Skip to main content

Advertisement

Log in

Endothelial Progenitor Cells: Current Issues on Characterization and Challenging Clinical Applications

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Since their discovery about a decade ago, endothelial precursor cells (EPC) have been subjected to intensive investigation. The vision to stimulate respectively suppress a key player of vasculogenesis opened a plethora of clinical applications. However, as research opened deeper insights into EPC biology, the enthusiasm of the pioneer era has been damped in favour of a more critical view. Recent research is focused on three major questions: The fact that the number of EPC in peripheral blood is exceedingly low has consistently raised suspicion whether these cells can plausibly have an impact on physiological or pathophysiological processes. Secondly, whereas the key role of EPC in tumourigenesis has been strongly emphasized by various groups in the past, recent publications are challenging this hypothesis. Thirdly, the lack of consensus on EPC-defining markers and standardized protocols for their detection have repeatedly led to difficulties concerning comparability between papers. In this current review, an overview on recent findings on EPC biology is given, their challenging clinical implications are discussed and the perplexity underlying the current controversial debate is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rumpold, H., Wolf, D., Koeck, R., & Gunsilius, E. (2004). Endothelial progenitor cells: A source for therapeutic vasculogenesis? Journal of Cellular and Molecular Medicine, 8(4), 509–518.

    Article  PubMed  Google Scholar 

  2. Young, P. P., Vaughan, D. E., & Hatzopoulos, A. K. (2007). Biologic properties of endothelial progenitor cells and their potential for cell therapy. Progress in Cardiovascular Diseases, 49(6), 421–429.

    Article  PubMed  CAS  Google Scholar 

  3. Sata, M., Fukuda, D., Tanaka, K., Kaneda, Y., Yashiro, H., & Shirakawa, I. (2005). The role of circulating precursors in vascular repair and lesion formation. Journal of Cellular and Molecular Medicine, 9(3), 557–568.

    Article  PubMed  Google Scholar 

  4. Iwami, Y., Masuda, H., & Asahara, T. (2004). Endothelial progenitor cells: Past, state of the art, and future. Journal of Cellular and Molecular Medicine, 8(4), 488–497.

    Article  PubMed  Google Scholar 

  5. Kovacic, J. C., Moore, J., Herbert, A., Ma, D., Boehm, M., & Graham, R. M. (2008). Endothelial progenitor cells, angioblasts, and angiogenesis–old terms reconsidered from a current perspective. Trends in Cardiovascular Medicine, 18(2), 45–51.

    Article  PubMed  CAS  Google Scholar 

  6. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der, Z. R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.

    Article  PubMed  CAS  Google Scholar 

  7. Gill, M., Dias, S., Hattori, K., Rivera, M. L., Hicklin, D., Witte, L., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88(2), 167–174.

    Article  PubMed  CAS  Google Scholar 

  8. Khoo, C. P., Pozzilli, P., & Alison, M. R. (2008). Endothelial progenitor cells and their potential therapeutic applications. Regenerative Medicine, 3(6), 863–876.

    Article  PubMed  CAS  Google Scholar 

  9. Rafii, S., Lyden, D., Benezra, R., Hattori, K., & Heissig, B. (2002). Vascular and haematopoietic stem cells: Novel targets for anti-angiogenesis therapy? Nature Reviews. Cancer, 2(11), 826–835.

    Article  PubMed  CAS  Google Scholar 

  10. Dome, B., Dobos, J., Tovari, J., Paku, S., Kovacs, G., Ostoros, G., et al. (2008). Circulating bone marrow-derived endothelial progenitor cells: Characterization, mobilization, and therapeutic considerations in malignant disease. Cytometry. Part A, 73(3), 186–193.

    Article  Google Scholar 

  11. Miller-Kasprzak, E., & Jagodzinski, P. P. (2007). Endothelial progenitor cells as a new agent contributing to vascular repair. Archivum Immunologiae et Therapiae Experimentalis, 55(4), 247–259.

    Article  PubMed  CAS  Google Scholar 

  12. Rafii, D. C., Psaila, B., Butler, J., Jin, D. K., & Lyden, D. (2008). Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 217–222.

    Article  PubMed  CAS  Google Scholar 

  13. Brixius, K., Funcke, F., Graf, C., & Bloch, W. (2006). Endothelial progenitor cells: A new target for the prevention of cardiovascular diseases. European Journal of Cardiovascular Prevention and Rehabilitation, 13(5), 705–710.

    Article  PubMed  Google Scholar 

  14. Du, R., Lu, K. V., Petritsch, C., Liu, P., Ganss, R., Passegue, E., et al. (2008). HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 13(3), 206–220.

