Skip to main content

Advertisement

Log in

The Evolving Role of the Aryl Hydrocarbon Receptor (AHR) in the Normophysiology of Hematopoiesis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In addition to its role as a toxicological signal mediator, the Aryl Hydrocarbon Receptor (AHR) is also a transcription factor known to regulate cellular responses to oxidative stress and inflammation through transcriptional regulation of molecules involved in the signaling of nucear factor-erythroid 2-related factor-2 (Nrf2), p53 (TRP53), retinoblastoma (RB1), and NFκB. Recent research suggests that AHR activation of these signaling pathways may provide the molecular basis for understanding AHR’s evolving role in endogenous developmental functions during hematopoietic stem-cell maintenance and differentiation. Recent developments into the hematopoietic roles for AHR are reviewed, aiming to reconcile divergent findings as to the endogenous function of AHR in hematopoiesis. Potential mechanistic explanations for AHR’s involvement in hematopoietic differentiation are discussed, focusing on its known role as a cell cycle mediator and its interactions with Hypoxia-inducible transcription factor-1 alpha (HIF1-α). Understanding the physiological mechanisms of AHR activation and signaling have far reaching implications ranging from explaining the action of various toxicological agents to providing novel ways to expand stem cell populations ex vivo for use in transplant therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S., & Hankinson, O. (1995). Identification of functional domains of the aryl hydrocarbon receptor. Journal of Biological Chemistry, 270(49), 29270–29278.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar, M. B., Ramadoss, P., Reen, R. K., Vanden Heuvel, J. P., & Perdew, G. H. (2001). The Q-rich subdomain of the human Ah receptor transactivation domain is required for dioxin-mediated transcriptional activity. Journal of Biological Chemistry, 276(45), 42302–42310.

    Article  PubMed  CAS  Google Scholar 

  3. Perdew, G. H. (1988). Association of the Ah receptor with the 90-kDa heat shock protein. Journal of Biological Chemistry, 263(27), 13802–13805.

    PubMed  CAS  Google Scholar 

  4. McGuire, J., Whitelaw, M. L., Pongratz, I., Gustafsson, J. A., & Poellinger, L. (1994). A cellular factor stimulates ligand-dependent release of hsp90 from the basic helix-loop-helix dioxin receptor. Molecular and Cellular Biology, 14(4), 2438–2446. PMCID: 358611.

    Article  PubMed  CAS  Google Scholar 

  5. Denison, M. S., Fisher, J. M., Whitlock, J. P., Jr., & The, D. N. A. (1988). The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. Journal of Biological Chemistry, 263(33), 17221–17224.

    PubMed  CAS  Google Scholar 

  6. Davarinos, N. A., & Pollenz, R. S. (1999). Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. Journal of Biological Chemistry, 274(40), 28708–28715.

    Article  PubMed  CAS  Google Scholar 

  7. Evans, B. R., Karchner, S. I., Allan, L. L., Pollenz, R. S., Tanguay, R. L., Jenny, M. J., et al. (2008). Repression of aryl hydrocarbon receptor (AHR) signaling by AHR repressor: role of DNA binding and competition for AHR nuclear translocator. Molecular Pharmacology, 73(2), 387–398.

    Article  PubMed  CAS  Google Scholar 

  8. Karchner, S. I., Franks, D. G., Powell, W. H., & Hahn, M. E. (2002). Regulatory interactions among three members of the vertebrate aryl hydrocarbon receptor family: AHR repressor, AHR1, and AHR2. Journal of Biological Chemistry, 277(9), 6949–6959.

    Article  PubMed  CAS  Google Scholar 

  9. Osawa, M., Hanada, K., Hamada, H., & Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 273(5272), 242–245.

    Article  PubMed  CAS  Google Scholar 

  10. Tenen, D. G., Hromas, R., Licht, J. D., & Zhang, D. E. (1997). Transcription factors, normal myeloid development, and leukemia. Blood, 90(2), 489–519.

