Skip to main content
Log in

Extrinsic Purinergic Regulation of Neural Stem/Progenitor Cells: Implications for CNS Development and Repair

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., & Vescovi, A. L. (1999). Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283, 534–537.

    Article  PubMed  CAS  Google Scholar 

  2. Shih, C. C., Weng, Y., Mamelak, A., LeBon, T., Hu, M. C., & Forman, S. J. (2001). Identification of a candidate human neurohematopoietic stem-cell population. Blood, 98, 2412–2422.

    Article  PubMed  CAS  Google Scholar 

  3. Galli, R., Borello, U., Gritti, A., Minasi, M. G., Bjornson, C., Coletta, M., et al. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nature Neuroscience, 3, 986–991.

    Article  PubMed  CAS  Google Scholar 

  4. Weng, M., & Lee, C. Y. (2011). Keeping neural progenitor cells on a short leash during Drosophila neurogenesis. Current Opinion in Neurobiology, 21, 36–42.

    Article  PubMed  CAS  Google Scholar 

  5. Burnstock, G. (2008). Purinergic signalling and disorders of the central nervous system. Nature Reviews. Drug Discovery, 7, 575–590.

    Article  PubMed  CAS  Google Scholar 

  6. Trujillo, C. A., Schwindt, T. T., Martins, A. H., Alves, J. M., Mello, L. E., & Ulrich, H. (2009). Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry. Part A, 75, 38–53.

    Article  Google Scholar 

  7. Burnstock, G., & Ulrich, H. (2011). Purinergic signalling in embryonic and stem cell development. Cellular and Molecular Life Sciences, 68, 1369–1394.

    Article  PubMed  CAS  Google Scholar 

  8. Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience, 17, 3727–3738.

    PubMed  CAS  Google Scholar 

  9. Liu, J., Solway, K., Messing, R. O., & Sharp, F. R. (1998). Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. Journal of Neuroscience, 18, 7768–7778.

    PubMed  CAS  Google Scholar 

  10. Huttmann, K., Sadgrove, M., Wallraff, A., Hinterkeuser, S., Kirchhoff, F., Steinhauser, C., et al. (2003). Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: Functional and immunocytochemical analysis. European Journal of Neuroscience, 18, 2769–2778.

    Article  PubMed  Google Scholar 

  11. Burnstock, G., Krügel, U., Abbracchio, M. P., & Illes, P. (2011). Purinergic signalling: From normal behaviour to pathological brain function. Progress in Neurobiology, 95, 229–274.

    Article  PubMed  CAS  Google Scholar 

  12. Glaser, T., Cappellari, A., Pillat, M., Iser, I., Wink, M., Battastini, A. et al. (2012). Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signalling, 1–15.

  13. Dale, N. (2008). Dynamic ATP signalling and neural development. The Journal of Physiology, 586, 2429–2436.

    Article  PubMed  CAS  Google Scholar 

  14. Lecca, D., Ceruti, S., Fumagalli, M., & Abbracchio, M. P. (2012). Trophic signalling in glial cells: Functional effects and modulation of cell proliferation, differentiation and death. Purinergic Signalling.

  15. Burnstock, G. (1972). Purinergic nerves. Pharmacological Reviews, 24, 509–581.

    PubMed  CAS  Google Scholar 

  16. Burnstock, G. (1978). A basis for distinguishing two types of purinergic receptor. In R. W. Straub & L. Bolis (Eds.), Cell membrane receptors for drugs and hormones: A multidisciplinary approach (pp. 107–118). New York: Raven.

    Google Scholar 

  17. Abbracchio, M. P., Burnstock, G., Boeynaems, J.-M., Barnard, E. A., Boyer, J. L., Kennedy, C., et al. (2006). International Union of Pharmacology. Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacological Reviews, 58, 281–341.

    Article  PubMed  CAS  Google Scholar 

  18. Burnstock, G. (2007). Physiology and pathophysiology of purinergic neurotransmission. Physiological Reviews, 87, 659–797.

