Skip to main content
Log in

Local Injections of Adipose-Derived Mesenchymal Stem Cells Modulate Inflammation and Increase Angiogenesis Ameliorating the Dystrophic Phenotype in Dystrophin-Deficient Skeletal Muscle

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-α, IL-6 and oxidative stress measured by Amplex® reagent were observed. The level of TGF-β1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leturcq, F., & Kaplan, J. C. (2005). Molecular bases of dystrophinopathies. J Soc Biol, 199, 5–11.

    Article  PubMed  CAS  Google Scholar 

  2. Burghes, A. H., Logan, C., Hu, X., et al. (1987). A cDNA clone from the Duchenne/Becker muscular dystrophy gene. Nature, 328, 434–437.

    Article  PubMed  CAS  Google Scholar 

  3. Ferrari, G., Cusella-De Angelis, G., & Coletta, M. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530.

    Article  PubMed  CAS  Google Scholar 

  4. Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 401, 390–394.

    PubMed  CAS  Google Scholar 

  5. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., et al. (2002). Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA, 99, 1341–1346.

    Article  PubMed  CAS  Google Scholar 

  6. Fukada, S., Miyagoe–Suzuki, Y., Tsukihara, H., et al. (2002). Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J Cell Sci, 115, 1285–1293.

    PubMed  CAS  Google Scholar 

  7. LaBarge, M. A., & Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111, 589–601.

    Article  PubMed  CAS  Google Scholar 

  8. Camargo, F. D., Green, R., Capetanaki, Y., et al. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med, 9, 1520–1527.

    Article  PubMed  CAS  Google Scholar 

  9. Corbel, S. Y., Lee, A., Yi, L., et al. (2003). Contribution of hematopoietic stem cells to skeletal muscle. Nat Med, 9, 1528–1532.

    Article  PubMed  CAS  Google Scholar 

  10. Bachrach, E., Li, S., Perez, A. L., et al. (2004). Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci USA, 101, 3581–3586.

    Article  PubMed  CAS  Google Scholar 

  11. Wakitani, S., Saito, T., & Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 18, 1417–1426.

    Article  PubMed  CAS  Google Scholar 

  12. Gonçalves, M. A., de Vries, A. A., Holkers, M., et al. (2006). Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet, 15, 213–221.

    Article  PubMed  Google Scholar 

  13. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez, A. M., Elabd, C., Amri, E. Z., et al. (2005). Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med, 201, 1397–1405.

    Article  PubMed  CAS  Google Scholar 

  15. Vieira, N. M., Bueno, C. R., Jr., Brandalise, V., et al. (2008). SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells, 26, 2391–2398.

    Article  PubMed  Google Scholar 

  16. Bacou, F., el Andalousi, R. B., Daussin, P. A., et al. (2004). Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant, 13, 103–111.

    PubMed  Google Scholar 

  17. Lee, J. H., & Kemp, D. M. (2006). Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun, 341, 882–888.

    Article  PubMed  CAS  Google Scholar 

  18. Di Rocco, G., Iachininoto, M. G., Tritarelli, A., et al. (2006). Myogenic potential of adipose-tissue-derived cells. J Cell Sci, 119, 2945–2952.

    Article  PubMed  Google Scholar 

  19. Vieira, N. M., Brandalise, V., Zucconi, E., et al. (2008). Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell, 100, 231–241.

    Article  PubMed  CAS  Google Scholar 

  20. Messina, S., Mazzeo, A., Bitto, A., et al. (2007). VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J, 21, 3737–3746.

    Article  PubMed  CAS  Google Scholar 

  21. Gargioli, C., Coletta, M., De Grandis, F., et al. (2008). PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nat Med, 14, 973–978.

    Article  PubMed  CAS  Google Scholar 

  22. Rando, T. A. (2008). Turning back time: reversing tissue pathology to enhance stem cell engraftment. Cell Stem Cell, 3, 232–234.

    Article  PubMed  CAS  Google Scholar 

  23. Pinheiro, C. H., Vitzel, K. F., & Curi, R. (2010). Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2010.01143.x

  24. Bassit, R. A., Pinheiro, C. H., Vitzel, K. F., et al. (2010). Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur J Appl Physiol, 108, 945–955.

    Article  PubMed  CAS  Google Scholar 

  25. Chamberlain, J. S., Metzger, J., Reyes, M., et al. (2007). Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J, 21, 2195–2204.

    Article  PubMed  CAS  Google Scholar 

  26. Moser, H. (1984). Review of studies on the proportion and origin of new mutants in Duchenne muscular dystrophy. In L. P. Ten Kate, P. L. Pearson, & A. M. Stadhouders (Eds.), Research into the Origin and Treatment of Muscular Dystrophy (pp. 41–52). Amsterdam: Excerpta Medica.

    Google Scholar 

  27. Lynch, G. S., Hinkle, R. T., Chamberlain, J. S., et al. (2001). Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol, 535, 591–600.

