Skip to main content

Advertisement

Log in

Cardiac Cell Therapy: Boosting Mesenchymal Stem Cells Effects

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Acute myocardial infarction is a major problem of world public health and available treatments have limited efficacy. Cardiac cell therapy is a new therapeutic strategy focused on regeneration and repair of the injured cardiac muscle. Among different cell types used, mesenchymal stem cells (MSC) have been widely tested in preclinical studies and several clinical trials have evaluated their clinical efficacy in myocardial infarction. However, the beneficial effects of MSC in humans are limited due to poor engraftment and survival of these cells, therefore ways to overcome these obstacles should improve efficacy. Different strategies have been used, such as genetically modifying MSC, or preconditioning the cells with factors that potentiate their survival and therapeutic mechanisms. In this review we compile the most relevant approaches used to improve MSC therapeutic capacity and to understand the molecular mechanisms involved in MSC mediated cardiac repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mackay, J., & Mensah, G. (2004). Atlas of heart disease and stroke. World Health Organization.

  2. Andersen, H. R., Nielsen, T. T., Rasmussen, K., et al. (2003). A comparison of coronary angioplasty with fibrinolytic therapy in acute myocardial infarction. The New England Journal of Medicine, 349(8), 733–742.

    Article  PubMed  Google Scholar 

  3. Costanzo, M. R., Augustine, S., Bourge, R., et al. (1995). Selection and treatment of candidates for heart transplantation. A statement for health professionals from the Committee on Heart Failure and Cardiac Transplantation of the Council on Clinical Cardiology, American Heart Association. Circulation, 92(12), 3593–3612.

    Article  CAS  PubMed  Google Scholar 

  4. Kajstura, J., Cheng, W., Reiss, K., et al. (1996). Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Laboratory Investigation, 74(1), 86–107.

    CAS  PubMed  Google Scholar 

  5. Sun, Y., Zhang, J. Q., Zhang, J., & Lamparter, S. (2000). Cardiac remodeling by fibrous tissue after infarction in rats. The Journal of Laboratory and Clinical Medicine, 135(4), 316–323.

    Article  CAS  PubMed  Google Scholar 

  6. Sutton, M. G., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation, 101(25), 2981–2988.

    Article  CAS  PubMed  Google Scholar 

  7. Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942.

    Article  CAS  PubMed  Google Scholar 

  8. Tongers, J., Losordo, D. W., & Landmesser, U. (2011). Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. European Heart Journal, 32(10), 1197–1206.

    Article  CAS  PubMed  Google Scholar 

  9. Janssens, S. (2010). Stem cells in the treatment of heart disease. Annual Review of Medicine, 61, 287–300.

    Article  CAS  PubMed  Google Scholar 

  10. Arminan, A., Gandia, C., Garcia-Verdugo, J. M., et al. (2010). Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction. Journal of the American College of Cardiology, 55(20), 2244–2253.

    Article  PubMed  Google Scholar 

  11. Martinez, E. C., & Kofidis, T. (2011). Adult stem cells for cardiac tissue engineering. Journal of Molecular and Cellular Cardiology, 50(2), 312–319.

    Article  CAS  PubMed  Google Scholar 

  12. Herrmann, J. L., Abarbanell, A. M., Weil, B. R., et al. (2011). Optimizing stem cell function for the treatment of ischemic heart disease. Journal of Surgical Research, 166(1), 138–145.

    Article  CAS  PubMed  Google Scholar 

  13. Haider, H., & Ashraf, M. (2010). Preconditioning and stem cell survival. Journal of Cardiovascular Translational Research, 3(2), 89–102.

    Article  PubMed  Google Scholar 

  14. Menasche, P. (2011). Cardiac cell therapy: lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 50(2), 258–265.

    Article  CAS  PubMed  Google Scholar 

  15. Rosenzweig, A. (2006). Cardiac cell therapy–mixed results from mixed cells. The New England Journal of Medicine, 355(12), 1274–1277.

    Article  CAS  PubMed  Google Scholar 

  16. Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–329.

    Article  CAS  PubMed  Google Scholar 

  17. Fouts, K., Fernandes, B., Mal, N., Liu, J., & Laurita, K. R. (2006). Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm, 3(4), 452–461.