    Article  PubMed  CAS  Google Scholar 

  15. Hristov, M., Erl, W., & Weber, P. C. (2003). Endothelial progenitor cells: Mobilization, differentiation, and homing. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(7), 1185–1189.

    Article  PubMed  CAS  Google Scholar 

  16. Werner, N., & Nickenig, G. (2006). Influence of cardiovascular risk factors on endothelial progenitor cells: Limitations for therapy? Arteriosclerosis, Thrombosis, and Vascular Biology, 26(2), 257–266.

    Article  PubMed  CAS  Google Scholar 

  17. Rosamond, W., Flegal, K., Furie, K., Go, A., Greenlund, K., Haase, N., et al. (2008). Heart disease and stroke statistics–2008 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 117(4), e25–e146.

    Article  PubMed  Google Scholar 

  18. Tongers, J., & Losordo, D. W. (2007). Frontiers in nephrology: The evolving therapeutic applications of endothelial progenitor cells. Journal of the American Society of Nephrology, 18(11), 2843–2852.

    Article  PubMed  Google Scholar 

  19. Roberts, N., Jahangiri, M., & Xu, Q. (2005). Progenitor cells in vascular disease. Journal of Cellular and Molecular Medicine, 9(3), 583–591.

    Article  PubMed  Google Scholar 

  20. Goon, P. K., Lip, G. Y., Boos, C. J., Stonelake, P. S., & Blann, A. D. (2006). Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia, 8(2), 79–88.

    Article  PubMed  CAS  Google Scholar 

  21. Naumov, G. N., Folkman, J., Straume, O., & Akslen, L. A. (2008). Tumor-vascular interactions and tumor dormancy. APMIS, 116(7–8), 569–585.

    Article  PubMed  CAS  Google Scholar 

  22. Ergun, S., Hohn, H. P., Kilic, N., Singer, B. B., & Tilki, D. (2008). Endothelial and hematopoietic progenitor cells (EPCs and HPCs): Hand in hand fate determining partners for cancer cells. Stem Cell Reviews, 4(3), 169–177.

    Article  PubMed  CAS  Google Scholar 

  23. Ribatti, D. (2004). The involvement of endothelial progenitor cells in tumor angiogenesis. Journal of Cellular and Molecular Medicine, 8(3), 294–300.

    Article  PubMed  CAS  Google Scholar 

  24. Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95(4), 343–353.

    Article  PubMed  CAS  Google Scholar 

  25. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.

    PubMed  CAS  Google Scholar 

  26. Case, J., Mead, L. E., Bessler, W. K., Prater, D., White, H. A., Saadatzadeh, M. R., et al. (2007). Human CD34 + AC133 + VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Experimental Hematology, 35(7), 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  27. Aoki, M., Yasutake, M., & Murohara, T. (2004). Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device. Stem Cells, 22(6), 994–1002.

    Article  PubMed  CAS  Google Scholar 

  28. Navarro-Sobrino, M., Rosell, A., Hernandez-Guillamon, M., Penalba, A., Ribo, M., Alvarez-Sabin, J., et al. (2010). Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular Research, 80(3), 317–323.

    Article  PubMed  CAS  Google Scholar 

  29. Rae, P. C., Kelly, R. D., Egginton, S., & St John, J. C. (2011). Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vascular Cell, 3, 11.

    Article  PubMed  CAS  Google Scholar 

  30. Bertolini, F., Shaked, Y., Mancuso, P., & Kerbel, R. S. (2006). The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nature Reviews. Cancer, 6(11), 835–845.

    Article  PubMed  CAS  Google Scholar 

  31. Huang, E. H., & Wicha, M. S. (2008). Colon cancer stem cells: Implications for prevention and therapy. Trends in Molecular Medicine, 14(11), 503–509.

    Article  PubMed  CAS  Google Scholar 

  32. Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.

    PubMed  CAS  Google Scholar 

  33. Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., et al. (1997). A novel five-transmembrane hematopoietic stem cell antigen: Isolation, characterization, and molecular cloning. Blood, 90(12), 5013–5021.

    PubMed  CAS  Google Scholar 

  34. Ribatti, D. (2007). The discovery of endothelial progenitor cells. An historical review. Leukemia Research, 31(4), 439–444.

    Article  PubMed  CAS  Google Scholar 

  35. Reinders, M. E., Rabelink, T. J., & Briscoe, D. M. (2006). Angiogenesis and endothelial cell repair in renal disease and allograft rejection. Journal of the American Society of Nephrology, 17(4), 932–942.