    Article  PubMed  CAS  Google Scholar 

  19. Abbracchio, M. P., Burnstock, G., Verkhratsky, A., & Zimmermann, H. (2009). Purinergic signalling in the nervous system: An overview. Trends in Neurosciences, 32, 19–29.

    Article  PubMed  CAS  Google Scholar 

  20. Neary, J. T., Norenberg, M. D., Yu, A. C. H., Lu, L., Hertz, M. D., & Syková, E. (1992). Signaling by extracellular ATP: Physiological and pathological considerations in neuronal-astrocytic interactions. In S. G. Waxman (Ed.), Progress in brain research. Volume 94 (pp. 145–151). Amsterdam: Elsevier.

    Google Scholar 

  21. Abbracchio, M. P., Saffrey, M. J., Höpker, V., & Burnstock, G. (1994). Modulation of astroglial cell proliferation by analogues of adenosine and ATP in primary cultures of rat striatum. Neuroscience, 59, 67–76.

    Article  PubMed  CAS  Google Scholar 

  22. Neary, J. T., Rathbone, M. P., Cattabeni, F., Abbracchio, M. P., & Burnstock, G. (1996). Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends in Neurosciences, 19, 13–18.

    Article  PubMed  CAS  Google Scholar 

  23. Zuber, M. E., Gestri, G., Viczian, A. S., Barsacchi, G., & Harris, W. A. (2003). Specification of the vertebrate eye by a network of eye field transcription factors. Development, 130, 5155–5167.

    Article  PubMed  CAS  Google Scholar 

  24. Massé, K., Bhamra, S., Eason, R., Dale, N., & Jones, E. A. (2007). Purine-mediated signalling triggers eye development. Nature, 449, 1058–1062.

    Article  PubMed  Google Scholar 

  25. Bystron, I., Blakemore, C., & Rakic, P. (2008). Development of the human cerebral cortex: Boulder Committee revisited. Nature Reviews Neuroscience, 9, 110–122.

    Article  PubMed  CAS  Google Scholar 

  26. Malatesta, P., Hartfuss, E., & Götz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development, 127, 5253–5263.

    PubMed  CAS  Google Scholar 

  27. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., & Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–720.

    Article  PubMed  CAS  Google Scholar 

  28. Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial glia. Cerebral Cortex, 13, 541–549.

    Article  PubMed  Google Scholar 

  29. Rakic, P. (2003). Elusive radial glial cells: Historical and evolutionary perspective. Glia, 43, 19–32.

    Article  PubMed  Google Scholar 

  30. Rakic, P. (2006). Neuroscience. No more cortical neurons for you. Science, 313, 928–929.

    Article  PubMed  CAS  Google Scholar 

  31. Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K., & Kriegstein, A. R. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. Journal of Neuroscience, 22, 3161–3173.

    PubMed  CAS  Google Scholar 

  32. Anthony, T. E., Klein, C., Fishell, G., & Heintz, N. (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41, 881–890.

    Article  PubMed  CAS  Google Scholar 

  33. Bittman, K., Owens, D. F., Kriegstein, A. R., & LoTurco, J. J. (1997). Cell coupling and uncoupling in the ventricular zone of developing neocortex. Journal of Neuroscience, 17, 7037–7044.

    PubMed  CAS  Google Scholar 

  34. Bittman, K. S., & LoTurco, J. J. (1999). Differential regulation of connexin 26 and 43 in murine neocortical precursors. Cerebral Cortex, 9, 188–195.

    Article  PubMed  CAS  Google Scholar 

  35. Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C., & Kriegstein, A. R. (2004). Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron, 43, 647–661.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, X., Hashimoto-Torii, K., Torii, M., Haydar, T. F., & Rakic, P. (2008). The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl. Acad. Sci. USA, 105, 11802–11807.