    Article  PubMed  CAS  Google Scholar 

  28. Gnecchi, M., Zhang, Z., Ni, A., et al. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res, 103, 1204–1219.

    Article  PubMed  CAS  Google Scholar 

  29. Lecarpentier, Y. (2007). Physiological role of free radicals in skeletal muscles. J Appl Physiol, 103, 1917–1918.

    Article  PubMed  CAS  Google Scholar 

  30. Irintchev, A. (1987). Muscle damage and repair in voluntarily running mice: strain and muscle differences. Cell Tissue Res, 249, 509–521.

    Article  PubMed  CAS  Google Scholar 

  31. Mendell, J. R. (1971). Duchenne muscular dystrophy: functional ischemia reproduces its characteristic lesions. Science, 172, 1143–1145.

    Article  PubMed  CAS  Google Scholar 

  32. Louboutin, J. P., Rouger, K., Tinsley, J. M., et al. (2001). iNOS expression in dystrophinopathies can be reduced by somatic gene transfer of dystrophin or utrophin. Mol Med, 7, 355–364.

    PubMed  CAS  Google Scholar 

  33. Bredt, D., & Snyder, S. (1994). Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem, 63, 175–195.

    Article  PubMed  CAS  Google Scholar 

  34. Kobzik, L., Reid, M., Bredt, D., et al. (1994). Nitric oxide in skeletal muscle. Nature, 372, 546–548.

    Article  PubMed  CAS  Google Scholar 

  35. Ischiropoulos, H. (1998). Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys, 356, 1–11.

    Article  PubMed  CAS  Google Scholar 

  36. Wehling, M., Spencer, M. J., & Tidball, J. G. (2001). A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol, 155, 123–131.

    Article  PubMed  CAS  Google Scholar 

  37. Gurpur, P. B., Liu, J., Burkin, D. J., et al. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. Am J Pathol, 174, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  38. Chung, J., Grammer, T. C., Lemon, K. P., et al. (1994). PDGF- and insulin-dependent pp 70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature, 370, 71–75.

    Article  PubMed  CAS  Google Scholar 

  39. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  40. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA, 98, 10344–10349.

    Article  PubMed  CAS  Google Scholar 

  41. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  42. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. J Cell Biochem, 98, 1076–1084.

    Article  PubMed  CAS  Google Scholar 

  43. Tang, Y. L., Zhao, Q., Qin, X., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg, 80, 229–236.

    Article  PubMed  Google Scholar 

  44. Togel, F., Hu, Z., Weiss, K., et al. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol, 289, F31–F42.

    Article  PubMed  Google Scholar 

  45. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.

    Article  PubMed  Google Scholar 

  46. Al-Khaldi, A., Al-Sabti, H., Galipeau, J., et al. (2003). Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg, 75, 204–209.

    Article  PubMed  Google Scholar 

  47. Nagaya, N., Fujii, T., Iwase, T., et al. (2004). Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol, 287, H2670–H2676.

    Article  PubMed  CAS  Google Scholar 

  48. Nagaya, N., Kangawa, K., Itoh, T., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112, 1128–1135.

    Article  PubMed  Google Scholar 

  49. Wehling-Henricks, M., Lee, J. J., & Tidball, J. G. (2004). Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscul. Disord., 14, 483–490.

    Article  PubMed  Google Scholar 

  50. Messina, S., Bitto, A., Aguennouz, M., et al. (2006). Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol, 198(1), 234–241.

    Article  PubMed  CAS  Google Scholar 

  51. Tidball, J. G., & Wehling-Henricks, M. (2007). Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol., 578(Pt 1), 327–336.

    PubMed  CAS  Google Scholar 

  52. Vetrone, S. A., Montecino-Rodriguez, E., Kudryashova, E., et al. (2009). Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest., 119(6), 1583–1594.

    Article  PubMed  CAS  Google Scholar 

  53. Barbul, A., Lazarou, S. A., Efron, D. T., et al. (1990). Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery, 108, 331–337.

    PubMed  CAS  Google Scholar 

  54. Wehling-Henricks, M., Jordan, M. C., Gotoh, T., et al. (2010). Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One., 5(5), e10763.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C.H.J Pinheiro was scholar fellowship of São Paulo Research Foundation—FAPESP [2008/54693-9]. The authors thank Emilia Ribeiro, J.R. de Mendonça, Dr. Tatiana C. Alba Loureiro and Adhemar Pettri Filho for constant assistance. This work was also supported by the National Council for Scientific and Technological Development (CNPq) [573557/2008-0].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hermano da Justa Pinheiro.

Additional information

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Justa Pinheiro, C.H., de Queiroz, J.C.F., Guimarães-Ferreira, L. et al. Local Injections of Adipose-Derived Mesenchymal Stem Cells Modulate Inflammation and Increase Angiogenesis Ameliorating the Dystrophic Phenotype in Dystrophin-Deficient Skeletal Muscle. Stem Cell Rev and Rep 8, 363–374 (2012). https://doi.org/10.1007/s12015-011-9304-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9304-0

Keywords

Navigation