    PubMed  CAS  Google Scholar 

  11. Hromas, R., Zon, L., & Friedman, A. D. (1992). Hematopoietic transcription regulators and the origins of leukemia. Critical Reviews in Oncology/Hematology, 12(2), 167–190.

    Article  PubMed  CAS  Google Scholar 

  12. Kumano, K., Chiba, S., Shimizu, K., Yamagata, T., Hosoya, N., Saito, T., et al. (2001). Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood, 98(12), 3283–3289.

    Article  PubMed  CAS  Google Scholar 

  13. Shivdasani, R. A., Fujiwara, Y., McDevitt, M. A., & Orkin, S. H. (1997). A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO Journal, 16(13), 3965–3973.

    Article  PubMed  CAS  Google Scholar 

  14. Levesque, J. P., Winkler, I. G., Hendy, J., Williams, B., Helwani, F., Barbier, V., et al. (2007). Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells, 25(8), 1954–1965.

    Article  PubMed  CAS  Google Scholar 

  15. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L., & Weissman, I. L. (2001). Physiological migration of hematopoietic stem and progenitor cells. Science, 294(5548), 1933–1936.

    Article  PubMed  CAS  Google Scholar 

  16. Chow, D. C., Wenning, L. A., Miller, W. M., & Papoutsakis, E. T. (2001). Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh’s modelI. Krogh’s model. Biophysical Journal, 81(2), 675–684.

    Article  PubMed  CAS  Google Scholar 

  17. Chow, D. C., Wenning, L. A., Miller, W. M., & Papoutsakis, E. T. (2001). Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophysical Journal, 81(2), 685–696.

    Article  PubMed  CAS  Google Scholar 

  18. Jing, D., Wobus, M,. Poitz, D. M., Bornhauser, M., Ehninger, G., & Ordemann, R. (2011). Oxygen tension plays a critical role in the hematopoietic microenvironment in vitro. Haematologica.

  19. Simsek, T., Kocabas, F., Zheng, J., Deberardinis, R. J., Mahmoud, A. I., Olson, E. N., et al. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7(3), 380–390.

    Article  PubMed  CAS  Google Scholar 

  20. Takubo, K., Goda, N., Yamada, W., Iriuchishima, H., Ikeda, E., Kubota, Y., et al. (2010). Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell, 7(3), 391–402.

    Article  PubMed  CAS  Google Scholar 

  21. Nebert, D. W. (1989). The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Critical Reviews in Toxicology, 20(3), 153–174.

    Article  PubMed  CAS  Google Scholar 

  22. Singh, K. P., Wyman, A., Casado, F. L., Garrett, R. W., & Gasiewicz, T. A. (2009). Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells. Carcinogenesis, 30(1), 11–19. PMCID: 2639033.

    Article  PubMed  CAS  Google Scholar 

  23. Reyes-Hernandez, O. D., Mejia-Garcia, A., Sanchez-Ocampo, E. M., Cabanas-Cortes, M. A., Ramirez, P., Chavez-Gonzalez, L., et al. (2010). Ube2l3 gene expression is modulated by activation of the aryl hydrocarbon receptor: implications for p53 ubiquitination. Biochemical Pharmacology, 80(6), 932–940.

    Article  PubMed  CAS  Google Scholar 

  24. Denissenko, M. F., Pao, A., Tang, M., & Pfeifer, G. P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science, 274(5286), 430–432.

    Article  PubMed  CAS  Google Scholar 

  25. Pfeifer, G. P., Denissenko, M. F., Olivier, M., Tretyakova, N., Hecht, S. S., & Hainaut, P. (2002). Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene, 21(48), 7435–7451.

    Article  PubMed  CAS  Google Scholar 

  26. Glynn, M. F., Mustard, J. F., Buchanan, M. R., & Murphy, E. A. (1966). Cigarette smoking and platelet aggregation. Canadian Medical Association Journal, 95(11), 549–553.