    Article  PubMed  Google Scholar 

  18. Hagege, A. A., Marolleau, J. P., Vilquin, J. T., et al. (2006). Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation, 114(1 Suppl), I108–I113.

    PubMed  Google Scholar 

  19. Fernandes, S., Amirault, J. C., Lande, G., et al. (2006). Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovascular Research, 69(2), 348–358.

    Article  CAS  PubMed  Google Scholar 

  20. Jeong, J. O., Han, J. W., Kim, J. M., et al. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research, 108(11), 1340–1347.

    Article  CAS  PubMed  Google Scholar 

  21. Hatzistergos, K. E., Blum, A., Ince, T., Grichnik, J. M., & Hare, J. M. (2011). What is the oncologic risk of stem cell treatment for heart disease? Circulation Research, 108(11), 1300–1303.

    Article  CAS  PubMed  Google Scholar 

  22. Wollert, K. C., & Drexler, H. (2010). Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nature Reviews Cardiology, 7(4), 204–215.

    Article  PubMed  Google Scholar 

  23. Giordano, A., Galderisi, U., & Marino, I. R. (2007). From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. Journal of Cellular Physiology, 211(1), 27–35.

    Article  CAS  PubMed  Google Scholar 

  24. Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54(24), 2277–2286.

    Article  CAS  PubMed  Google Scholar 

  25. Trachtenberg, B., Velazquez, D. L., Williams, A. R., et al. (2011). Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: A randomized, double-blind, placebo-controlled study of safety and efficacy. American Heart Journal, 161(3), 487–493.

    Article  CAS  Google Scholar 

  26. Williams, A. R., Trachtenberg, B., Velazquez, D. L., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108(7), 792–796.

    Article  CAS  Google Scholar 

  27. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., et al. (1974). Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Experimental Hematology, 2(2), 83–92.

    CAS  PubMed  Google Scholar 

  28. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  PubMed  Google Scholar 

  29. Pereira, R. F., Halford, K. W., O’Hara, M. D., et al. (1995). Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proceedings of the National Academy of Sciences of the United States of America, 92(11), 4857–4861.

    Article  CAS  PubMed  Google Scholar 

  30. Sekiya, I., Vuoristo, J. T., Larson, B. L., & Prockop, D. J. (2002). In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4397–4402.

    Article  CAS  PubMed  Google Scholar 

  31. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276(5309), 71–74.

    Article  CAS  PubMed  Google Scholar 

  32. Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., et al. (2000). Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine, 6(11), 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  33. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatism, 52(8), 2521–2529.

    Article  PubMed  Google Scholar 

  34. Luria, E. A., Panasyuk, A. F., & Friedenstein, A. Y. (1971). Fibroblast colony formation from monolayer cultures of blood cells. Transfusion, 11(6), 345–349.

    Article  CAS  PubMed  Google Scholar 

  35. Kuznetsov, S. A., Mankani, M. H., Gronthos, S., Satomura, K., Bianco, P., & Robey, P. G. (2001). Circulating skeletal stem cells. The Journal of Cell Biology, 153(5), 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  36. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  CAS  PubMed  Google Scholar 

  37. Toma, J. G., Akhavan, M., Fernandes, K. J., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3(9), 778–784.

    Article  CAS  PubMed  Google Scholar 

  38. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.

    Article  CAS  PubMed  Google Scholar 

  39. Najimi, M., Khuu, D. N., Lysy, P. A., et al. (2007). Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes? Cell Transplantation, 16(7), 717–728.

    PubMed  Google Scholar 

  40. De Bari, C., Dell’Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatism, 44(8), 1928–1942.

    Article  PubMed  Google Scholar 

  41. Williams, J. T., Southerland, S. S., Souza, J., Calcutt, A. F., & Cartledge, R. G. (1999). Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. American Surgeon, 65(1), 22–26.

    CAS  PubMed  Google Scholar 

  42. Lama, V. N., Smith, L., Badri, L., et al. (2007). Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. The Journal of Clinical Investigation, 117(4), 989–996.

    Article  CAS  PubMed  Google Scholar 

  43. Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 109(1), 235–242.

    Article  CAS  PubMed  Google Scholar 

  44. In ’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102(4), 1548–1549.

  45. In ’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22(7), 1338–1345.

  46. Hass, R., Kasper, C., Bohm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 9, 12.

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Castro, J., Trigueros, C., Madrenas, J., Perez-Simon, J. A., Rodriguez, R., & Menendez, P. (2008). Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. Journal of Cellular and Molecular Medicine, 12(6B), 2552–2565.