    Article  PubMed  CAS  Google Scholar 

  36. Faltas, B., Zeidan, A., Peters, K., Das, A., Joudeh, J., Navaraj, A., et al. (2011). Identifying circulating tumor stem cells that matter: The key to prognostication and therapeutic targeting. Journal of Clinical Oncology, 29(21), 2946–2947.

    Article  PubMed  Google Scholar 

  37. Florek, M., Haase, M., Marzesco, A. M., Freund, D., Ehninger, G., Huttner, W. B., et al. (2005). Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell and Tissue Research, 319(1), 15–26.

    Article  PubMed  CAS  Google Scholar 

  38. Iinuma, H., Watanabe, T., Mimori, K., Adachi, M., Hayashi, N., Tamura, J., et al. (2011). Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes’ stage B and C colorectal cancer. Journal of Clinical Oncology, 29(12), 1547–1555.

    Article  PubMed  Google Scholar 

  39. Sullivan, J. P., Spinola, M., Dodge, M., Raso, M. G., Behrens, C., Gao, B., et al. (2010). Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Research, 70(23), 9937–9948.

    Article  PubMed  CAS  Google Scholar 

  40. Matsumoto, T., & Mugishima, H. (2006). Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. Journal of Atherosclerosis and Thrombosis, 13(3), 130–135.

    Article  PubMed  CAS  Google Scholar 

  41. Ahlbrecht, K., Schmitz, J., Seay, U., Schwarz, C., Mittnacht-Kraus, R., Gaumann, A., et al. (2008). Spatiotemporal expression of flk-1 in pulmonary epithelial cells during lung development. American Journal of Respiratory Cell and Molecular Biology, 39(2), 163–170.

    Article  PubMed  CAS  Google Scholar 

  42. Matsumoto, T., & Claesson-Welsh, L. (2001). VEGF receptor signal transduction. Science’s STKE, 2001(112), RE21.

    PubMed  CAS  Google Scholar 

  43. Shibuya, M. (2006). Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. Journal of Biochemistry and Molecular Biology, 39(5), 469–478.

    Article  PubMed  CAS  Google Scholar 

  44. Quirici, N., Soligo, D., Caneva, L., Servida, F., Bossolasco, P., & Deliliers, G. L. (2001). Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. British Journal of Haematology, 115(1), 186–194.

    Article  PubMed  CAS  Google Scholar 

  45. Kaushal, S., Amiel, G. E., Guleserian, K. J., Shapira, O. M., Perry, T., Sutherland, F. W., et al. (2001). Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature Medicine, 7(9), 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  46. Mohle, R., Bautz, F., Rafii, S., Moore, M. A., Brugger, W., & Kanz, L. (1998). The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood, 91(12), 4523–4530.

    PubMed  CAS  Google Scholar 

  47. Yarden, Y., Kuang, W. J., Yang-Feng, T., Coussens, L., Munemitsu, S., Dull, T. J., et al. (1987). Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO Journal, 6(11), 3341–3351.

    PubMed  CAS  Google Scholar 

  48. Sharma, S., Gurudutta, G. U., Satija, N. K., Pati, S., Afrin, F., Gupta, P., et al. (2006). Stem cell c-KIT and HOXB4 genes: Critical roles and mechanisms in self-renewal, proliferation, and differentiation. Stem Cells and Development, 15(6), 755–778.

    Article  PubMed  CAS  Google Scholar 

  49. Baggiolini, M. (2001). Chemokines in pathology and medicine. Journal of Internal Medicine, 250(2), 91–104.

    Article  PubMed  CAS  Google Scholar 

  50. Ashman, L. K. (1999). The biology of stem cell factor and its receptor C-kit. The International Journal of Biochemistry & Cell Biology, 31(10), 1037–1051.

    Article  CAS  Google Scholar 

  51. Sharpe, E. E., III, Teleron, A. A., Li, B., Price, J., Sands, M. S., Alford, K., et al. (2006). The origin and in vivo significance of murine and human culture-expanded endothelial progenitor cells. American Journal of Pathology, 168(5), 1710–1721.

    Article  PubMed  CAS  Google Scholar 

  52. Hur, J., Yoon, C. H., Kim, H. S., Choi, J. H., Kang, H. J., Hwang, K. K., et al. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(2), 288–293.

    Article  PubMed  CAS  Google Scholar 

  53. Duan, H. X., Cheng, L. M., Wang, J., Hu, L. S., & Lu, G. X. (2006). Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biology International, 30(12), 1018–1027.