    PubMed  CAS  Google Scholar 

  27. Gonzalez, F. J., Tukey, R. H., & Nebert, D. W. (1984). Structural gene products of the Ah locus. Transcriptional regulation of cytochrome P1-450 and P3-450 mRNA levels by 3-methylcholanthrene. Molecular Pharmacology, 26(1), 117–121.

    PubMed  CAS  Google Scholar 

  28. Ge, N. L., & Elferink, C. J. (1998). A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. Journal of Biological Chemistry, 273(35), 22708–22713.

    Article  PubMed  CAS  Google Scholar 

  29. Andrysik, Z., Vondracek, J., Machala, M., Krcmar, P., Svihalkova-Sindlerova, L., Kranz, A., et al. (2007). The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells. Mutation Research, 615(1–2), 87–97.

    Article  PubMed  CAS  Google Scholar 

  30. Abdelrahim, M., Smith, R., 3rd, & Safe, S. (2003). Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Molecular Pharmacology, 63(6), 1373–1381.

    Article  PubMed  CAS  Google Scholar 

  31. Hendrick, J. P., & Hartl, F. U. (1993). Molecular chaperone functions of heat-shock proteins. Annual Review of Biochemistry, 62, 349–384.

    Article  PubMed  CAS  Google Scholar 

  32. Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189.

    Article  PubMed  CAS  Google Scholar 

  33. McHale, C. M., Zhang, L., & Smith, M. T. (2012). Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis, 33(2), 240–252. PMCID: 3271273.

    Article  PubMed  CAS  Google Scholar 

  34. Stohs, S. J. (1990). Oxidative stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Free Radical Biology & Medicine, 9(1), 79–90.

    Article  CAS  Google Scholar 

  35. Shertzer, H. G., Nebert, D. W., Puga, A., Ary, M., Sonntag, D., Dixon, K., et al. (1998). Dioxin causes a sustained oxidative stress response in the mouse. Biochemical and Biophysical Research Communications, 253(1), 44–48.

    Article  PubMed  CAS  Google Scholar 

  36. Vogel, C. F., Sciullo, E., & Matsumura, F. (2007). Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines. Biochemical and Biophysical Research Communications, 363(3), 722–726.

    Article  PubMed  CAS  Google Scholar 

  37. Fritsche, E., Schafer, C., Calles, C., Bernsmann, T., Bernshausen, T., Wurm, M., et al. (2007). Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 8851–8856. PMCID: 1885591.

    Article  PubMed  CAS  Google Scholar 

  38. Shin, S., Wakabayashi, N., Misra, V., Biswal, S., Lee, G. H., Agoston, E. S., et al. (2007). NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Molecular and Cellular Biology, 27(20), 7188–7197. PMCID: 2168916.

    Article  PubMed  CAS  Google Scholar 

  39. Lu, H., Cui, W., & Klaassen, C. D. (2011). Nrf2 protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative injury and steatohepatitis. Toxicology and Applied Pharmacology, 256(2), 122–135. PMCID: 3183285.

    Article  PubMed  CAS  Google Scholar 

  40. Ma, Q., & Whitlock, J. P., Jr. (1996). The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Molecular and Cellular Biology, 16(5), 2144–2150.

    PubMed  CAS  Google Scholar 

  41. Elizondo, G., Fernandez-Salguero, P., Sheikh, M. S., Kim, G. Y., Fornace, A. J., Lee, K. S., et al. (2000). Altered cell cycle control at the G(2)/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Molecular Pharmacology, 57(5), 1056–1063.

    PubMed  CAS  Google Scholar 

  42. Boitano, A. E., Wang, J., Romeo, R., Bouchez, L. C., Parker, A. E., Sutton, S. E., et al. (2010). Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science, 329(5997), 1345–1348.

    Article  PubMed  CAS  Google Scholar 

  43. Mulero-Navarro, S., Carvajal-Gonzalez, J. M., Herranz, M., Ballestar, E., Fraga, M. F., Ropero, S., et al. (2006). The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. Carcinogenesis, 27(5), 1099–1104.