    Article  CAS  PubMed  Google Scholar 

  48. Wagner, W., Wein, F., Seckinger, A., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33(11), 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  49. Simonsen, J. L., Rosada, C., Serakinci, N., et al. (2002). Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nature Biotechnology, 20(6), 592–596.

    Article  CAS  PubMed  Google Scholar 

  50. Asumda, F. Z., & Chase, P. B. (2011). Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biology, 12, 44.

    Article  CAS  Google Scholar 

  51. Ryan, J. M., Barry, F. P., Murphy, J. M., & Mahon, B. P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation (London), 2, 8.

    Article  CAS  Google Scholar 

  52. Beyth, S., Borovsky, Z., Mevorach, D., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105(5), 2214–2219.

    Article  CAS  PubMed  Google Scholar 

  53. Rasmusson, I. (2006). Immune modulation by mesenchymal stem cells. Experimental Cell Research, 312(12), 2169–2179.

    Article  CAS  PubMed  Google Scholar 

  54. Jones, B. J., & McTaggart, S. J. (2008). Immunosuppression by mesenchymal stromal cells: from culture to clinic. Experimental Hematology, 36(6), 733–741.

    Article  CAS  PubMed  Google Scholar 

  55. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106(13), 4057–4065.

    Article  CAS  PubMed  Google Scholar 

  56. Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.

    Article  CAS  PubMed  Google Scholar 

  57. Mirotsou, M., Jayawardena, T. M., Schmeckpeper, J., Gnecchi, M., & Dzau, V. J. (2011). Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. Journal of Molecular and Cellular Cardiology, 50(2), 280–289.

    Article  CAS  PubMed  Google Scholar 

  58. Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032–1043.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, S., Liu, Z., Tian, N., et al. (2006). Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. The Journal of Invasive Cardiology, 18(11), 552–556.

    PubMed  Google Scholar 

  60. Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.

    Article  CAS  PubMed  Google Scholar 

  61. Bonvini, R. F., Hendiri, T., & Camenzind, E. (2005). Inflammatory response post-myocardial infarction and reperfusion: a new therapeutic target? European Heart Journal Supplements, 7(suppl I), I27–I36.

    Article  CAS  Google Scholar 

  62. Arslan, F., de Kleijn, D. P., & Pasterkamp, G. (2011). Innate immune signaling in cardiac ischemia. Nature Reviews Cardiology, 8(5), 292–300.

    Article  CAS  PubMed  Google Scholar 

  63. Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12), 1543–1553.

    Article  CAS  PubMed  Google Scholar 

  64. Nah, D. Y., & Rhee, M. Y. (2009). The inflammatory response and cardiac repair after myocardial infarction. Korean Circulation Journal, 39(10), 393–398.

    Article  CAS  PubMed  Google Scholar 

  65. Kollar, K., Cook, M. M., Atkinson, K., & Brooke, G. (2009). Molecular mechanisms involved in mesenchymal stem cell migration to the site of acute myocardial infarction. International Journal of Cell Biology, p. 904682.

  66. Neuss, S., Becher, E., Woltje, M., Tietze, L., & Jahnen-Dechent, W. (2004). Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 22(3), 405–414.

    Article  CAS  PubMed  Google Scholar 

  67. Kim, Y. S., Park, H. J., Hong, M. H., et al. (2009). TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Frontiers in Bioscience, 14, 2845–2856.

    Article  CAS  PubMed  Google Scholar 

  68. Ponte, A. L., Marais, E., Gallay, N., et al. (2007). The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25(7), 1737–1745.

    Article  CAS  PubMed  Google Scholar 

  69. Majumdar, M. K., Keane-Moore, M., Buyaner, D., et al. (2003). Characterization and functionality of cell surface molecules on human mesenchymal stem cells. Journal of Biomedical Science, 10(2), 228–241.

    Article  CAS  PubMed  Google Scholar 

  70. Thankamony, S. P., & Sackstein, R. (2011). Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2258–2263.

    Article  CAS  PubMed  Google Scholar 

  71. Steingen, C., Brenig, F., Baumgartner, L., Schmidt, J., Schmidt, A., & Bloch, W. (2008). Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. Journal of Molecular and Cellular Cardiology, 44(6), 1072–1084.