    Article  PubMed  CAS  Google Scholar 

  54. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.

    Article  PubMed  CAS  Google Scholar 

  55. Kleinman, M. E., Greives, M. R., Churgin, S. S., Blechman, K. M., Chang, E. I., Ceradini, D. J., et al. (2007). Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(12), 2664–2670.

    Article  PubMed  CAS  Google Scholar 

  56. Rabelink, T. J., de Boer, H. C., de Koning, E. J., & van Zonneveld, A. J. (2004). Endothelial progenitor cells: More than an inflammatory response? Arteriosclerosis, Thrombosis, and Vascular Biology, 24(5), 834–838.

    Article  PubMed  CAS  Google Scholar 

  57. Safran, M., & Kaelin, W. G., Jr. (2003). HIF hydroxylation and the mammalian oxygen-sensing pathway. The Journal of Clinical Investigation, 111(6), 779–783.

    PubMed  CAS  Google Scholar 

  58. Hoenig, M. R., Bianchi, C., & Sellke, F. W. (2008). Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: A unifying hypothesis. Current Drug Targets, 9(5), 422–435.

    Article  PubMed  CAS  Google Scholar 

  59. Luttun, A., Carmeliet, G., & Carmeliet, P. (2002). Vascular progenitors: From biology to treatment. Trends in Cardiovascular Medicine, 12(2), 88–96.

    Article  PubMed  CAS  Google Scholar 

  60. Fox, A., Smythe, J., Fisher, N., Tyler, M. P., McGrouther, D. A., Watt, S. M., et al. (2008). Mobilization of endothelial progenitor cells into the circulation in burned patients. British Journal of Surgery, 95(2), 244–251.

    Article  PubMed  CAS  Google Scholar 

  61. Heeschen, C., Aicher, A., Lehmann, R., Fichtlscherer, S., Vasa, M., Urbich, C., et al. (2003). Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood, 102(4), 1340–1346.

    Article  PubMed  CAS  Google Scholar 

  62. Bahlmann, F. H., De Groot, K., Spandau, J. M., Landry, A. L., Hertel, B., Duckert, T., et al. (2004). Erythropoietin regulates endothelial progenitor cells. Blood, 103(3), 921–926.

    Article  PubMed  CAS  Google Scholar 

  63. Ito, H., Rovira, I. I., Bloom, M. L., Takeda, K., Ferrans, V. J., Quyyumi, A. A., et al. (1999). Endothelial progenitor cells as putative targets for angiostatin. Cancer Research, 59(23), 5875–5877.

    PubMed  CAS  Google Scholar 

  64. Urbich, C., Aicher, A., Heeschen, C., Dernbach, E., Hofmann, W. K., Zeiher, A. M., et al. (2005). Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. Journal of Molecular and Cellular Cardiology, 39(5), 733–742.

    Article  PubMed  CAS  Google Scholar 

  65. Westerweel, P. E., Visseren, F. L., Hajer, G. R., Olijhoek, J. K., Hoefer, I. E., de Bree, P., et al. (2008). Endothelial progenitor cell levels in obese men with the metabolic syndrome and the effect of simvastatin monotherapy vs. simvastatin/ezetimibe combination therapy. European Heart Journal, 29(22), 2808–2817.

    Article  PubMed  CAS  Google Scholar 

  66. Laufs, U., Werner, N., Link, A., Endres, M., Wassmann, S., Jurgens, K., et al. (2004). Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation, 109(2), 220–226.

    Article  PubMed  CAS  Google Scholar 

  67. Fadini, G. P., de Kreutzenberg, S., Albiero, M., Coracina, A., Pagnin, E., Baesso, I., et al. (2008). Gender differences in endothelial progenitor cells and cardiovascular risk profile: The role of female estrogens. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(5), 997–1004.

    Article  PubMed  CAS  Google Scholar 

  68. Papayannopoulou, T. (2004). Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood, 103(5), 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  69. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348(7), 593–600.

    Article  PubMed  Google Scholar 

  70. Wilson, P. W., Castelli, W. P., & Kannel, W. B. (1987). Coronary risk prediction in adults (the Framingham Heart Study). The American Journal of Cardiology, 59(14), 91G–94G.

    Article  PubMed  CAS  Google Scholar 

  71. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3422–3427.

    PubMed  CAS  Google Scholar 

  72. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436.

    Article  PubMed  CAS  Google Scholar 

  73. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92(2), 362–367.

