Skip to main content
Log in

A Critical Re-Evaluation of CD24-Positivity of Human Embryonic Stem Cells Differentiated into Pancreatic Progenitors

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Differentiation of embryonic stem cells (ESCs) into insulin-producing cells for cell replacement therapy of diabetes mellitus comprises the stepwise recapitulation of in vivo developmental stages of pancreatic organogenesis in an in vitro differentiation protocol. The chemical compounds IDE-1 and (-)-indolactam-V can be used to direct mouse and human ESCs through these stages to form definitive endoderm via an intermediate mesendodermal stage and finally into pancreatic endoderm. Cells of the pancreatic endoderm express the PDX1 transcription factor and contribute to all pancreatic cell types upon further in vitro or in vivo differentiation. Even though this differentiation approach is highly effective and reproducible, it generates heterogeneous populations containing PDX1-expressing pancreatic progenitors amongst other cell types. Thus, a technique to separate PDX1-expressing cells from this mixture is very desirable. Recently it has been reported that PDX1-positive pancreatic progenitors, derived from human embryonic stem cells, express the surface marker CD24. Therefore were subjected mouse and human ESCs to a small molecule differentiation approach and the expression of the surface marker CD24 was monitored in undifferentiated cells, cells committed to the definitive endoderm and cells reminiscent of the pancreatic endoderm. We observed that both mouse and human ESCs expressed CD24 in the pluripotent state, during the whole process of endoderm formation and upon further differentiation towards pancreatic endoderm. Thus CD24 is not a suitable cell surface marker for identification of PDX1-positive progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Naujok, O., Burns, C., Jones, P. M., & Lenzen, S. (2011). Insulin-producing surrogate beta-cells from embryonic stem cells: are we there yet? Molecular Therapy, 19, 1759–1768.

    Article  PubMed  CAS  Google Scholar 

  2. D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., et al. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24, 1392–1401.

    Article  PubMed  Google Scholar 

  3. Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26, 443–452.

    Article  PubMed  CAS  Google Scholar 

  4. Gittes, G. K. (2009). Developmental biology of the pancreas: a comprehensive review. Developmental Biology, 326, 4–35.

    Article  PubMed  CAS  Google Scholar 

  5. Jonsson, J., Carlsson, L., Edlund, T., & Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 371, 606–609.

    Article  PubMed  CAS  Google Scholar 

  6. Cho, Y. M., Lim, J. M., Yoo, D. H., Kim, J. H., Chung, S. S., Park, S. G., et al. (2008). Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochemical and Biophysical Research Communications, 366, 129–134.

    Article  PubMed  CAS  Google Scholar 

  7. D’Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23, 1534–1541.

    Article  PubMed  Google Scholar 

  8. Shim, J. H., Kim, S. E., Woo, D. H., Kim, S. K., Oh, C. H., McKay, R., et al. (2007). Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia, 50, 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  9. Borowiak, M., Maehr, R., Chen, S., Chen, A. E., Tang, W., Fox, J. L., et al. (2009). Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell, 4, 348–358.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, S., Borowiak, M., Fox, J. L., Maehr, R., Osafune, K., Davidow, L., et al. (2009). A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chemical Biology, 5, 258–265.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu, S. T., Wurdak, H., Wang, J., Lyssiotis, C. A., Peters, E. C., Cho, C. Y., et al. (2009). A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell, 4, 416–426.

    Article  PubMed  CAS  Google Scholar 

  12. Bone, H. K., Nelson, A. S., Goldring, C. E., Tosh, D., & Welham, M. J. (2011). A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. Journal of Cell Science, 124, 1992–2000.

    Article  PubMed  CAS  Google Scholar 

  13. Jiang, W., Sui, X., Zhang, D., Liu, M., Ding, M., Shi, Y., et al. (2011). CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells, 29, 609–617.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, D., Jiang, W., Liu, M., Sui, X., Yin, X., Chen, S., et al. (2009). Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Research, 19, 429–438.

    Article  PubMed  CAS  Google Scholar 

  15. Naujok, O., Kaldrack, J., Taivankhuu, T., Jörns, A., & Lenzen, S. (2010). Selective removal of undifferentiated embryonic stem cells from differentiation cultures through HSV1 thymidine kinase and ganciclovir treatment. Stem Cell Rev, 6, 450–461.

    Article  CAS  Google Scholar 

  16. Kristiansen, G., Winzer, K. J., Mayordomo, E., Bellach, J., Schluns, K., Denkert, C., et al. (2003). CD24 expression is a new prognostic marker in breast cancer. Clinical Cancer Research, 9, 4906–4913.

    PubMed  CAS  Google Scholar 

  17. Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26, 313–315.

    Article  PubMed  CAS  Google Scholar 

  18. Courtney, M. L., Jones, P. M., & Burns, C. J. (2010). Importance of quantitative analysis in the generation of insulin-expressing cells from human embryonic stem cells. Pancreas, 39, 105–107.

    Article  PubMed  Google Scholar 

  19. Kay, R., Rosten, P. M., & Humphries, R. K. (1991). CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. Journal of Immunology, 147, 1412–1416.

    CAS  Google Scholar 

  20. Kristiansen, G., Sammar, M., & Altevogt, P. (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. Journal of Molecular Histology, 35, 255–262.

    Article  PubMed  CAS  Google Scholar 

  21. Lim, S. C. (2005). CD24 and human carcinoma: tumor biological aspects. Biomedicine & Pharmacotherapy, 59(Suppl 2), S351–S354.