    Article  CAS  PubMed  Google Scholar 

  72. Segers, V. F., Van Riet, I., Andries, L. J., et al. (2006). Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. American Journal of Physiology—Heart and Circulatory Physiology, 290(4), H1370–H1377.

    Article  CAS  PubMed  Google Scholar 

  73. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.

    Article  PubMed  Google Scholar 

  74. Grinnemo, K. H., Mansson, A., Dellgren, G., et al. (2004). Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. The Journal of Thoracic and Cardiovascular Surgery, 127(5), 1293–1300.

    Article  CAS  PubMed  Google Scholar 

  75. Terrovitis, J., Stuber, M., Youssef, A., et al. (2008). Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 117(12), 1555–1562.

    Article  PubMed  Google Scholar 

  76. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–14027.

    Article  CAS  PubMed  Google Scholar 

  77. Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107(7), 913–922.

    Article  CAS  PubMed  Google Scholar 

  78. Muller-Ehmsen, J., Krausgrill, B., Burst, V., et al. (2006). Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. Journal of Molecular and Cellular Cardiology, 41(5), 876–884.

    Article  PubMed  CAS  Google Scholar 

  79. Freyman, T., Polin, G., Osman, H., et al. (2006). A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal, 27(9), 1114–1122.

    Article  PubMed  Google Scholar 

  80. Serda, R. E., Gu, J., Bhavane, R. C., et al. (2009). The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials, 30(13), 2440–2448.

    Article  CAS  PubMed  Google Scholar 

  81. Laflamme, M. A., Chen, K. Y., Naumova, A. V., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  82. Godier-Furnemont, A. F., Martens, T. P., Koeckert, M. S., et al. (2011). Composite scaffold provides a cell delivery platform for cardiovascular repair. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7974–7979.

    Article  CAS  PubMed  Google Scholar 

  83. Trouche, E., Girod Fullana, S., Mias, C., et al. (2010). Evaluation of alginate microspheres for mesenchymal stem cell engraftment on solid organ. Cell Transplantation, 19(12), 1623–1633.

    Article  CAS  PubMed  Google Scholar 

  84. Shake, J. G., Gruber, P. J., Baumgartner, W. A., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. The Annals of Thoracic Surgery, 73(6), 1919–1925. discussion 1926.

    Article  PubMed  Google Scholar 

  85. Jiang, W., Ma, A., Wang, T., et al. (2006). Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflügers Archiv, 453(1), 43–52.

    Article  CAS  PubMed  Google Scholar 

  86. Noiseux, N., Gnecchi, M., Lopez-Ilasaca, M., et al. (2006). Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy, 14(6), 840–850.

    Article  CAS  PubMed  Google Scholar 

  87. Arminan, A., Gandia, C., Bartual, M., et al. (2009). Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Development, 18(6), 907–918.

    Article  CAS  PubMed  Google Scholar 

  88. Tang, Y. L., Zhao, Q., Qin, X., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. The Annals of Thoracic Surgery, 80(1), 229–236. discussion 236-7.

    Article  PubMed  Google Scholar 

  89. Gnecchi, M., He, H., Noiseux, N., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. The FASEB Journal, 20(6), 661–669.

    Article  CAS  Google Scholar 

  90. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    Article  CAS  PubMed  Google Scholar 

  91. Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98(11), 1414–1421.

    Article  CAS  PubMed  Google Scholar 

  92. Haynesworth, S. E., Baber, M. A., & Caplan, A. I. (1996). Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. Journal of Cellular Physiology, 166(3), 585–592.

    Article  CAS  PubMed  Google Scholar 

  93. Iso, Y., Spees, J. L., Serrano, C., et al. (2007). Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochemical and Biophysical Research Communications, 354(3), 700–706.

    Article  CAS  PubMed  Google Scholar 

  94. Prockop, D. J. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clinical Pharmacology and Therapeutics, 82(3), 241–243.

    Article  CAS  PubMed  Google Scholar 

  95. Tang, J. M., Wang, J. N., Zhang, L., et al. (2011). VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovascular Research.

  96. Nguyen, B. K., Maltais, S., Perrault, L. P., et al. (2010). Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. Journal of Cardiovascular Translational Research, 3(5), 547–558.

