeneration, and carcinogenesis. Journal of Biomedicine and Biotechnology, 2010, 984248.

  15. Turner, R., Lozoya, O., Wang, Y., et al. (2011). Human hepatic stem cell and maturational liver lineage biology. Hepatology, 53, 1035–1045.

    PubMed  CAS  Google Scholar 

  16. Fausto, N., Campbell, J. S., & Riehle, K. J. (2006). Liver regeneration. Hepatology, 43, S45–S53.

    PubMed  CAS  Google Scholar 

  17. Bucher, N. L., & Swaffield, M. N. (1964). The rate of incorporation of labeled thymidine into the deoxyribonucleic acid of regenerating rat liver in relation to the amount of liver excised. Cancer Research, 24, 1611–1625.

    PubMed  CAS  Google Scholar 

  18. Katayama, S., Tateno, C., Asahara, T., & Yoshizato, K. (2001). Size-dependent in vivo growth potential of adult rat hepatocytes. American Journal of Pathology, 158, 97–105.

    PubMed  CAS  Google Scholar 

  19. Alison, M., Golding, M., el Lalani, N., & Sarraf, C. (1998). Wound healing in the liver with particular reference to stem cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353, 877–894.

    PubMed  CAS  Google Scholar 

  20. Fausto, N., & Campbell, J. S. (2003). The role of hepatocytes and oval cells in liver regeneration and repopulation. Mechanisms of Development, 120, 117–130.

    PubMed  CAS  Google Scholar 

  21. Duncan, A. W., Dorrell, C., & Grompe, M. (2009). Stem cells and liver regeneration. Gastroenterology, 137, 466–481.

    PubMed  Google Scholar 

  22. Farber, E. (1956). Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Research, 16, 142–148.

    PubMed  CAS  Google Scholar 

  23. Evarts, R. P., Nagy, P., Marsden, E., & Thorgeirsson, S. S. (1987). A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis, 8, 1737–1740.

    PubMed  CAS  Google Scholar 

  24. Evarts, R. P., Nagy, P., Nakatsukasa, H., Marsden, E., & Thorgeirsson, S. S. (1989). In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Research, 49, 1541–1547.

    PubMed  CAS  Google Scholar 

  25. Endo, Y., Zhang, M., Yamaji, S., & Cang, Y. (2012). Genetic abolishment of hepatocyte proliferation activates hepatic stem cells. PLoS One, 7, e31846.

    PubMed  CAS  Google Scholar 

  26. Lemire, J. M., Shiojiri, N., & Fausto, N. (1991). Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. American Journal of Pathology, 139, 535–552.

    PubMed  CAS  Google Scholar 

  27. Shinozuka, H., Lombardi, B., Sell, S., & Iammarino, R. M. (1978). Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet. Cancer Research, 38, 1092–1098.

    PubMed  CAS  Google Scholar 

  28. Nagy, P., Bisgaard, H. C., & Thorgeirsson, S. S. (1994). Expression of hepatic transcription factors during liver development and oval cell differentiation. The Journal of Cell Biology, 126, 223–233.

    PubMed  CAS  Google Scholar 

  29. Fujio, K., Evarts, R. P., Hu, Z., Marsden, E. R., & Thorgeirsson, S. S. (1994). Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Laboratory Investigation, 70, 511–516.

    PubMed  CAS  Google Scholar 

  30. Omori, M., Omori, N., Evarts, R. P., Teramoto, T., & Thorgeirsson, S. S. (1997). Coexpression of flt-3 ligand/flt-3 and SCF/c-kit signal transduction system in bile-duct-ligated SI and W mice. American Journal of Pathology, 150, 1179–1187.

    PubMed  CAS  Google Scholar 

  31. Omori, N., Omori, M., Evarts, R. P., et al. (1997). Partial cloning of rat CD34 cDNA and expression during stem cell-dependent liver regeneration in the adult rat. Hepatology, 26, 720–727.

    PubMed  CAS  Google Scholar 

  32. Omori, N., Evarts, R. P., Omori, M., Hu, Z., Marsden, E. R., & Thorgeirsson, S. S. (1996). Expression of leukemia inhibitory factor and its receptor during liver regeneration in the adult rat. Laboratory Investigation, 75, 15–24.