    PubMed  CAS  Google Scholar 

  74. Ohtsuka, M., Takano, H., Zou, Y., Toko, H., Akazawa, H., Qin, Y., et al. (2004). Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. The FASEB Journal, 18(7), 851–853.

    CAS  Google Scholar 

  75. Ince, H., Petzsch, M., Kleine, H. D., Eckard, H., Rehders, T., Burska, D., et al. (2005). Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: Final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation, 112(9 Suppl), I73–I80.

    PubMed  Google Scholar 

  76. Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.

    Article  PubMed  Google Scholar 

  77. Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106(24), 3009–3017.

    Article  PubMed  Google Scholar 

  78. Fernandez-Aviles, F., San Roman, J. A., Garcia-Frade, J., Fernandez, M. E., Penarrubia, M. J., de la, F. L., et al. (2004). Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circulation Research, 95(7), 742–748.

    Article  PubMed  CAS  Google Scholar 

  79. Schachinger, V., Assmus, B., Britten, M. B., Honold, J., Lehmann, R., Teupe, C., et al. (2004). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial. Journal of the American College of Cardiology, 44(8), 1690–1699.

    Article  PubMed  Google Scholar 

  80. Leistner, D. M., Fischer-Rasokat, U., Honold, J., Seeger, F. H., Schachinger, V., Lehmann, R. et al. (2011). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): Final 5-year results suggest long-term safety and efficacy. Clinical Research in Cardiology.

  81. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–148.

    Article  PubMed  Google Scholar 

  82. Wei, H. M., Wong, P., Hsu, L. F., & Shim, W. (2009). Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: Current status and future directions. Singapore Medical Journal, 50(10), 935–942.

    PubMed  CAS  Google Scholar 

  83. Tse, H. F., Kwong, Y. L., Chan, J. K., Lo, G., Ho, C. L., & Lau, C. P. (2003). Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 361(9351), 47–49.

    Article  PubMed  Google Scholar 

  84. Hamano, K., Nishida, M., Hirata, K., Mikamo, A., Li, T. S., Harada, M., et al. (2001). Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: Clinical trial and preliminary results. Japanese Circulation Journal, 65(9), 845–847.

    Article  PubMed  CAS  Google Scholar 

  85. Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Mesquita, C. T., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.

    Article  PubMed  Google Scholar 

  86. Hattori, R., & Matsubara, H. (2004). Therapeutic angiogenesis for severe ischemic heart diseases by autologous bone marrow cells transplantation. Molecular and Cellular Biochemistry, 264(1–2), 151–155.

    Article  PubMed  CAS  Google Scholar 

  87. Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., et al. (2002). Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet, 360(9331), 427–435.

    Article  PubMed  Google Scholar 

  88. Matoba, S., Tatsumi, T., Murohara, T., Imaizumi, T., Katsuda, Y., Ito, M., et al. (2008). Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. American Heart Journal, 156(5), 1010–1018.

    Article  PubMed  Google Scholar 

  89. Fadini, G. P., Avogaro, A., Ferraccioli, G., & Agostini, C. (2010). Endothelial progenitors in pulmonary hypertension: New pathophysiology and therapeutic implications. European Respiratory Journal, 35(2), 418–425.

    Article  PubMed  CAS  Google Scholar 

  90. Fukumoto, Y., & Shimokawa, H. (2011). Recent progress in the management of pulmonary hypertension. Circulation Journal, 75(8), 1801–1810.

    Article  PubMed  Google Scholar 

  91. Diller, G. P., van Eijl, S., Okonko, D. O., Howard, L. S., Ali, O., Thum, T., et al. (2008). Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation, 117(23), 3020–3030.

    Article  PubMed  CAS  Google Scholar 

  92. Fadini, G. P., Schiavon, M., Rea, F., Avogaro, A., & Agostini, C. (2007). Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 176(7), 724–725.

    PubMed  Google Scholar 

  93. Nathan, S. D., Noble, P. W., & Tuder, R. M. (2007). Idiopathic pulmonary fibrosis and pulmonary hypertension: Connecting the dots. American Journal of Respiratory and Critical Care Medicine, 175(9), 875–880.

    Article  PubMed  Google Scholar 

  94. Thebaud, B., & Abman, S. H. (2007). Bronchopulmonary dysplasia: Where have all the vessels gone? roles of angiogenic growth factors in chronic lung disease. American Journal of Respiratory and Critical Care Medicine, 175(10), 978–985.

    Article  PubMed  CAS  Google Scholar 

  95. Zhao, Y. D., Courtman, D. W., Deng, Y., Kugathasan, L., Zhang, Q., & Stewart, D. J. (2005). Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: Efficacy of combined cell and eNOS gene therapy in established disease. Circulation Research, 96(4), 442–450.