    Article  PubMed  Google Scholar 

  97. Timmers, L., Lim, S. K., Hoefer, I. E., et al. (2011). Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research, 6(3), 206–214.

    Article  PubMed  Google Scholar 

  98. Zisa, D., Shabbir, A., Suzuki, G., & Lee, T. (2009). Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochemical and Biophysical Research Communications, 390(3), 834–838.

    Article  CAS  PubMed  Google Scholar 

  99. Huang, J., Zhang, Z., Guo, J., et al. (2010). Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circulation Research, 106(11), 1753–1762.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, D., Fan, G. C., Zhou, X., et al. (2008). Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 44(2), 281–292.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, M., Mal, N., Kiedrowski, M., et al. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. The FASEB Journal, 21(12), 3197–3207.

    Article  CAS  Google Scholar 

  102. Tang, J., Wang, J., Guo, L., et al. (2010). Mesenchymal stem cells modified with stromal cell-derived factor 1 alpha improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Molecules and Cells, 29(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  103. Duan, H. F., Wu, C. T., Wu, D. L., et al. (2003). Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Molecular Therapy, 8(3), 467–474.

    Article  CAS  PubMed  Google Scholar 

  104. Haider, H., Jiang, S., Idris, N. M., & Ashraf, M. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  105. Liu, X. H., Bai, C. G., Xu, Z. Y., et al. (2008). Therapeutic potential of angiogenin modified mesenchymal stem cells: angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvascular Research, 76(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  106. Gao, F., He, T., Wang, H., et al. (2007). A promising strategy for the treatment of ischemic heart disease: mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Canadian Journal of Cardiology, 23(11), 891–898.

    Article  PubMed  Google Scholar 

  107. Cho, J., Zhai, P., Maejima, Y., & Sadoshima, J. (2011). Myocardial injection with GSK-3beta-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction. Circulation Research, 108(4), 478–489.

    Article  CAS  PubMed  Google Scholar 

  108. Grauss, R. W., van Tuyn, J., Steendijk, P., et al. (2008). Forced myocardin expression enhances the therapeutic effect of human mesenchymal stem cells after transplantation in ischemic mouse hearts. Stem Cells, 26(4), 1083–1093.

    Article  PubMed  Google Scholar 

  109. Alfaro, M. P., Vincent, A., Saraswati, S., et al. (2010). sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. Journal of Biological Chemistry, 285(46), 35645–35653.

    Article  CAS  PubMed  Google Scholar 

  110. Kobayashi, K., Luo, M., Zhang, Y., et al. (2009). Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nature Cell Biology, 11(1), 46–55.

    Article  CAS  PubMed  Google Scholar 

  111. Alfaro, M. P., Pagni, M., Vincent, A., et al. (2008). The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proceedings of the National Academy of Sciences of the United States of America, 105(47), 18366–18371.

    Article  CAS  PubMed  Google Scholar 

  112. Mangi, A. A., Noiseux, N., Kong, D., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  113. Jiang, S., Haider, H., Idris, N. M., Salim, A., & Ashraf, M. (2006). Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circulation Research, 99(7), 776–784.

    Article  CAS  PubMed  Google Scholar 

  114. Shujia, J., Haider, H. K., Idris, N. M., Lu, G., & Ashraf, M. (2008). Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovascular Research, 77(3), 525–533.

    Article  CAS  PubMed  Google Scholar 

  115. Tang, Y. L., Tang, Y., Zhang, Y. C., Qian, K., Shen, L., & Phillips, M. I. (2005). Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. Journal of the American College of Cardiology, 46(7), 1339–1350.

    Article  CAS  PubMed  Google Scholar 

  116. Tsubokawa, T., Yagi, K., Nakanishi, C., et al. (2010). Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 298(5), H1320–H1329.

    Article  CAS  PubMed  Google Scholar 

  117. Zeng, B., Lin, G., Ren, X., Zhang, Y., & Chen, H. (2010). Over-expression of HO-1 on mesenchymal stem cells promotes angiogenesis and improves myocardial function in infarcted myocardium. Journal of Biomedical Science, 17, 80.

    Article  PubMed  CAS  Google Scholar 

  118. Jiang, Y. B., Zhang, X. L., Tang, Y. L., et al. (2011). Effects of heme oxygenase-1 gene modulated mesenchymal stem cells on vasculogenesis in ischemic swine hearts. Chinese Medical Journal, 124(3), 401–407.