    PubMed  CAS  Google Scholar 

  33. Petersen, B. E., Goff, J. P., Greenberger, J. S., & Michalopoulos, G. K. (1998). Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology, 27, 433–445.

    PubMed  CAS  Google Scholar 

  34. Dezso, K., Jelnes, P., Laszlo, V., et al. (2007). Thy-1 is expressed in hepatic myofibroblasts and not oval cells in stem cell-mediated liver regeneration. American Journal of Pathology, 171, 1529–1537.

    PubMed  CAS  Google Scholar 

  35. Engelhardt, N. V., Factor, V. M., Medvinsky, A. L., Baranov, V. N., Lazareva, M. N., & Poltoranina, V. S. (1993). Common antigen of oval and biliary epithelial cells (A6) is a differentiation marker of epithelial and erythroid cell lineages in early development of the mouse. Differentiation, 55, 19–26.

    PubMed  CAS  Google Scholar 

  36. Petersen, B. E., Grossbard, B., Hatch, H., Pi, L., Deng, J., & Scott, E. W. (2003). Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology, 37, 632–640.

    PubMed  Google Scholar 

  37. Crosby, H. A., Kelly, D. A., & Strain, A. J. (2001). Human hepatic stem-like cells isolated using c-kit or CD34 can differentiate into biliary epithelium. Gastroenterology, 120, 534–544.

    PubMed  CAS  Google Scholar 

  38. Baumann, U., Crosby, H. A., Ramani, P., Kelly, D. A., & Strain, A. J. (1999). Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology, 30, 112–117.

    PubMed  CAS  Google Scholar 

  39. Crosby, H. A., Hubscher, S., Fabris, L., et al. (1998). Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6. American Journal of Pathology, 152, 771–779.

    PubMed  CAS  Google Scholar 

  40. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284, 1168–1170.

    PubMed  CAS  Google Scholar 

  41. Shu, S. N., Wei, L., Wang, J. H., Zhan, Y. T., Chen, H. S., & Wang, Y. (2004). Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells. World Journal of Gastroenterology, 10, 2818–2822.

    PubMed  Google Scholar 

  42. Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3, 393–403.

    PubMed  CAS  Google Scholar 

  43. Augello, A., Kurth, T. B., & De Bari, C. (2010). Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. European Cells & Materials, 20, 121–133.

    CAS  Google Scholar 

  44. Theise, N. D., Badve, S., Saxena, R., et al. (2000). Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 31, 235–240.

    PubMed  CAS  Google Scholar 

  45. Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine, 6, 1229–1234.

    PubMed  CAS  Google Scholar 

  46. Alison, M. R., Poulsom, R., Jeffery, R., et al. (2000). Hepatocytes from non-hepatic adult stem cells. Nature, 406, 257.

    PubMed  CAS  Google Scholar 

  47. Theise, N. D., Nimmakayalu, M., Gardner, R., et al. (2000). Liver from bone marrow in humans. Hepatology, 32, 11–16.

    PubMed  CAS  Google Scholar 

  48. Wang, X., Ge, S., McNamara, G., Hao, Q. L., Crooks, G. M., & Nolta, J. A. (2003). Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood, 101, 4201–4208.

    PubMed  CAS  Google Scholar 

  49. Wang, X., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., & Grompe, M. (2003). The origin and liver repopulating capacity of murine oval cells. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11881–11888.

    PubMed  CAS  Google Scholar 

  50. Wagers, A. J., Sherwood, R. I., Christensen, J. L., & Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 297, 2256–2259.

    PubMed  CAS  Google Scholar 

  51. Menthena, A., Deb, N., Oertel, M., et al. (2004). Bone marrow progenitors are not the source of expanding oval cells in injured liver. Stem Cells, 22, 1049–1061.

    PubMed  Google Scholar 

  52. Vassilopoulos, G., Wang, P. R., & Russell, D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature, 422, 901–904.

    PubMed  CAS  Google Scholar 

  53. Wang, X., Willenbring, H., Akkari, Y., et al. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 422, 897–901.

    PubMed  CAS  Google Scholar 

  54. Willenbring, H., Bailey, A. S., Foster, M., et al. (2004). Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nature Medicine, 10, 744–748.