    Article  PubMed  CAS  Google Scholar 

  96. Yip, H. K., Chang, L. T., Sun, C. K., Sheu, J. J., Chiang, C. H., Youssef, A. A., et al. (2008). Autologous transplantation of bone marrow-derived endothelial progenitor cells attenuates monocrotaline-induced pulmonary arterial hypertension in rats. Critical Care Medicine, 36(3), 873–880.

    Article  PubMed  Google Scholar 

  97. Takahashi, M., Nakamura, T., Toba, T., Kajiwara, N., Kato, H., & Shimizu, Y. (2004). Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Engineering, 10(5–6), 771–779.

    Article  PubMed  Google Scholar 

  98. Wang, X. X., Zhang, F. R., Shang, Y. P., Zhu, J. H., Xie, X. D., Tao, Q. M., et al. (2007). Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: A pilot randomized controlled trial. Journal of the American College of Cardiology, 49(14), 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  99. Shaked, Y., Henke, E., Roodhart, J. M., Mancuso, P., Langenberg, M. H., Colleoni, M., et al. (2008). Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: Implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell, 14(3), 263–273.

    Article  PubMed  CAS  Google Scholar 

  100. Toshner, M., Voswinckel, R., Southwood, M., Al Lamki, R., Howard, L. S., Marchesan, D., et al. (2009). Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 180(8), 780–787.

    Article  PubMed  Google Scholar 

  101. Marsboom, G., Pokreisz, P., Gheysens, O., Vermeersch, P., Gillijns, H., Pellens, M., et al. (2008). Sustained endothelial progenitor cell dysfunction after chronic hypoxia-induced pulmonary hypertension. Stem Cells, 26(4), 1017–1026.

    Article  PubMed  Google Scholar 

  102. Sala, E., Villena, C., Balaguer, C., Rios, A., Fernandez-Palomeque, C., Cosio, B. G., et al. (2010). Abnormal levels of circulating endothelial progenitor cells during exacerbations of COPD. Lung, 188(4), 331–338.

    Article  PubMed  Google Scholar 

  103. Valipour, A., Schreder, M., Wolzt, M., Saliba, S., Kapiotis, S., Eickhoff, P., et al. (2008). Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease. Clinical Science (London, England), 115(7), 225–232.

    Article  CAS  Google Scholar 

  104. Takahashi, T., Suzuki, S., Kubo, H., Yamaya, M., Kurosawa, S., & Kato, M. (2011). Impaired endothelial progenitor cell mobilization and colony-forming capacity in chronic obstructive pulmonary disease. Respirology, 16(4), 680–687.

    Article  PubMed  Google Scholar 

  105. Yamada, M., Kubo, H., Ishizawa, K., Kobayashi, S., Shinkawa, M., & Sasaki, H. (2005). Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: Evidence that bone marrow derived cells contribute to lung repair. Thorax, 60(5), 410–413.

    Article  PubMed  CAS  Google Scholar 

  106. Burnham, E. L., Taylor, W. R., Quyyumi, A. A., Rojas, M., Brigham, K. L., & Moss, M. (2005). Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. American Journal of Respiratory and Critical Care Medicine, 172(7), 854–860.

    Article  PubMed  Google Scholar 

  107. Balasubramaniam, V., Mervis, C. F., Maxey, A. M., Markham, N. E., & Abman, S. H. (2007). Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: Implications for the pathogenesis of bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(5), L1073–L1084.

    Article  PubMed  CAS  Google Scholar 

  108. Borghesi, A., Massa, M., Campanelli, R., Bollani, L., Tzialla, C., Figar, T. A., et al. (2009). Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine, 180(6), 540–546.

    Article  PubMed  Google Scholar 

  109. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Medicine, 7(11), 1194–1201.

    Article  PubMed  CAS  Google Scholar 

  110. Peters, B. A., Diaz, L. A., Polyak, K., Meszler, L., Romans, K., Guinan, E. C., et al. (2005). Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nature Medicine, 11(3), 261–262.

    Article  PubMed  CAS  Google Scholar 

  111. Mancuso, P., Burlini, A., Pruneri, G., Goldhirsch, A., Martinelli, G., & Bertolini, F. (2001). Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood, 97(11), 3658–3661.

    Article  PubMed  CAS  Google Scholar 

  112. Kerbel, R. S. (2008). Tumor angiogenesis. The New England Journal of Medicine, 358(19), 2039–2049.

    Article  PubMed  CAS  Google Scholar 

  113. Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Paku, S., et al. (2006). Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Research, 66(14), 7341–7347.

