Skip to main content

Advertisement

Log in

Pluripotent Stem Cells: Origin, Maintenance and Induction

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Pluripotency is defined as the potential of a cell to differentiate into cells of the three germ layers: endoderm, mesoderm and ectoderm. In vivo, the presence of pluripotent stem cells is transient during the very early embryo. However, immortal cell lines with the same properties can be obtained in vitro and grown indefinitely in laboratories under specific conditions. These cells can be induced to differentiate into all the cell types of the organism through different assays, thereby proving their functional pluripotency. This review focuses on the pluripotent stem cells of mammals, giving special attention to the comparison between mouse and human. In particular, embryonic stem cells, epiblast-derived stem cells, primordial germ cells, embryonic germ cells, very small embryonic-like cells and induced pluripotent stem cells will be compared in terms of the following: in vivo specification and location; surface and intracellular markers; in vitro dependence on growth factors; signal transduction pathways; epigenetic characteristics; and pluripotency genes and functional assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nicholas, J., & Hall, B. (1942). Experiments on developing rats: II. The development of isolated blastomeres and fused eggs. J Exp Zool, 90, 441–59.

    Article  Google Scholar 

  2. Beddington, R. S. P., & Robertson, E. J. (1989). An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development, 105, 733–7.

    CAS  PubMed  Google Scholar 

  3. Nagy, A., Gocza, E., Diaz, E. M., et al. (1990). Embryonic stem cells alone are able to support fetal development in the mouse. Development, 110, 815–22.

    CAS  PubMed  Google Scholar 

  4. Hewitson, L. (2004). Primate models for assisted reproductive technologies. Reproduction, 128(3), 293–9.

    Article  CAS  PubMed  Google Scholar 

  5. Duranthon, V., Watson, A. J., & Lonergan, P. (2008). Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction, 135(2), 141–50.

    Article  CAS  PubMed  Google Scholar 

  6. Fulka, H., Mrazek, M., Tepla, O., & Fulka, J., Jr. (2004). DNA methylation pattern in human zygotes and developing embryos. Reproduction, 128(6), 703–8.

    Article  CAS  PubMed  Google Scholar 

  7. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–6.

    Article  CAS  PubMed  Google Scholar 

  8. Rossant, J. (2001). Stem cells from the Mammalian blastocyst. Stem Cells, 19(6), 477–82.

    Article  CAS  PubMed  Google Scholar 

  9. Copp, A. J. (1978). Interaction between inner cell mass and trophectoderm of the mouse blastocyst. I. A study of cellular proliferation. J Embryol Exp Morphol, 48, 109–25.

    CAS  PubMed  Google Scholar 

  10. Tesar, P. J., Chenoweth, J. G., Brook, F. A., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–202.

    Article  CAS  PubMed  Google Scholar 

  11. Eakin, G. S., & Behringer, R. R. (2004). Diversity of germ layer and axis formation among mammals. Semin Cell Dev Biol, 15(5), 619–29.

    Article  PubMed  Google Scholar 

  12. Jones, J. M., & Thomson, J. A. (2000). Human embryonic stem cell technology. Semin Reprod Med, 18(2), 219–23.

    Article  CAS  PubMed  Google Scholar 

  13. Schulz, L. C., Ezashi, T., Das, P., Westfall, S. D., Livingston, K. A., & Roberts, R. M. (2008). Human embryonic stem cells as models for trophoblast differentiation. Placenta, 29(Suppl A), S10–16.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, A. G., & Hooper, M. L. (1987). Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol, 121(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  15. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–7.

    Article  CAS  PubMed  Google Scholar 

  16. International Stem Cell Initiative. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol, 25(7), 803–16.

    Article  CAS  Google Scholar 

  17. Counter, C. M. (1996). The roles of telomeres and telomerase in cell life span. Mutat Res, 366(1), 45–63.

    PubMed  Google Scholar 

  18. Boyer, L. A., Lee, T. I., Cole, M. F., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–56.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, J., Chan, Y. S., Loh, Y. H., et al. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol, 10(3), 353–60.

    Article  PubMed  CAS  Google Scholar 

  20. Kidder, B. L., Yang, J., & Palmer, S. (2008). Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS ONE, 3(12), e3932.

    Article  PubMed  CAS  Google Scholar 

  21. Singh, S. K., Kagalwala, M. N., Parker-Thornburg, J., Adams, H., & Majumder, S. (2008). REST maintains self-renewal and pluripotency of embryonic stem cells. Nature, 453(7192), 223–7.