    Article  PubMed  CAS  Google Scholar 

  37. Liu, X., Hashimoto-Torii, K., Torii, M., Ding, C., & Rakic, P. (2010). Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. Journal of Neuroscience, 30, 4197–4209.

    Article  PubMed  CAS  Google Scholar 

  38. Wiencken-Barger, A. E., Djukic, B., Casper, K. B., & McCarthy, K. D. (2007). A role for Connexin43 during neurodevelopment. Glia, 55, 675–686.

    Article  PubMed  Google Scholar 

  39. Santiago, M. F., Alcami, P., Striedinger, K. M., Spray, D. C., & Scemes, E. (2010). The carboxyl-terminal domain of connexin43 is a negative modulator of neuronal differentiation. Journal of Biological Chemistry, 285, 11836–11845.

    Article  PubMed  CAS  Google Scholar 

  40. Sorgen, P. L., Duffy, H. S., Sahoo, P., Coombs, W., Delmar, M., & Spray, D. C. (2004). Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. Journal of Biological Chemistry, 279, 54695–54701.

    Article  PubMed  CAS  Google Scholar 

  41. Striedinger, K., Meda, P., & Scemes, E. (2007). Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia, 55, 652–662.

    Article  PubMed  Google Scholar 

  42. Fam, S. R., Gallagher, C. J., Kalia, L. V., & Salter, M. W. (2003). Differential frequency dependence of P2Y1- and P2Y2- mediated Ca 2+ signaling in astrocytes. Journal of Neuroscience, 23, 4437–4444.

    PubMed  CAS  Google Scholar 

  43. Hung, J., & Colicos, M. A. (2008). Astrocytic Ca2+ waves guide CNS growth cones to remote regions of neuronal activity. PLoS One, 3, e3692.

    Article  PubMed  Google Scholar 

  44. Alvarez-Buylla, A., Garcia-Verdugo, J. M., & Tramontin, A. D. (2001). A unified hypothesis on the lineage of neural stem cells. Nature Reviews Neuroscience, 2, 287–293.

    Article  PubMed  CAS  Google Scholar 

  45. Berridge, M. J. (1995). Calcium signalling and cell proliferation. Bioessays, 17, 491–500.

    Article  PubMed  CAS  Google Scholar 

  46. Koledova, Z., Kafkova, L. R., Calabkova, L., Krystof, V., Dolezel, P., & Divoky, V. (2010). Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells and Development, 19, 181–194.

    Article  PubMed  CAS  Google Scholar 

  47. Becker, K. A., Ghule, P. N., Therrien, J. A., Lian, J. B., Stein, J. L., van Wijnen, A. J., et al. (2006). Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. Journal of Cellular Physiology, 209, 883–893.

    Article  PubMed  CAS  Google Scholar 

  48. Ahamed, S., Foster, J. S., Bukovsky, A., & Wimalasena, J. (2001). Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Molecular Carcinogenesis, 30, 88–98.

    Article  PubMed  CAS  Google Scholar 

  49. Córdova-Alarcón, E., Centeno, F., Reyes-Esparza, J., García-Carrancá, A., & Garrido, E. (2005). Effects of HRAS oncogene on cell cycle progression in a cervical cancer-derived cell line. Archives of Medical Research, 36, 311–316.

    Article  PubMed  Google Scholar 

  50. Hideshima, T., Nakamura, N., Chauhan, D., & Anderson, K. C. (2001). Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene, 20, 5991–6000.

    Article  PubMed  CAS  Google Scholar 

  51. Delmas, C., Manenti, S., Boudjelal, A., Peyssonnaux, C., Eychène, A., & Darbon, J. M. (2001). The p42/p44 mitogen-activated protein kinase activation triggers p27Kip1 degradation independently of CDK2/cyclin E in NIH 3 T3 cells. Journal of Biological Chemistry, 276, 34958–34965.

    Article  PubMed  CAS  Google Scholar 

  52. Ma, D. K., Ponnusamy, K., Song, M. R., Ming, G. L., & Song, H. (2009). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Molecular Brain, 2, 16.