    Article  PubMed  CAS  Google Scholar 

  44. Hahn, M. E. (2002). Aryl hydrocarbon receptors: diversity and evolution. Chemico-Biological Interactions, 141(1–2), 131–160.

    Article  PubMed  CAS  Google Scholar 

  45. Powell-Coffman, J. A., Bradfield, C. A., & Wood, W. B. (1998). Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 2844–2849.

    Article  PubMed  CAS  Google Scholar 

  46. Duncan, D. M., Burgess, E. A., & Duncan, I. (1998). Control of distal antennal identity and tarsal development in Drosophila by spineless-aristapedia, a homolog of the mammalian dioxin receptor. Genes & Development, 12(9), 1290–1303. PMCID: 316766.

    Article  CAS  Google Scholar 

  47. Wernet, M. F., Mazzoni, E. O., Celik, A., Duncan, D. M., Duncan, I., & Desplan, C. (2006). Stochastic spineless expression creates the retinal mosaic for colour vision. Nature, 440(7081), 174–180.

    Article  PubMed  CAS  Google Scholar 

  48. Emmons, R. B., Duncan, D., & Duncan, I. (2007). Regulation of the Drosophila distal antennal determinant spineless. Developmental Biology, 302(2), 412–426. PMCID: 1876787.

    Article  PubMed  CAS  Google Scholar 

  49. Qin, H., & Powell-Coffman, J. A. (2004). The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Developmental Biology, 270(1), 64–75.

    Article  PubMed  CAS  Google Scholar 

  50. Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C., & Bradfield, C. A. (1996). Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6731–6736.

    Article  PubMed  CAS  Google Scholar 

  51. Fernandez-Salguero, P., Pineau, T., Hilbert, D. M., McPhail, T., Lee, S. S., Kimura, S., et al. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science, 268(5211), 722–726.

    Article  PubMed  CAS  Google Scholar 

  52. Mimura, J., Yamashita, K., Nakamura, K., Morita, M., Takagi, T. N., Nakao, K., et al. (1997). Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes to Cells, 2(10), 645–654.

    Article  PubMed  CAS  Google Scholar 

  53. Benedict, J. C., Lin, T. M., Loeffler, I. K., Peterson, R. E., & Flaws, J. A. (2000). Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicological Sciences, 56(2), 382–388.

    Article  PubMed  CAS  Google Scholar 

  54. Fernandez-Salguero, P. M., Ward, J. M., Sundberg, J. P., & Gonzalez, F. J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Veterinary Pathology, 34(6), 605–614.

    Article  PubMed  CAS  Google Scholar 

  55. Lahvis, G. P., Lindell, S. L., Thomas, R. S., McCuskey, R. S., Murphy, C., Glover, E., et al. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10442–10447. PMCID: 27043.

    Article  PubMed  CAS  Google Scholar 

  56. Walisser, J. A., Bunger, M. K., Glover, E., & Bradfield, C. A. (2004). Gestational exposure of Ahr and Arnt hypomorphs to dioxin rescues vascular development. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16677–16682.

    Article  PubMed  CAS  Google Scholar 

  57. Walisser, J. A., Bunger, M. K., Glover, E., Harstad, E. B., & Bradfield, C. A. (2004). Patent ductus venosus and dioxin resistance in mice harboring a hypomorphic Arnt allele. Journal of Biological Chemistry, 279(16), 16326–16331.

    Article  PubMed  CAS  Google Scholar 

  58. Chang, C. Y., & Puga, A. (1998). Constitutive activation of the aromatic hydrocarbon receptor. Molecular and Cellular Biology, 18(1), 525–535. PMCID: 121520.

    PubMed  CAS  Google Scholar 

  59. Okey, A. B. (2007). An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. Toxicological Sciences, 98(1), 5–38.

    Article  PubMed  CAS  Google Scholar 

  60. Stejskalova, L., Dvorak, Z., & Pavek, P. (2011). Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Current Drug Metabolism, 12(2), 198–212.