    CAS  PubMed  Google Scholar 

  119. Shu, T., Zeng, B., Ren, X., & Li, Y. (2010). HO-1 modified mesenchymal stem cells modulate MMPs/TIMPs system and adverse remodeling in infarcted myocardium. Tissue & Cell, 42(4), 217–222.

    Article  CAS  Google Scholar 

  120. Lim, S. Y., Kim, Y. S., Ahn, Y., et al. (2006). The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovascular Research, 70(3), 530–542.

    Article  CAS  PubMed  Google Scholar 

  121. Yu, Y. S., Shen, Z. Y., Ye, W. X., et al. (2010). AKT-modified autologous intracoronary mesenchymal stem cells prevent remodeling and repair in swine infarcted myocardium. Chinese Medical Journal, 123(13), 1702–1708.

    CAS  PubMed  Google Scholar 

  122. Wang, X., Zhao, T., Huang, W., et al. (2009). Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells, 27(12), 3021–3031.

    CAS  PubMed  Google Scholar 

  123. Eun, L. Y., Song, B. W., Cha, M. J., et al. (2010). Overexpression of phosphoinositide-3-kinase class II alpha enhances mesenchymal stem cell survival in infarcted myocardium. Biochemical and Biophysical Research Communications, 402(2), 272–279.

    Article  CAS  PubMed  Google Scholar 

  124. Li, W., Ma, N., Ong, L. L., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25(8), 2118–2127.

    Article  CAS  PubMed  Google Scholar 

  125. Wang, D., Shen, W., Zhang, F., Chen, M., Chen, H., & Cao, K. (2010). Connexin43 promotes survival of mesenchymal stem cells in ischaemic heart. Cell Biology International, 34(4), 415–423.

    Article  PubMed  CAS  Google Scholar 

  126. Guo, Y., He, J., Wu, J., et al. (2008). Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Archives of Medical Research, 39(2), 179–188.

    Article  CAS  PubMed  Google Scholar 

  127. Deuse, T., Peter, C., Fedak, P. W., et al. (2009). Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation, 120(11 Suppl), S247–S254.

    Article  CAS  PubMed  Google Scholar 

  128. Yang, J., Zhou, W., Zheng, W., et al. (2007). Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology, 107(1), 17–29.

    Article  PubMed  Google Scholar 

  129. Kim, S. H., Moon, H. H., Kim, H. A., Hwang, K. C., Lee, M., & Choi, D. (2011). Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Molecular Therapy, 19(4), 741–750.

    Article  CAS  PubMed  Google Scholar 

  130. Chen, J. J., & Zhou, S. H. (2011). Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK–related pathway. Cardiology Journal. 18(X), 1–X.

    Google Scholar 

  131. Song, S. W., Chang, W., Song, B. W., et al. (2009). Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells, 27(6), 1358–1365.

    Article  CAS  PubMed  Google Scholar 

  132. Song, H., Chang, W., Lim, S., et al. (2007). Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells, 25(6), 1431–1438.

    Article  CAS  PubMed  Google Scholar 

  133. Shibuya, M. (2001). Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Structure and Function, 26(1), 25–35.

    Article  CAS  PubMed  Google Scholar 

  134. Cross, M. J., & Claesson-Welsh, L. (2001). FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends in Pharmacological Sciences, 22(4), 201–207.

    Article  CAS  PubMed  Google Scholar 

  135. Galzie, Z., Kinsella, A. R., & Smith, J. A. (1997). Fibroblast growth factors and their receptors. Biochemical Cell Biology, 75(6), 669–685.

    Article  CAS  Google Scholar 

  136. Le Roith, D. (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. New England Journal of Medicine, 336(9), 633–640.

    Article  PubMed  Google Scholar 

  137. Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A., & Springer, T. A. (1996). A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). The Journal of Experimental Medicine, 184(3), 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  138. Dennler, S., Goumans, M. J., & ten Dijke, P. (2002). Transforming growth factor beta signal transduction. Journal of Leukocyte Biology, 71(5), 731–740.