    Article  PubMed  Google Scholar 

  53. Wang, B., Gao, Y., Xiao, Z., Chen, B., Han, J., Zhang, J., et al. (2009). Erk1/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells. Neuroscience Letters, 461, 252–257.

    Article  PubMed  CAS  Google Scholar 

  54. Carreira, B. P., Morte, M. I., Inacio, A., Costa, G., Rosmaninho-Salgado, J., Agasse, F., et al. (2010). Nitric oxide stimulates the proliferation of neural stem cells bypassing the epidermal growth factor receptor. Stem Cells, 28, 1219–1230.

    PubMed  CAS  Google Scholar 

  55. Lin, J. H., Takano, T., Arcuino, G., Wang, X., Hu, F., Darzynkiewicz, Z., et al. (2007). Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Developmental Biology, 302, 356–366.

    Article  PubMed  CAS  Google Scholar 

  56. Khaira, S. K., Pouton, C. W., & Haynes, J. M. (2009). P2X2, P2X4 and P2Y1 receptors elevate intracellular Ca2+ in mouse embryonic stem cell-derived GABAergic neurons. British Journal of Pharmacology, 158, 1922–1931.

    Article  PubMed  CAS  Google Scholar 

  57. Heo, J. S., & Han, H. J. (2006). ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells, 24, 2637–2648.

    Article  PubMed  CAS  Google Scholar 

  58. Milosevic, J., Brandt, A., Roemuss, U., Arnold, A., Wegner, F., Schwarz, S. C., et al. (2006). Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: Involvement of MEK/ERK signalling. Journal of Neurochemistry, 99, 913–923.

    Article  PubMed  CAS  Google Scholar 

  59. Rubini, P., Milosevic, J., Engelhardt, J., Al-Khrasani, M., Franke, H., Heinrich, A., et al. (2009). Increase of intracellular Ca2+ by adenine and uracil nucleotides in human midbrain-derived neuronal progenitor cells. Cell Calcium, 45, 485–498.

    Article  PubMed  CAS  Google Scholar 

  60. Resende, R. R., Majumder, P., Gomes, K. N., Britto, L. R., & Ulrich, H. (2007). P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-D-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience, 146, 1169–1181.

    Article  PubMed  CAS  Google Scholar 

  61. Resende, R. R., Britto, L. R., & Ulrich, H. (2008). Pharmacological properties of purinergic receptors and their effects on proliferation and induction of neuronal differentiation of P19 embryonal carcinoma cells. International Journal of Developmental Neuroscience, 26, 763–777.

    Article  PubMed  CAS  Google Scholar 

  62. Nunes, P. H., Calaza Kda, C., Albuquerque, L. M., Fragel-Madeira, L., Sholl-Franco, A., & Ventura, A. L. (2007). Signal transduction pathways associated with ATP-induced proliferation of cell progenitors in the intact embryonic retina. International Journal of Developmental Neuroscience, 25, 499–508.

    Article  PubMed  CAS  Google Scholar 

  63. Sholl-Franco, A., Fragel-Madeira, L., Macama, A. C., Linden, R., & Ventura, A. L. (2010). ATP controls cell cycle and induces proliferation in the mouse developing retina. International Journal of Developmental Neuroscience, 28, 63–73.

    Article  PubMed  CAS  Google Scholar 

  64. Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA, 80, 2390–2394.

    Article  PubMed  CAS  Google Scholar 

  65. Galileo, D. S., Gray, G. E., Owens, G. C., Majors, J., & Sanes, J. R. (1990). Neurons and glia arise from a common progenitor in chicken optic tectum: Demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA, 87, 458–462.

    Article  PubMed  CAS  Google Scholar 

  66. Temple, S. (2001). The development of neural stem cells. Nature, 414, 112–117.

    Article  PubMed  CAS  Google Scholar 

  67. Alvarez-Buylla, A., & Lim, D. A. (2004). For the long run: Maintaining germinal niches in the adult brain. Neuron, 41, 683–686.