    Article  PubMed  CAS  Google Scholar 

  61. Yoon, B. I., Hirabayashi, Y., Kawasaki, Y., Kodama, Y., Kaneko, T., Kanno, J., et al. (2002). Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity. Toxicological Sciences, 70(1), 150–156.

    Article  PubMed  CAS  Google Scholar 

  62. Garrett, R. W., & Gasiewicz, T. A. (2006). The aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin alters the circadian rhythms, quiescence, and expression of clock genes in murine hematopoietic stem and progenitor cells. Molecular Pharmacology, 69(6), 2076–2083.

    Article  PubMed  CAS  Google Scholar 

  63. Jetmore, A., Plett, P. A., Tong, X., Wolber, F. M., Breese, R., Abonour, R., et al. (2002). Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human CD34(+) cells transplanted into conditioned NOD/SCID recipients. Blood, 99(5), 1585–1593.

    Article  PubMed  CAS  Google Scholar 

  64. Gasiewicz, T. A., Singh, K. P., & Casado, F. L. (2010). The aryl hydrocarbon receptor has an important role in the regulation of hematopoiesis: implications for benzene-induced hematopoietic toxicity. Chemico-Biological Interactions, 184(1–2), 246–251. PMCID: 2846208.

    Article  PubMed  CAS  Google Scholar 

  65. Singh, K. P., Casado, F. L., Opanashuk, L. A., & Gasiewicz, T. A. (2008). The aryl hydrocarbon receptor has a normal function in the regulation of hematopoietic and other stem/progenitor cell populations. Biochemical Pharmacology.

  66. Singh, K. P., Garrett, R. W., Casado, F. L., & Gasiewicz, T. A. (2011). Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem Cells and Development, 20(5), 769–784.

    Article  PubMed  CAS  Google Scholar 

  67. Benisek, M., Kubincova, P., Blaha, L., & Hilscherova, K. (2011). The effects of PAHs and N-PAHs on retinoid signaling and Oct-4 expression in vitro. Toxicology Letters, 200(3), 169–175.

    Article  PubMed  CAS  Google Scholar 

  68. Bunaciu, R. P., & Yen, A. (2011). Activation of the aryl hydrocarbon receptor AhR Promotes retinoic acid-induced differentiation of myeloblastic leukemia cells by restricting expression of the stem cell transcription factor Oct4. Cancer Research, 71(6), 2371–2380.

    Article  PubMed  CAS  Google Scholar 

  69. Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25(10), 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  70. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379–391.

    Article  PubMed  CAS  Google Scholar 

  71. Hayashi, S., Okabe-Kado, J., Honma, Y., & Kawajiri, K. (1995). Expression of Ah receptor (TCDD receptor) during human monocytic differentiation. Carcinogenesis, 16(6), 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  72. Crawford, R. B., Holsapple, M. P., & Kaminski, N. E. (1997). Leukocyte activation induces aryl hydrocarbon receptor up-regulation, DNA binding, and increased Cyp1a1 expression in the absence of exogenous ligand. Molecular Pharmacology, 52(6), 921–927.

    PubMed  CAS  Google Scholar 

  73. van Grevenynghe, J., Rion, S., Le Ferrec, E., Le Vee, M., Amiot, L., Fauchet, R., et al. (2003). Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages. Journal of Immunology, 170(5), 2374–2381.

    Google Scholar 

  74. Braun, K. M., Cornish, T., Valm, A., Cundiff, J., Pauly, J. L., & Fan, S. (1998). Immunotoxicology of cigarette smoke condensates: suppression of macrophage responsiveness to interferon gamma. Toxicology and Applied Pharmacology, 149(2), 136–143.

    Article  PubMed  CAS  Google Scholar 

  75. Myers, M. J., Schook, L. B., & Bick, P. H. (1987). Mechanisms of benzo(a)pyrene-induced modulation of antigen presentation. Journal of Pharmacology and Experimental Therapeutics, 242(2), 399–404.