    PubMed  CAS  Google Scholar 

  55. Wang, X., Montini, E., Al-Dhalimy, M., Lagasse, E., Finegold, M., & Grompe, M. (2002). Kinetics of liver repopulation after bone marrow transplantation. American Journal of Pathology, 161, 565–574.

    PubMed  Google Scholar 

  56. Schwerfeld-Bohr, J., Chi, H., Worm, K., & Dahmen, U. (2012). Influence of hematopoietic stem cell-derived hepatocytes on liver regeneration after sex-mismatched liver transplantation in humans. Journal of Investigative Surgery, 25, 220–226.

    PubMed  Google Scholar 

  57. Thorgeirsson, S. S., & Grisham, J. W. (2006). Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology, 43, 2–8.

    PubMed  Google Scholar 

  58. Sharma, A. D., Cantz, T., Manns, M. P., & Ott, M. (2006). The role of stem cells in physiology, pathophysiology, and therapy of the liver. Stem Cell Reviews, 2, 51–58.

    PubMed  CAS  Google Scholar 

  59. Bruder, S. P., Jaiswal, N., & Haynesworth, S. E. (1997). Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Journal of Cellular Biochemistry, 64, 278–294.

    PubMed  CAS  Google Scholar 

  60. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.

    PubMed  CAS  Google Scholar 

  61. Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711–10716.

    PubMed  CAS  Google Scholar 

  62. Chopp, M., Zhang, X. H., Li, Y., et al. (2000). Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport, 11, 3001–3005.

    PubMed  CAS  Google Scholar 

  63. Schwartz, R. E., Reyes, M., Koodie, L., et al. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation, 109, 1291–1302.

    PubMed  CAS  Google Scholar 

  64. Reyes, M., & Verfaillie, C. M. (2001). Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Annals of the New York Academy of Sciences, 938, 231–233. discussion 233–235.

    PubMed  CAS  Google Scholar 

  65. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103, 1669–1675.

    PubMed  CAS  Google Scholar 

  66. Lee, K. D., Kuo, T. K., Whang-Peng, J., et al. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40, 1275–1284.

    PubMed  CAS  Google Scholar 

  67. Hong, S. H., Gang, E. J., Jeong, J. A., et al. (2005). In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochemical and Biophysical Research Communications, 330, 1153–1161.

    PubMed  CAS  Google Scholar 

  68. Seo, M. J., Suh, S. Y., Bae, Y. C., & Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications, 328, 258–264.

    PubMed  CAS  Google Scholar 

  69. Lee, J. H., Lee, K. H., Kim, M. H., Kim, J. P., Lee, S. J., & Yoon, J. (2012). Possibility of undifferentiated human thigh adipose stem cells differentiating into functional hepatocytes. Archives of Facial Plastic Surgery, 39, 593–599.

    Google Scholar 

  70. Lange, C., Bassler, P., Lioznov, M. V., et al. (2005). Liver-specific gene expression in mesenchymal stem cells is induced by liver cells. World Journal of Gastroenterology, 11, 4497–4504.

    PubMed  CAS  Google Scholar 

  71. Lange, C., Bassler, P., Lioznov, M. V., et al. (2005). Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplantation Proceedings, 37, 276–279.

    PubMed  CAS  Google Scholar 

  72. Lange, C., Bruns, H., Kluth, D., Zander, A. R., & Fiegel, H. C. (2006). Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells. World Journal of Gastroenterology, 12, 2394–2397.

    PubMed  CAS  Google Scholar 

  73. Ong, S. Y., Dai, H., & Leong, K. W. (2006). Hepatic differentiation potential of commercially available human mesenchymal stem cells. Tissue Engineering, 12, 3477–3485.

    PubMed  CAS  Google Scholar 

  74. Pournasr, B., Mohamadnejad, M., Bagheri, M., et al. (2011). In vitro differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells. Archives of Iranian Medicine, 14, 244–249.

    PubMed  CAS  Google Scholar 

  75. Snykers, S., De Kock, J., Tamara, V., & Rogiers, V. (2011). Hepatic differentiation of mesenchymal stem cells: in vitro strategies. Methods in Molecular Biology, 698, 305–314.