    Article  CAS  Google Scholar 

  22. Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.

    Article  PubMed  CAS  Google Scholar 

  23. Calaora, V., Chazal, G., Nielsen, P. J., Rougon, G., & Moreau, H. (1996). mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience, 73, 581–594.

    Article  PubMed  CAS  Google Scholar 

  24. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M., & Smalley, M. J. (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 8, R7.

    Article  PubMed  Google Scholar 

  25. Figarella-Branger, D., Moreau, H., Pellissier, J. F., Bianco, N., & Rougon, G. (1993). CD24, a signal-transducing molecule expressed on human B lymphocytes, is a marker for human regenerating muscle. Acta Neuropathologica, 86, 275–284.

    Article  PubMed  CAS  Google Scholar 

  26. Smith, S. C., Oxford, G., Wu, Z., Nitz, M. D., Conaway, M., Frierson, H. F., et al. (2006). The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Research, 66, 1917–1922.

    Article  PubMed  CAS  Google Scholar 

  27. Bai, X. F., Li, O., Zhou, Q., Zhang, H., Joshi, P. S., Zheng, X., et al. (2004). CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. The Journal of Experimental Medicine, 200, 447–458.

    Article  PubMed  CAS  Google Scholar 

  28. Fang, X., Zheng, P., Tang, J., & Liu, Y. (2010). CD24: from A to Z. Cellular & Molecular Immunology, 7, 100–103.

    Article  CAS  Google Scholar 

  29. Nakagawa, Y., Irie, K., Yanagita, R. C., Ohigashi, H., & Tsuda, K. (2005). Indolactam-V is involved in the CH/pi interaction with Pro-11 of the PKCdelta C1B domain: application for the structural optimization of the PKCdelta ligand. Journal of the American Chemical Society, 127, 5746–5747.

    Article  PubMed  CAS  Google Scholar 

  30. Yanagita, R. C., Nakagawa, Y., Yamanaka, N., Kashiwagi, K., Saito, N., & Irie, K. (2008). Synthesis, conformational analysis, and biological evaluation of 1-hexylindolactam-V10 as a selective activator for novel protein kinase C isozymes. Journal of Medicinal Chemistry, 51, 46–56.

    Article  PubMed  CAS  Google Scholar 

  31. Kambhampati, S., Li, Y., Verma, A., Sassano, A., Majchrzak, B., Deb, D. K., et al. (2003). Activation of protein kinase C delta by all-trans-retinoic acid. Journal of Biological Chemistry, 278, 32544–32551.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the framework of the Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy).

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigurd Lenzen.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) within the framework of the Cluster of Excellence REBIRTH.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Table 1

qPCR primer (DOC 71 kb)

Supplemental Table 2

Binding of control antibodies to undifferentiated and differentiated ES cells at the D0, D6 and D10 time points. (DOC 31 kb)

Supplemental Figure 1

Comparison of the staining pattern of two different anti-CD24 antibodies. (A) Immunocytochemical staining of CD24/NANOG (CD24 unconjugated, clone SN3, Santa Cruz; Anti-Nanog, Abcam, Cambridge, UK) in undifferentiated hESCs (d0). (B) Immunocytochemical staining of CD24/NANOG (CD24 unconjugated, clone Ml5, Biolegend; Anti-NANOG, Abcam, Cambridge, UK) in undifferentiated hESCs (d0). The staining of both antibodies showed mosaic-like, aggregated plasma membrane localization. Images taken were post processed using Autoquant X (Media Cybernetics, Bethesda, USA) and Imaris (Bitplane, Zürich, Switzerland). Original magnification 400x. (DOC 12,982 kb)

Supplemental Figure 2

Comparison of the staining pattern of two different anti-CD24 antibodies at day 6 and day 10 of differentiation. (A) Immunocytochemical triple-staining of CD24/SOX17/FOXA2 using both anti-CD24 antibodies from Biolegend (clone ML5) and Santa Cruz (clone SN3). Shown are cells hESCs after 6 of differentiation with IDE-1 and sodium butyrate. The cells were double-positive for SOX17 and FOXA2, which marks cells of the definitive endoderm. In addition these cells were positive for CD24. An area with non-DE cells is marked also positive for this marker. (B) Immunocytochemical double staining for CD24 and PDX1 using both anti-CD24 antibodies from Biolegend and Santa Cruz. Arrows indicate pdx1-negative cells; arrowheads indicate PDX1-positive cells. The staining of both antibodies showed mosaic-like, aggregated plasma membrane localization. Original magnification 400×. (DOC 24,688 kb)

Supplemental Figure 3

Flow cytometric analysis of human and mouse peripheral blood lymphocytes (A) Flow cytometry of gated human lymphocytes after staining with primary conjugated antibodies against the B-lymphocyte surface markers CD19 and CD24. The clone ml5 from Biolegend was used in this experimental setup. (B) Flow cytometry of gated NMRI mouse lymphocytes after staining with primary conjugated antibodies against the B-lymphocyte surface marker genes CD19/CD24 and CD45R/CD24. The numbers in the lower right of each dotplot depicts cell percentages of cells positive for one or both respective markers in each quadrant. (DOC 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naujok, O., Lenzen, S. A Critical Re-Evaluation of CD24-Positivity of Human Embryonic Stem Cells Differentiated into Pancreatic Progenitors. Stem Cell Rev and Rep 8, 779–791 (2012). https://doi.org/10.1007/s12015-012-9362-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9362-y

Keywords

Navigation