    PubMed  CAS  Google Scholar 

  76. Webb, K., Evans, R. G., Stehr, P., & Ayres, S. M. (1987). Pilot study on health effects of environmental 2,3,7,8-TCDD in Missouri. American Journal of Industrial Medicine, 11(6), 685–691.

    Article  PubMed  CAS  Google Scholar 

  77. Michalek, J. E., Akhtar, F. Z., Longnecker, M. P., & Burton, J. E. (2001). Relation of serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) level to hematological examination results in veterans of Operation Ranch Hand. Archives of Environmental Health, 56(5), 396–405.

    Article  PubMed  CAS  Google Scholar 

  78. Motohashi, H., Kimura, M., Fujita, R., Inoue, A., Pan, X., Takayama, M., et al. (2010). NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation. Blood, 115(3), 677–686. PMCID: 2810977.

    Article  PubMed  CAS  Google Scholar 

  79. Miao, W., Hu, L., Scrivens, P. J., & Batist, G. (2005). Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. Journal of Biological Chemistry, 280(21), 20340–20348.

    Article  PubMed  CAS  Google Scholar 

  80. Vargiolu, M., Fusco, D., Kurelac, I., Dirnberger, D., Baumeister, R., Morra, I., et al. (2009). The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. Journal of Clinical Endocrinology and Metabolism, 94(7), 2571–2578.

    Article  PubMed  CAS  Google Scholar 

  81. Zinkl, J. G., Vos, J. G., Moore, J. A., & Gupta, B. N. (1973). Hematologic and clinical chemistry effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals. Environmental Health Perspectives, 5, 111–118. PMCID: 1474973.

    Article  PubMed  CAS  Google Scholar 

  82. Weissberg, J. B., & Zinkl, J. G. (1973). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin upon hemostasis and hematologic function in the rat. Environmental Health Perspectives, 5, 119–123.

    Article  PubMed  CAS  Google Scholar 

  83. Gupta, B. N., Vos, J. G., Moore, J. A., Zinkl, J. G., & Bullock, B. C. (1973). Pathologic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals. Environmental Health Perspectives, 5, 125–140. PMCID: 1474959.

    Article  PubMed  CAS  Google Scholar 

  84. Pluim, H. J., Koppe, J. G., Olie, K., van der Slikke, J. W., Slot, P. C., & van Boxtel, C. J. (1994). Clinical laboratory manifestations of exposure to background levels of dioxins in the perinatal period. Acta Paediatrica, 83(6), 583–587.

    Article  PubMed  CAS  Google Scholar 

  85. Lindsey, S., & Papoutsakis, E. T. (2011). The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization. British Journal of Haematology, 152(4), 469–484.

    Article  PubMed  CAS  Google Scholar 

  86. Kang, B. H., & Altieri, D. C. (2006). Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein. Journal of Biological Chemistry, 281(34), 24721–24727.

    Article  PubMed  CAS  Google Scholar 

  87. Wen, Q., Leung, C., Huang, Z., Small, S., Reddi, A. L., Licht, J. D., et al. (2009). Survivin is not required for the endomitotic cell cycle of megakaryocytes. Blood, 114(1), 153–156. PMCID: 2710943.

    Article  PubMed  CAS  Google Scholar 

  88. McCrann, D. J., & Ravid, K. (2010). Survivin localization during endomitosis of high ploidy mouse megakaryocytes. Blood, 116(12), 2192–2193. PMCID: 2951860.

    Article  PubMed  CAS  Google Scholar 

  89. Pang, P. H., Lin, Y. H., Lee, Y. H., Hou, H. H., Hsu, S. P., & Juan, S. H. (2008). Molecular mechanisms of p21 and p27 induction by 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, involved in antiproliferation of human umbilical vascular endothelial cells. Journal of Cellular Physiology, 215(1), 161–171.

    Article  PubMed  CAS  Google Scholar 

  90. Baccini, V., Roy, L., Vitrat, N., Chagraoui, H., Sabri, S., Le Couedic, J. P., et al. (2001). Role of p21(Cip1/Waf1) in cell-cycle exit of endomitotic megakaryocytes. Blood, 98(12), 3274–3282.