    Article  PubMed  CAS  Google Scholar 

  114. Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews. Cancer, 8(8), 592–603.

    Article  PubMed  CAS  Google Scholar 

  115. Shaked, Y., Ciarrocchi, A., Franco, M., Lee, C. R., Man, S., Cheung, A. M., et al. (2006). Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science, 313(5794), 1785–1787.

    Article  PubMed  CAS  Google Scholar 

  116. Shirakawa, K., Shibuya, M., Heike, Y., Takashima, S., Watanabe, I., Konishi, F., et al. (2002). Tumor-infiltrating endothelial cells and endothelial precursor cells in inflammatory breast cancer. International Journal of Cancer, 99(3), 344–351.

    Article  CAS  Google Scholar 

  117. Sussman, L. K., Upalakalin, J. N., Roberts, M. J., Kocher, O., & Benjamin, L. E. (2003). Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma. Cancer Biology & Therapy, 2(3), 255–256.

    Article  CAS  Google Scholar 

  118. Yu, D., Sun, X., Qiu, Y., Zhou, J., Wu, Y., Zhuang, L., et al. (2007). Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma. Clinical Cancer Research, 13(13), 3814–3824.

    Article  PubMed  CAS  Google Scholar 

  119. Gunsilius, E., Tschmelitsch, J., Eberwein, M., Schwelberger, H., Spizzo, G., Kahler, C. M., et al. (2002). In vivo release of vascular endothelial growth factor from colorectal carcinomas. Oncology, 62(4), 313–317.

    Article  PubMed  CAS  Google Scholar 

  120. Zheng, P. P., Hop, W. C., Luider, T. M., Sillevis Smitt, P. A., & Kros, J. M. (2007). Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Annals of Neurology, 62(1), 40–48.

    Article  PubMed  CAS  Google Scholar 

  121. Igreja, C., Courinha, M., Cachaco, A. S., Pereira, T., Cabecadas, J., da Silva, M. G., et al. (2007). Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica, 92(4), 469–477.

    Article  PubMed  Google Scholar 

  122. Zhang, H., Vakil, V., Braunstein, M., Smith, E. L., Maroney, J., Chen, L., et al. (2005). Circulating endothelial progenitor cells in multiple myeloma: Implications and significance. Blood, 105(8), 3286–3294.

    Article  PubMed  CAS  Google Scholar 

  123. Rigolin, G. M., Mauro, E., Ciccone, M., Fraulini, C., Sofritti, O., Castoldi, G., et al. (2007). Neoplastic circulating endothelial-like cells in patients with acute myeloid leukaemia. European Journal of Haematology, 78(5), 365–373.

    Article  PubMed  Google Scholar 

  124. Wierzbowska, A., Robak, T., Krawczynska, A., Wrzesien-Kus, A., Pluta, A., Cebula, B., et al. (2005). Circulating endothelial cells in patients with acute myeloid leukemia. European Journal of Haematology, 75(6), 492–497.

    Article  PubMed  Google Scholar 

  125. Auberger, J., Dlaska, M., Auberger, T., Gunsilius, E., Woll, E., & Hilbe, W. (2005). Increased CD133 expression in bone marrow of myelodysplastic syndromes. Leukemia Research, 29(9), 995–1001.

    Article  PubMed  CAS  Google Scholar 

  126. Gao, D., Nolan, D. J., Mellick, A. S., Bambino, K., McDonnell, K., & Mittal, V. (2008). Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science, 319(5860), 195–198.

    Article  PubMed  CAS  Google Scholar 

  127. Fontanini, G., Lucchi, M., Vignati, S., Mussi, A., Ciardiello, F., De Laurentiis, M., et al. (1997). Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: A prospective study. Journal of the National Cancer Institute, 89(12), 881–886.

    Article  PubMed  CAS  Google Scholar 

  128. Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. The New England Journal of Medicine, 355(24), 2542–2550.

    Article  PubMed  CAS  Google Scholar 

  129. Reck, M., von Pawel, J., Zatloukal, P., Ramlau, R., Gorbounova, V., Hirsh, V., et al. (2009). Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. Journal of Clinical Oncology, 27(8), 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  130. Hilbe, W., Dirnhofer, S., Oberwasserlechner, F., Schmid, T., Gunsilius, E., Hilbe, G., et al. (2004). CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. Journal of Clinical Pathology, 57(9), 965–969.