    PubMed  CAS  Google Scholar 

  76. Banas, A., Teratani, T., Yamamoto, Y., et al. (2007). Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology, 46, 219–228.

    PubMed  CAS  Google Scholar 

  77. Piryaei, A., Valojerdi, M. R., Shahsavani, M., & Baharvand, H. (2011). Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Reviews, 7, 103–118.

    PubMed  CAS  Google Scholar 

  78. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    PubMed  CAS  Google Scholar 

  79. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.

    PubMed  CAS  Google Scholar 

  80. Bradley, A., Evans, M., Kaufman, M. H., & Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309, 255–256.

    PubMed  CAS  Google Scholar 

  81. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., & Kemler, R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Journal of Embryology and Experimental Morphology, 87, 27–45.

    PubMed  CAS  Google Scholar 

  82. Hamazaki, T., Iiboshi, Y., Oka, M., et al. (2001). Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Letters, 497, 15–19.

    PubMed  CAS  Google Scholar 

  83. Abe, K., Niwa, H., Iwase, K., et al. (1996). Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Experimental Cell Research, 229, 27–34.

    PubMed  CAS  Google Scholar 

  84. Shen, M. M., & Leder, P. (1992). Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proceedings of the National Academy of Sciences of the United States of America, 89, 8240–8244.

    PubMed  CAS  Google Scholar 

  85. Chen, X., & Zeng, F. (2011). Directed hepatic differentiation from embryonic stem cells. Protein & Cell, 2, 180–188.

    Google Scholar 

  86. Behbahan, I. S., Duan, Y., Lam, A., et al. (2011). New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes. Stem Cell Reviews, 7, 748–759.

    PubMed  Google Scholar 

  87. Yamada, T., Yoshikawa, M., Kanda, S., et al. (2002). In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells, 20, 146–154.

    PubMed  Google Scholar 

  88. Heo, J., Factor, V. M., Uren, T., et al. (2006). Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology, 44, 1478–1486.

    PubMed  CAS  Google Scholar 

  89. Yu, Y. D., Kim, K. H., Lee, S. G., et al. (2011). Hepatic differentiation from human embryonic stem cells using stromal cells. Journal of Surgical Research, 170, e253–e261.

    PubMed  Google Scholar 

  90. Ishii, T., Yasuchika, K., & Ikai, I. (2013). Hepatic differentiation of embryonic stem cells by murine fetal liver mesenchymal cells. Methods in Molecular Biology, 946, 469–478.

    PubMed  CAS  Google Scholar 

  91. Takayama, K., Inamura, M., Kawabata, K., et al. (2012). Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1alpha transduction. Journal of Hepatology, 57, 628–636.

    PubMed  CAS  Google Scholar 

  92. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    PubMed  CAS  Google Scholar 

  93. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    PubMed  CAS  Google Scholar 

  94. Song, Z., Cai, J., Liu, Y., et al. (2009). Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Research, 19, 1233–1242.

    PubMed  Google Scholar 

  95. Sullivan, G. J., Hay, D. C., Park, I. H., et al. (2010). Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 51, 329–335.

    PubMed  CAS  Google Scholar 

  96. Si-Tayeb, K., Noto, F. K., Nagaoka, M., et al. (2010). Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51, 297–305.

    PubMed  CAS  Google Scholar 

  97. Inamura, M., Kawabata, K., Takayama, K., et al. (2011). Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Molecular Therapy, 19, 400–407.

    PubMed  CAS  Google Scholar 

  98. Li, W., Wang, D., Qin, J., et al. (2010). Generation of functional hepatocytes from mouse induced pluripotent stem cells. Journal of Cellular Physiology, 222, 492–501.

    PubMed  CAS  Google Scholar 

  99. Chen, Y. F., Tseng, C. Y., Wang, H. W., Kuo, H. C., Yang, V. W., & Lee, O. K. (2011). Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 55, 1193–1203.