    Article  PubMed  CAS  Google Scholar 

  68. Mishra, S. K., Braun, N., Shukla, V., Füllgrabe, M., Schomerus, C., Korf, H. W., et al. (2006). Extracellular nucleotide signaling in adult neural stem cells: Synergism with growth factor-mediated cellular proliferation. Development, 133, 675–684.

    Article  PubMed  CAS  Google Scholar 

  69. Grimm, I., Messemer, N., Stanke, M., Gachet, C., & Zimmermann, H. (2009). Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. Journal of Cell Science, 122, 2524–2533.

    Article  PubMed  CAS  Google Scholar 

  70. Arthur, D. B., Georgi, S., Akassoglou, K., & Insel, P. A. (2006). Inhibition of apoptosis by P2Y2 receptor activation: Novel pathways for neuronal survival. Journal of Neuroscience, 26, 3798–3804.

    Article  PubMed  CAS  Google Scholar 

  71. Delic, J., & Zimmermann, H. (2010). Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells. Purinergic Signal, 6, 417–428.

    Article  PubMed  CAS  Google Scholar 

  72. Povstyan, O. V., Harhun, M. I., & Gordienko, D. V. (2011). Ca2+ entry following P2X receptor activation induces IP3 receptor-mediated Ca2+ release in myocytes from small renal arteries. British Journal of Pharmacology, 162, 1618–1638.

    Article  PubMed  CAS  Google Scholar 

  73. Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871–927.

    PubMed  CAS  Google Scholar 

  74. Delarasse, C., Gonnord, P., Galante, M., Auger, R., Daniel, H., Motta, I., et al. (2009). Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. Journal of Neurochemistry, 109, 846–857.

    Article  PubMed  CAS  Google Scholar 

  75. Orellano, E. A., Rivera, O. J., Chevres, M., Chorna, N. E., & Gonzalez, F. A. (2010). Inhibition of neuronal cell death after retinoic acid-induced down-regulation of P2X7 nucleotide receptor expression. Molecular and Cellular Biochemistry, 337, 83–99.

    Article  PubMed  CAS  Google Scholar 

  76. Franke, H., Günther, A., Grosche, J., Schmidt, R., Rossner, S., Reinhardt, R., et al. (2004). P2X7 receptor expression after ischemia in the cerebral cortex of rats. Journal of Neuropathology and Experimental Neurology, 63, 686–699.

    PubMed  CAS  Google Scholar 

  77. Scemes, E., Duval, N., & Meda, P. (2003). Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. Journal of Neuroscience, 23, 11444–11452.

    PubMed  CAS  Google Scholar 

  78. Hassenklöver, T., Kurtanska, S., Bartoszek, I., Junek, S., Schild, D., & Manzini, I. (2008). Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium. Glia, 56, 1614–1624.

    Article  PubMed  Google Scholar 

  79. Hassenklöver, T., Schwartz, P., Schild, D., & Manzini, I. (2009). Purinergic signaling regulates cell proliferation of olfactory epithelium progenitors. Stem Cells, 27, 2022–2031.

    Article  PubMed  Google Scholar 

  80. Cohen, J. E., & Fields, R. D. (2008). Activity-dependent neuron-glial signaling by ATP and leukemia-inhibitory factor promotes hippocampal glial cell development. Neuron Glia Biology, 4, 43–55.

    Article  PubMed  Google Scholar 

  81. Ciana, P., Fumagalli, M., Trincavelli, M. L., Verderio, C., Rosa, P., Lecca, D., et al. (2006). The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO Journal, 25, 4615–4627.

    Article  PubMed  CAS  Google Scholar 

  82. Lecca, D., Trincavelli, M. L., Gelosa, P., Sironi, L., Ciana, P., Fumagalli, M., et al. (2008). The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One, 3, e3579.