    Article  PubMed  CAS  Google Scholar 

  91. Albanese, P., Chagraoui, J., Charon, M., Cocault, L., Dusanter-Fourt, I., Romeo, P. H., et al. (2002). Forced expression of p21 in GPIIb-p21 transgenic mice induces abnormalities in the proliferation of erythroid and megakaryocyte progenitors and primitive hematopoietic cells. Experimental Hematology, 30(11), 1263–1272.

    Article  PubMed  CAS  Google Scholar 

  92. Murata, K., Hattori, M., Hirai, N., Shinozuka, Y., Hirata, H., Kageyama, R., et al. (2005). Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Molecular and Cellular Biology, 25(10), 4262–4271.

    Article  PubMed  CAS  Google Scholar 

  93. Kabos, P., Kabosova, A., & Neuman, T. (2002). Blocking HES1 expression initiates GABAergic differentiation and induces the expression of p21(CIP1/WAF1) in human neural stem cells. Journal of Biological Chemistry, 277(11), 8763–8766.

    Article  PubMed  CAS  Google Scholar 

  94. Mercher, T., Cornejo, M. G., Sears, C., Kindler, T., Moore, S. A., Maillard, I., et al. (2008). Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell, 3(3), 314–326.

    Article  PubMed  CAS  Google Scholar 

  95. Delaney, C., Varnum-Finney, B., Aoyama, K., Brashem-Stein, C., & Bernstein, I. D. (2005). Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood, 106(8), 2693–2699.

    Article  PubMed  CAS  Google Scholar 

  96. Deng, W. M., Althauser, C., & Ruohola-Baker, H. (2001). Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development, 128(23), 4737–4746.

    PubMed  CAS  Google Scholar 

  97. Wang, Z., Zhang, Y., Kamen, D., Lees, E., & Ravid, K. (1995). Cyclin D3 is essential for megakaryocytopoiesis. Blood, 86(10), 3783–3788.

    PubMed  CAS  Google Scholar 

  98. Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J. E., Bhattacharya, S., et al. (2003). Cyclin E ablation in the mouse. Cell, 114(4), 431–443.

    Article  PubMed  CAS  Google Scholar 

  99. Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y., & Kishimoto, T. (2008). Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9721–9726.

    Article  PubMed  CAS  Google Scholar 

  100. Quintana, F. J., Basso, A. S., Iglesias, A. H., Korn, T., Farez, M. F., Bettelli, E., et al. (2008). Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature, 453(7191), 65–71.

    Article  PubMed  CAS  Google Scholar 

  101. Stevens, E. A., Mezrich, J. D., & Bradfield, C. A. (2009). The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology, 127(3), 299–311. PMCID: 2712099.

    Article  PubMed  CAS  Google Scholar 

  102. Neff-LaFord, H., Teske, S., Bushnell, T. P., & Lawrence, B. P. (2007). Aryl hydrocarbon receptor activation during influenza virus infection unveils a novel pathway of IFN-gamma production by phagocytic cells. Journal of Immunology, 179(1), 247–255.

    CAS  Google Scholar 

  103. Mitchell, K. A., & Lawrence, B. P. (2003). Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) renders influenza virus-specific CD8+ T cells hyporesponsive to antigen. Toxicological Sciences, 74(1), 74–84.

    Article  PubMed  CAS  Google Scholar 

  104. Marshall, N. B., Vorachek, W. R., Steppan, L. B., Mourich, D. V., & Kerkvliet, N. I. (2008). Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Journal of Immunology, 181(4), 2382–2391.

    CAS  Google Scholar 

  105. Sulentic, C. E., Holsapple, M. P., & Kaminski, N. E. (1998). Aryl hydrocarbon receptor-dependent suppression by 2,3,7, 8-tetrachlorodibenzo-p-dioxin of IgM secretion in activated B cells. Molecular Pharmacology, 53(4), 623–629.