    Google Scholar 

  100. Sato, Y., Araki, H., Kato, J., et al. (2005). Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 106, 756–763.

    PubMed  CAS  Google Scholar 

  101. Cho, K. A., Ju, S. Y., Cho, S. J., et al. (2009). Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow. Cell Biology International, 33, 772–777.

    PubMed  CAS  Google Scholar 

  102. Banas, A., Teratani, T., Yamamoto, Y., et al. (2008). IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells, 26, 2705–2712.

    PubMed  CAS  Google Scholar 

  103. Chamberlain, J., Yamagami, T., Colletti, E., et al. (2007). Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology, 46, 1935–1945.

    PubMed  CAS  Google Scholar 

  104. Aurich, I., Mueller, L. P., Aurich, H., et al. (2007). Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut, 56, 405–415.

    PubMed  CAS  Google Scholar 

  105. Kuo, T. K., Hung, S. P., Chuang, C. H., et al. (2008). Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology, 134, 2111–2121. 2121.e1-3.

    PubMed  Google Scholar 

  106. Fang, B., Shi, M., Liao, L., Yang, S., Liu, Y., & Zhao, R. C. (2004). Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation, 78, 83–88.

    PubMed  CAS  Google Scholar 

  107. Li, J., Zhang, L., Xin, J., et al. (2012). Immediate intraportal transplantation of human bone marrow mesenchymal stem cells prevents death from fulminant hepatic failure in pigs. Hepatology, 56, 1044–1052.

    PubMed  Google Scholar 

  108. Parekkadan, B., van Poll, D., Suganuma, K., et al. (2007). Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One, 2, e941.

    PubMed  Google Scholar 

  109. Friedman, S. L. (2008). Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews, 88, 125–172.

    PubMed  CAS  Google Scholar 

  110. van Poll, D., Parekkadan, B., Cho, C. H., et al. (2008). Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology, 47, 1634–1643.

    PubMed  Google Scholar 

  111. Tsai, P. C., Fu, T. W., Chen, Y. M., et al. (2009). The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplantation, 15, 484–495.

    PubMed  Google Scholar 

  112. Chang, Y. J., Liu, J. W., Lin, P. C., et al. (2009). Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sciences, 85, 517–525.

    PubMed  CAS  Google Scholar 

  113. Zhang, S., Chen, L., Liu, T., et al. (2012). Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Engineering. Part A, 18, 1352–1364.

    PubMed  CAS  Google Scholar 

  114. Abdel Aziz, M. T., Atta, H. M., Mahfouz, S., et al. (2007). Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clinical Biochemistry, 40, 893–899.

    PubMed  CAS  Google Scholar 

  115. Sakaida, I., Terai, S., Yamamoto, N., et al. (2004). Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology, 40, 1304–1311.

    PubMed  Google Scholar 

  116. Higashiyama, R., Inagaki, Y., Hong, Y. Y., et al. (2007). Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology, 45, 213–222.

    PubMed  CAS  Google Scholar 

  117. Newsome, P. N., Johannessen, I., Boyle, S., et al. (2003). Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology, 124, 1891–1900.

    PubMed  Google Scholar 

  118. Oh, S. H., Witek, R. P., Bae, S. H., et al. (2007). Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Gastroenterology, 132, 1077–1087.

    PubMed  CAS  Google Scholar 

  119. Muraca, M., Ferraresso, C., Vilei, M. T., et al. (2007). Liver repopulation with bone marrow derived cells improves the metabolic disorder in the Gunn rat. Gut, 56, 1725–1735.

    PubMed  CAS  Google Scholar 

  120. Almeida-Porada, G., Porada, C. D., Chamberlain, J., Torabi, A., & Zanjani, E. D. (2004). Formation of human hepatocytes by human hematopoietic stem cells in sheep. Blood, 104, 2582–2590.

    PubMed  CAS  Google Scholar 

  121. Zhang, B., Inagaki, M., Jiang, B., et al. (2009). Effects of bone marrow and hepatocyte transplantation on liver injury. Journal of Surgical Research, 157, 71–80.

    PubMed  Google Scholar 

  122. Quintana-Bustamante, O., Alvarez-Barrientos, A., Kofman, A. V., et al. (2006). Hematopoietic mobilization in mice increases the presence of bone marrow-derived hepatocytes via in vivo cell fusion. Hepatology, 43, 108–116.