    Article  PubMed  Google Scholar 

  83. Fumagalli, M., Daniele, S., Lecca, D., Lee, P. R., Parravicini, C., Fields, R. D., et al. (2011). Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. Journal of Biological Chemistry, 286, 10593–10604.

    Article  PubMed  CAS  Google Scholar 

  84. Schwindt, T. T., Trujillo, C. A., Negraes, P. D., Lameu, C., & Ulrich, H. (2011). Directed differentiation of neural progenitors into neurons is accompanied by altered expression of P2X purinergic receptors. Journal of Molecular Neuroscience, 44, 141–146.

    Article  PubMed  CAS  Google Scholar 

  85. Gao, L., Cao, L., Qui, Y., Su, Z., Burnstock, G., Xiang, Z., et al. (2010). Blocking P2X receptors can inhibit the injury-induced proliferation of olfactory epithelium progenitor cells in adult mouse. International Journal of Pediatric Otorhinolaryngology, 74, 747–751.

    Article  PubMed  Google Scholar 

  86. Cheung, K.-K., Chan, W. Y., & Burnstock, G. (2005). Expression of P2X receptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures. Neuroscience, 133, 937–945.

    Article  PubMed  CAS  Google Scholar 

  87. Díaz-Hernandez, M., del Puerto, A., Díaz-Hernandez, J. I., Diez-Zaera, M., Lucas, J. J., Garrido, J. J., et al. (2008). Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. Journal of Cell Science, 121, 3717–3728.

    Article  PubMed  Google Scholar 

  88. Wu, P. Y., Lin, Y. C., Chang, C. L., Lu, H. T., Chin, C. H., Hsu, T. T., et al. (2009). Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cellular Signalling, 21, 881–891.

    Article  PubMed  CAS  Google Scholar 

  89. Raffaghello, L., Chiozzi, P., Falzoni, S., Di Virgilio, F., & Pistoia, V. (2006). The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Research, 66, 907–914.

    Article  PubMed  CAS  Google Scholar 

  90. Yuahasi, K. K., Demasi, M. A., Tamajusuku, A. S., Lenz, G., Sogayar, M. C., Fornazari, M., et al. (2012). Regulation of neurogenesis and gliogenesis of retinoic acid-induced P19 embryonal carcinoma cells by P2X2 and P2X7 receptors studied by RNA interference. International Journal of Developmental Neuroscience 30, 91–97.

    Google Scholar 

  91. Burnstock, G., & Verkhratsky, A. (2009). Evolutionary origins of the purinergic signalling system. Acta Physiologica, 195, 415–447.

    Article  PubMed  CAS  Google Scholar 

  92. Flint, A. C., & Kriegstein, A. R. (1997). Mechanisms underlying neuronal migration disorders and epilepsy. Current Opinion in Neurology, 10, 92–97.

    Article  PubMed  CAS  Google Scholar 

  93. Manzini, M. C., & Walsh, C. A. (2011). What disorders of cortical development tell us about the cortex: One plus one does not always make two. Current Opinion in Genetics & Development, 21, 333–339.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Gillian E. Knight for her excellent editorial assistance. H.U. is grateful for grant support by from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico), Brazil. MPA is grateful to Italian Ministero dell’Università e della Ricerca (MIUR; PRIN-/COFIN program Project Prot. 2006059022 and 2008XFMEA3) and to the Fondazione Italiana Sclerosi Multipla (FISM) COD. 2010/R/2 for research support.

Conflict of interests

The authors declare that they have no competing interests or other interests that might be perceived to influence the interpretation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrich, H., Abbracchio, M.P. & Burnstock, G. Extrinsic Purinergic Regulation of Neural Stem/Progenitor Cells: Implications for CNS Development and Repair. Stem Cell Rev and Rep 8, 755–767 (2012). https://doi.org/10.1007/s12015-012-9372-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9372-9

Keywords

Navigation