    PubMed  CAS  Google Scholar 

  106. Mostafa, S. S., Miller, W. M., & Papoutsakis, E. T. (2000). Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. British Journal of Haematology, 111(3), 879–889.

    Article  PubMed  CAS  Google Scholar 

  107. Levesque, J. P., Helwani, F. M., & Winkler, I. G. (2010). The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia, 24(12), 1979–1992.

    Article  PubMed  Google Scholar 

  108. Mostafa, S. S., Papoutsakis, E. T., & Miller, W. M. (2001). Oxygen tension modulates the expression of cytokine receptors, transcription factors, and lineage-specific markers in cultured human megakaryocytes. Experimental Hematology, 29(7), 873–883.

    Article  PubMed  CAS  Google Scholar 

  109. Ishikawa, Y., & Ito, T. (1988). Kinetics of hemopoietic stem cells in a hypoxic culture. European Journal of Haematology, 40(2), 126–129.

    Article  PubMed  CAS  Google Scholar 

  110. Hevehan, D. L., Papoutsakis, E. T., & Miller, W. M. (2000). Physiologically significant effects of pH and oxygen tension on granulopoiesis. Experimental Hematology, 28(3), 267–275.

    Article  PubMed  CAS  Google Scholar 

  111. McAdams, T. A., Miller, W. M., & Papoutsakis, E. T. (1997). Variations in culture pH affect the cloning efficiency and differentiation of progenitor cells in ex vivo haemopoiesis. British Journal of Haematology, 97(4), 889–895.

    Article  PubMed  CAS  Google Scholar 

  112. McAdams, T. A., Miller, W. M., & Papoutsakis, E. T. (1998). pH is a potent modulator of erythroid differentiation. British Journal of Haematology, 103(2), 317–325.

    Article  PubMed  CAS  Google Scholar 

  113. Yang, H., Miller, W. M., & Papoutsakis, E. T. (2002). Higher pH promotes megakaryocytic maturation and apoptosis. Stem Cells, 20(4), 320–328.

    Article  PubMed  CAS  Google Scholar 

  114. Dunois-Larde, C., Capron, C., Fichelson, S., Bauer, T., Cramer-Borde, E., & Baruch, D. (2009). Exposure of human megakaryocytes to high shear rates accelerates platelet production. Blood, 114(9), 1875–1883.

    Article  PubMed  CAS  Google Scholar 

  115. Collins, P. C., Nielsen, L. K., Patel, S. D., Papoutsakis, E. T., & Miller, W. M. (1998). Characterization of hematopoietic cell expansion, oxygen uptake, and glycolysis in a controlled, stirred-tank bioreactor system. Biotechnology Progress, 14(3), 466–472.

    Article  PubMed  CAS  Google Scholar 

  116. Konstantopoulos, K., Kukreti, S., & McIntire, L. V. (1998). Biomechanics of cell interactions in shear fields. Advanced Drug Delivery Reviews, 33(1–2), 141–164.

    Article  PubMed  CAS  Google Scholar 

  117. Chan, W. K., Yao, G., Gu, Y. Z., & Bradfield, C. A. (1999). Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. Journal of Biological Chemistry, 274(17), 12115–12123.

    Article  PubMed  CAS  Google Scholar 

  118. Salceda, S., & Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. Journal of Biological Chemistry, 272(36), 22642–22647.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Award Numbers F32HL091620 (SL) and R21HL106397 (ETP) from the National Heart, Lung and Blood Institute of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung and Blood Institute or the National Institutes of Health.

Conflict of Interest Declaration

The authors have no conflicts of interest to disclare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Lindsey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsey, S., Papoutsakis, E.T. The Evolving Role of the Aryl Hydrocarbon Receptor (AHR) in the Normophysiology of Hematopoiesis. Stem Cell Rev and Rep 8, 1223–1235 (2012). https://doi.org/10.1007/s12015-012-9384-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9384-5

Keywords

Navigation