    PubMed  Google Scholar 

  123. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., et al. (2003). Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425, 968–973.

    PubMed  CAS  Google Scholar 

  124. Eggenhofer, E., Popp, F. C., Renner, P., et al. (2008). Allogeneic bone marrow transplantation restores liver function in Fah-knockout mice. Experimental Hematology, 36, 1507–1513.

    PubMed  CAS  Google Scholar 

  125. Jang, Y. Y., Collector, M. I., Baylin, S. B., Diehl, A. M., & Sharkis, S. J. (2004). Hematopoietic stem cells convert into liver cells within days without fusion. Nature Cell Biology, 6, 532–539.

    PubMed  CAS  Google Scholar 

  126. Choi, D., Oh, H. J., Chang, U. J., et al. (2002). In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplantation, 11, 359–368.

    PubMed  Google Scholar 

  127. Chinzei, R., Tanaka, Y., Shimizu-Saito, K., et al. (2002). Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology, 36, 22–29.

    PubMed  Google Scholar 

  128. Yamamoto, H., Quinn, G., Asari, A., et al. (2003). Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology, 37, 983–993.

    PubMed  CAS  Google Scholar 

  129. Kumashiro, Y., Asahina, K., Ozeki, R., et al. (2005). Enrichment of hepatocytes differentiated from mouse embryonic stem cells as a transplantable source. Transplantation, 79, 550–557.

    PubMed  Google Scholar 

  130. Ishii, T., Yasuchika, K., Machimoto, T., et al. (2007). Transplantation of embryonic stem cell-derived endodermal cells into mice with induced lethal liver damage. Stem Cells, 25, 3252–3260.

    PubMed  CAS  Google Scholar 

  131. Sharma, A. D., Cantz, T., Vogel, A., et al. (2008). Murine embryonic stem cell-derived hepatic progenitor cells engraft in recipient livers with limited capacity of liver tissue formation. Cell Transplantation, 17, 313–323.

    PubMed  Google Scholar 

  132. Li, F., Liu, P., Liu, C., et al. (2010). Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice. Gastroenterology, 139(2158–2169), e2158.

    Google Scholar 

  133. Woo, D. H., Kim, S. K., Lim, H. J., et al. (2012). Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology, 142, 602–611.

    PubMed  CAS  Google Scholar 

  134. Espejel, S., Roll, G. R., McLaughlin, K. J., et al. (2010). Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. The Journal of Clinical Investigation, 120, 3120–3126.

    PubMed  CAS  Google Scholar 

  135. Grompe, M., Lindstedt, S., al-Dhalimy, M., et al. (1995). Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nature Genetics, 10, 453–460.

    PubMed  CAS  Google Scholar 

  136. Liu, H., Kim, Y., Sharkis, S., Marchionni, L., & Jang, Y. Y. (2011). In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Science Translational Medicine, 3, 82ra39.

    PubMed  Google Scholar 

  137. Yusa, K., Rashid, S. T., Strick-Marchand, H., et al. (2011). Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 478, 391–394.

    PubMed  CAS  Google Scholar 

  138. van der Worp, H. B., Howells, D. W., Sena, E. S., et al. (2010). Can animal models of disease reliably inform human studies? PLoS Medicine, 7, e1000245.

    PubMed  Google Scholar 

  139. Wu, S. M., & Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 13, 497–505.

    PubMed  CAS  Google Scholar 

  140. Rosenzweig, A. (2010). Illuminating the potential of pluripotent stem cells. The New England Journal of Medicine, 363, 1471–1472.

    PubMed  CAS  Google Scholar 

  141. Liu, H., Ye, Z., Kim, Y., Sharkis, S., & Jang, Y. Y. (2010). Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51, 1810–1819.

    PubMed  CAS  Google Scholar 

  142. Ghodsizadeh, A., Taei, A., Totonchi, M., et al. (2010). Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Reviews, 6, 622–632.

    PubMed  Google Scholar 

  143. Rashid, S. T., Corbineau, S., Hannan, N., et al. (2010). Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. The Journal of Clinical Investigation, 120, 3127–3136.