    Article  PubMed  CAS  Google Scholar 

  131. Pircher, A., Kahler, C. M., Skvortsov, S., Dlaska, M., Kawaguchi, G., Schmid, T., et al. (2008). Increased numbers of endothelial progenitor cells in peripheral blood and tumor specimens in non-small cell lung cancer: A methodological challenge and an ongoing debate on the clinical relevance. Oncology Reports, 19(2), 345–352.

    PubMed  Google Scholar 

  132. Bogos, K., Renyi-Vamos, F., Dobos, J., Kenessey, I., Tovari, J., Timar, J., et al. (2009). High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer. Clinical Cancer Research, 15(5), 1741–1746.

    Article  PubMed  CAS  Google Scholar 

  133. Furstenberger, G., von Moos, R., Lucas, R., Thurlimann, B., Senn, H. J., Hamacher, J., et al. (2006). Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. British Journal of Cancer, 94(4), 524–531.

    Article  PubMed  CAS  Google Scholar 

  134. Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh, M., Perez, E. A., et al. (2007). Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. The New England Journal of Medicine, 357(26), 2666–2676.

    Article  PubMed  CAS  Google Scholar 

  135. Goodale, D., Phay, C., Brown, W., Gray-Statchuk, L., Furlong, P., Lock, M., et al. (2009). Flow cytometric assessment of monocyte activation markers and circulating endothelial cells in patients with localized or metastatic breast cancer. Cytometry. Part B, Clinical Cytometry, 76(2), 107–117.

    Article  PubMed  Google Scholar 

  136. Goon, P. K., Lip, G. Y., Stonelake, P. S., & Blann, A. D. (2009). Circulating endothelial cells and circulating progenitor cells in breast cancer: Relationship to endothelial damage/dysfunction/apoptosis, clinicopathologic factors, and the Nottingham Prognostic Index. Neoplasia, 11(8), 771–779.

    PubMed  CAS  Google Scholar 

  137. Naik, R. P., Jin, D., Chuang, E., Gold, E. G., Tousimis, E. A., Moore, A. L., et al. (2008). Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Research and Treatment, 107(1), 133–138.

    Article  PubMed  Google Scholar 

  138. Ho, J. W., Pang, R. W., Lau, C., Sun, C. K., Yu, W. C., Fan, S. T., et al. (2006). Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology, 44(4), 836–843.

    Article  PubMed  CAS  Google Scholar 

  139. Jakob, C., Sterz, J., Zavrski, I., Heider, U., Kleeberg, L., Fleissner, C., et al. (2006). Angiogenesis in multiple myeloma. European Journal of Cancer, 42(11), 1581–1590.

    Article  PubMed  CAS  Google Scholar 

  140. Braunstein, M., Ozcelik, T., Bagislar, S., Vakil, V., Smith, E. L., Dai, K., et al. (2006). Endothelial progenitor cells display clonal restriction in multiple myeloma. BMC Cancer, 6, 161.

    Article  PubMed  Google Scholar 

  141. Purhonen, S., Palm, J., Rossi, D., Kaskenpaa, N., Rajantie, I., Yla-Herttuala, S., et al. (2008). Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6620–6625.

    Article  PubMed  CAS  Google Scholar 

  142. Kerbel, R. S., Benezra, R., Lyden, D. C., Hattori, K., Heissig, B., Nolan, D. J., et al. (2008). Endothelial progenitor cells are cellular hubs essential for neoangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proceedings of the National Academy of Sciences of the United States of America, 105(34), E54.

    Article  PubMed  CAS  Google Scholar 

  143. Yoder, M. C., Mead, L. E., Prater, D., Krier, T. R., Mroueh, K. N., Li, F., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109(5), 1801–1809.

    Article  PubMed  CAS  Google Scholar 

  144. Duda, D. G., Cohen, K. S., Scadden, D. T., & Jain, R. K. (2007). A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nature Protocols, 2(4), 805–810.

    Article  PubMed  CAS  Google Scholar 

  145. Steurer, M., Kern, J., Zitt, M., Amberger, A., Bauer, M., Gastl, G., et al. (2008). Quantification of circulating endothelial and progenitor cells: Comparison of quantitative PCR and four-channel flow cytometry. BMC Research Notes, 1, 71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the “Verein für Tumorforschung” and the Association of Experimental Chest Medicine, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Resch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resch, T., Pircher, A., Kähler, C.M. et al. Endothelial Progenitor Cells: Current Issues on Characterization and Challenging Clinical Applications. Stem Cell Rev and Rep 8, 926–939 (2012). https://doi.org/10.1007/s12015-011-9332-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9332-9

Keywords

Navigation