    CAS  PubMed  Google Scholar 

  139. Massague, J. (1998). TGF-beta signal transduction. Annual Review of Biochemistry, 67, 753–791.

    Article  CAS  PubMed  Google Scholar 

  140. Van Snick, J. (1990). Interleukin-6: an overview. Annual Review of Immunology, 8, 253–278.

    Article  PubMed  Google Scholar 

  141. Zarnegar, R., & Michalopoulos, G. K. (1995). The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. The Journal of Cell Biology, 129(5), 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  142. Tallquist, M., & Kazlauskas, A. (2004). PDGF signaling in cells and mice. Cytokine & Growth Factor Reviews, 15(4), 205–213.

    Article  CAS  Google Scholar 

  143. Koblizek, T. I., Weiss, C., Yancopoulos, G. D., Deutsch, U., & Risau, W. (1998). Angiopoietin-1 induces sprouting angiogenesis in vitro. Current Biology, 8(9), 529–532.

    Article  CAS  PubMed  Google Scholar 

  144. Cheng, Z., Ou, L., Zhou, X., et al. (2008). Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Molecular Therapy, 16(3), 571–579.

    Article  CAS  PubMed  Google Scholar 

  145. Song, H., Kwon, K., Lim, S., et al. (2005). Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Molecules and Cells, 19(3), 402–407.

    CAS  PubMed  Google Scholar 

  146. Li, H., Zuo, S., He, Z., et al. (2010). Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. American Journal of Physiology—Heart and Circulatory Physiology, 299(6), H1772–H1781.

    Article  CAS  PubMed  Google Scholar 

  147. Fan, L., Lin, C., Zhuo, S., et al. (2009). Transplantation with survivin-engineered mesenchymal stem cells results in better prognosis in a rat model of myocardial infarction. European Journal of Heart Failure, 11(11), 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  148. Jo, J., Nagaya, N., Miyahara, Y., et al. (2007). Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Engineering, 13(2), 313–322.

    Article  CAS  PubMed  Google Scholar 

  149. Sun, L., Cui, M., Wang, Z., et al. (2007). Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochemical and Biophysical Research Communications, 357(3), 779–784.

    Article  CAS  PubMed  Google Scholar 

  150. Huang, S. D., Lu, F. L., Xu, X. Y., et al. (2006). Transplantation of angiogenin-overexpressing mesenchymal stem cells synergistically augments cardiac function in a porcine model of chronic ischemia. The Journal of Thoracic and Cardiovascular Surgery, 132(6), 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  151. Wang, M., Tan, J., Wang, Y., Meldrum, K. K., Dinarello, C. A., & Meldrum, D. R. (2009). IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17499–17504.

    Article  CAS  PubMed  Google Scholar 

  152. Li, Y., Hiroi, Y., Ngoy, S., et al. (2011). Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation, 123(8), 866–876.

    Article  CAS  PubMed  Google Scholar 

  153. Lian, W. S., Cheng, W. T., Cheng, C. C., et al. (2011). In vivo therapy of myocardial infarction with mesenchymal stem cells modified with prostaglandin I synthase gene improves cardiac performance in mice. Life Sciences, 88(9–10), 455–464.

    Article  CAS  PubMed  Google Scholar 

  154. Bao, C., Guo, J., Lin, G., Hu, M., & Hu, Z. (2008). TNFR gene-modified mesenchymal stem cells attenuate inflammation and cardiac dysfunction following MI. Scandinavian Cardiovascular Journal, 42(1), 56–62.

    Article  CAS  PubMed  Google Scholar 

  155. Bao, C., Guo, J., Zheng, M., Chen, Y., Lin, G., & Hu, M. (2010). Enhancement of the survival of engrafted mesenchymal stem cells in the ischemic heart by TNFR gene transfection. Biochemical Cell Biology, 88(4), 629–634.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Instituto de Salud Carlos III (CP08/80 and PI07/784) and from Obra Social Kutxa. P. Sepúlveda is the recipient of a contract from the Instituto de Salud Carlos III. E. Samper is a predoctoral fellow from the Centro de Investigación Príncipe Felipe.

Conflicts of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sepúlveda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samper, E., Diez-Juan, A., Montero, J.A. et al. Cardiac Cell Therapy: Boosting Mesenchymal Stem Cells Effects. Stem Cell Rev and Rep 9, 266–280 (2013). https://doi.org/10.1007/s12015-012-9353-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9353-z

Keywords

Navigation