    PubMed  CAS  Google Scholar 

  144. Cayo, M. A., Cai, J., Delaforest, A., et al. (2012). JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology, 56, 2163–2171.

    PubMed  CAS  Google Scholar 

  145. Sartipy, P., & Bjorquist, P. (2011). Concise review: human pluripotent stem cell-based models for cardiac and hepatic toxicity assessment. Stem Cells, 29, 744–748.

    PubMed  CAS  Google Scholar 

  146. am Esch, J. S., 2nd, Knoefel, W. T., Klein, M., et al. (2005). Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells, 23, 463–470.

    PubMed  Google Scholar 

  147. Furst, G., Schulte am Esch, J., Poll, L. W., et al. (2007). Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. Radiology, 243, 171–179.

    PubMed  Google Scholar 

  148. Ismail, A., Fouad, O., Abdelnasser, A., Chowdhury, A., & Selim, A. (2010). Stem cell therapy improves the outcome of liver resection in cirrhotics. Journal of Gastrointestinal Cancer, 41, 17–23.

    PubMed  Google Scholar 

  149. Zhang, Z., Lin, H., Shi, M., et al. (2012). Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. Journal of Gastroenterology and Hepatology, 27(Suppl 2), 112–120.

    PubMed  CAS  Google Scholar 

  150. Salama, H., Zekri, A. R., Bahnassy, A. A., et al. (2010). Autologous CD34+ and CD133+ stem cells transplantation in patients with end stage liver disease. World Journal of Gastroenterology, 16, 5297–5305.

    PubMed  Google Scholar 

  151. Kuai, X. L., Cong, X. Q., Li, X. L., & Xiao, S. D. (2003). Generation of hepatocytes from cultured mouse embryonic stem cells. Liver Transplantation, 9, 1094–1099.

    PubMed  Google Scholar 

  152. Ishizaka, S., Shiroi, A., Kanda, S., et al. (2002). Development of hepatocytes from ES cells after transfection with the HNF-3beta gene. The FASEB Journal, 16, 1444–1446.

    CAS  Google Scholar 

  153. Kubo, A., Shinozaki, K., Shannon, J. M., et al. (2004). Development of definitive endoderm from embryonic stem cells in culture. Development, 131, 1651–1662.

    PubMed  CAS  Google Scholar 

  154. Fair, J. H., Cairns, B. A., Lapaglia, M., et al. (2003). Induction of hepatic differentiation in embryonic stem cells by co-culture with embryonic cardiac mesoderm. Surgery, 134, 189–196.

    PubMed  Google Scholar 

  155. Ishii, T., Yasuchika, K., Fujii, H., et al. (2005). In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Experimental Cell Research, 309, 68–77.

    PubMed  CAS  Google Scholar 

  156. Hay, D. C., Fletcher, J., Payne, C., et al. (2008). Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proceedings of the National Academy of Sciences of the United States of America, 105, 12301–12306.

    PubMed  CAS  Google Scholar 

  157. Wang, X., Jin, L., Ji, S., Guo, X., Chen, H., & Ji, W. (2011). Hepatocytic differentiation of rhesus monkey embryonic stem cells promoted by collagen gels and growth factors. Cell Biology International, 35, 775–781.

    PubMed  CAS  Google Scholar 

  158. Zamule, S. M., Coslo, D. M., Chen, F., & Omiecinski, C. J. (2011). Differentiation of human embryonic stem cells along a hepatic lineage. Chemico-Biological Interactions, 190, 62–72.

    PubMed  CAS  Google Scholar 

  159. Miki, T., Ring, A., & Gerlach, J. (2011). Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Engineering. Part C, Methods, 17, 557–568.

    PubMed  Google Scholar 

  160. Haque, A., Hexig, B., Meng, Q., Hossain, S., Nagaoka, M., & Akaike, T. (2011). The effect of recombinant E-cadherin substratum on the differentiation of endoderm-derived hepatocyte-like cells from embryonic stem cells. Biomaterials, 32, 2032–2042.

    PubMed  CAS  Google Scholar 

  161. Fouraschen, S. M., Pan, Q., de Ruiter, P. E., et al. (2012). Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy. Stem Cells and Development, 21, 2410–2419.

    PubMed  CAS  Google Scholar 

  162. Qiao, H., Tong, Y., Han, H., et al. (2011). A novel therapeutic regimen for hepatic fibrosis using the combination of mesenchymal stem cells and baicalin. Pharmazie, 66, 37–43.

    PubMed  CAS  Google Scholar 

  163. Lam, S. P., Luk, J. M., Man, K., et al. (2010). Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration. Liver Transplantation, 16, 1195–1206.

    PubMed  Google Scholar 

  164. Saito Y., Shimada M., Utsunomiya T., et al. (2012). The protective effect of adipose-derived stem cells against liver injury by trophic molecules. Journal of Surgical Research.

  165. Terai, S., Ishikawa, T., Omori, K., et al. (2006). Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells, 24, 2292–2298.

    PubMed  CAS  Google Scholar 

  166. Lyra, A. C., Soares, M. B., da Silva, L. F., et al. (2007). Feasibility and safety of autologous bone marrow mononuclear cell transplantation in patients with advanced chronic liver disease. World Journal of Gastroenterology, 13, 1067–1073.

    PubMed  CAS  Google Scholar 

  167. Mohamadnejad, M., Namiri, M., Bagheri, M., et al. (2007). Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World Journal of Gastroenterology, 13, 3359–3363.

    PubMed  CAS  Google Scholar 

  168. Kharaziha, P., Hellstrom, P. M., Noorinayer, B., et al. (2009). Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. European Journal of Gastroenterology and Hepatology, 21, 1199–1205.

    PubMed  CAS  Google Scholar 

  169. Nikeghbalian, S., Pournasr, B., Aghdami, N., et al. (2011). Autologous transplantation of bone marrow-derived mononuclear and CD133(+) cells in patients with decompensated cirrhosis. Archives of Iranian Medicine, 14, 12–17.

    PubMed  Google Scholar 

  170. Amer, M. E., El-Sayed, S. Z., El-Kheir, W. A., et al. (2011). Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. European Journal of Gastroenterology and Hepatology, 23, 936–941.

    PubMed  Google Scholar 

  171. El-Ansary, M., Abdel-Aziz, I., Mogawer, S., et al. (2012). Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Reviews, 8, 972–981.

    PubMed  CAS  Google Scholar 

  172. Gordon, M. Y., Levicar, N., Pai, M., et al. (2006). Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells, 24, 1822–1830.

    PubMed  Google Scholar 

  173. Yannaki, E., Anagnostopoulos, A., Kapetanos, D., et al. (2006). Lasting amelioration in the clinical course of decompensated alcoholic cirrhosis with boost infusions of mobilized peripheral blood stem cells. Experimental Hematology, 34, 1583–1587.

    PubMed  Google Scholar 

  174. Gasbarrini, A., Rapaccini, G. L., Rutella, S., et al. (2007). Rescue therapy by portal infusion of autologous stem cells in a case of drug-induced hepatitis. Digestive and Liver Disease, 39, 878–882.

    PubMed  CAS  Google Scholar 

  175. Han, Y., Yan, L., Han, G., et al. (2008). Controlled trials in hepatitis B virus-related decompensate liver cirrhosis: peripheral blood monocyte transplant versus granulocyte-colony-stimulating factor mobilization therapy. Cytotherapy, 10, 390–396.

    PubMed  CAS  Google Scholar 

  176. Pai, M., Zacharoulis, D., Milicevic, M. N., et al. (2008). Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis. American Journal of Gastroenterology, 103, 1952–1958.

    PubMed  CAS  Google Scholar 

  177. Spahr, L., Lambert, J. F., Rubbia-Brandt, L., et al. (2008). Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: a randomized trial. Hepatology, 48, 221–229.

    PubMed  CAS  Google Scholar 

  178. Garg, V., Garg, H., Khan, A., et al. (2012). Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology, 142(505–512), e501.

    Google Scholar 

Download references

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kolios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drosos, I., Kolios, G. Stem Cells in Liver Regeneration and Their Potential Clinical Applications. Stem Cell Rev and Rep 9, 668–684 (2013). https://doi.org/10.1007/s12015-013-9437-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9437-4

Keywords

Navigation