    Article  CAS  PubMed  Google Scholar 

  22. Li, X., & Zhao, X. (2008). Epigenetic regulation of mammalian stem cells. Stem Cells Dev, 17(6), 1043–52.

    Article  CAS  PubMed  Google Scholar 

  23. Smith, A. G., Heath, J. K., Donaldson, D. D., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified peptides. Nature, 336, 688–90.

    Article  CAS  PubMed  Google Scholar 

  24. Vallier, L., Mendjan, S., Brown, S., et al. (2009). Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development, 136(8), 1339–49.

    Article  CAS  PubMed  Google Scholar 

  25. Pan, G., & Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res, 17, 42–9.

    Article  CAS  PubMed  Google Scholar 

  26. Loh, Y. H., Wu, Q., Chew, J., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38, 431–40.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J., Rao, S., Chu, J., et al. (2006). A protein interaction network for pluripotency of embryonic stem cells. Nature, 444, 364–8.

    Article  CAS  PubMed  Google Scholar 

  28. Eiselleova, L., Matulka, K., Kriz, V., et al. (2009). A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells, 27(8), 1847–57.

    Article  CAS  PubMed  Google Scholar 

  29. Greber, B., Lehrach, H., & Adjaye, J. (2007). Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells, 25(2), 455–64.

    Article  CAS  PubMed  Google Scholar 

  30. Greber, B., Wu, G., Bernemann, C., et al. (2010). Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 6, 215–26.

    Article  CAS  PubMed  Google Scholar 

  31. Brons, I. G. M., Smithers, L. E., Trotter, M. W. B., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–6.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, R. H., Chen, X., Li, D. S., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol, 20(12), 1261–4.

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi, Y., Furue, M. K., Tanaka, S., et al. (2010). BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin. In Vitro Cell Dev Biol Anim, 46(5), 416–30.

    Article  CAS  PubMed  Google Scholar 

  34. Rugg-Gunn, P. J., Ferguson-Smith, A. C., & Pedersen, R. A. (2007). Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum Mol Genet, 16, 243–51.

    Article  CAS  Google Scholar 

  35. Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., et al. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development, 122, 881–94.

    CAS  PubMed  Google Scholar 

  36. van den Berg, D. L., Snoek, T., & Mullin, N. P. (2010). An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell, 6(4), 369–81.

    Article  PubMed  CAS  Google Scholar 

  37. Clark, A. T., Bodnar, M. S., Fox, M., et al. (2004). Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet, 13(7), 727–39.

    Article  CAS  PubMed  Google Scholar 

  38. Bao, S., Tang, F., Li, X., et al. (2009). Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature, 461(7268), 1292–5.

    Article  CAS  PubMed  Google Scholar 

  39. Saitou, M., Barton, S. C., & Surani, M. A. (2002). A molecular program for the specification of germ cell fate in mice. Nature, 418, 293–300.

    Article  CAS  PubMed  Google Scholar 

  40. McLaren, A. (2003). Primordial germ cells in the mouse. Dev Biol, 262, 1–15.

    Article  CAS  PubMed  Google Scholar 

  41. Lawson, K. A., Menese, J. J., & Pederson, R. A. (1991). Clonal analysis of epiblast fate during germ layer formation in the mouse. Development, 113, 891–913.

    CAS  PubMed  Google Scholar 

  42. Tam, P. P. L., & Zhou, S. X. (1996). The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of cells in the gastrulating mouse embryo. Dev Biol, 178, 124–32.

    Article  CAS  PubMed  Google Scholar 

  43. Kinder, S. J., Tsang, T. E., Quinlan, G. A., Hadjantonakis, A. K., Nagy, A., & Tam, P. P. L. (1999). The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development, 126, 4691–701.

    CAS  PubMed  Google Scholar 

  44. Toyooka, Y., Tsunekawa, N., Takahashi, Y., Matsui, Y., Satoh, M., & Noce, T. (2000). Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev, 93(1–2), 139–49.

    Article  CAS  PubMed  Google Scholar 

  45. Yabuta, Y., Kurimoto, K., Ohinata, Y., Seki, Y., & Saitou, M. (2006). Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod, 75(5), 705–16.

    Article  CAS  PubMed  Google Scholar 

  46. De Felici, M., Farini, D., & Dolci, S. (2009). In or out stemness: comparing growth factor signaling in mouse embryonic and primordial germ cells. Curr Stem Cell Res Ther, 4, 87–97.

    Article  PubMed  Google Scholar 

  47. Seki, Y., Hayashi, K., Itoh, K., Mizugaki, M., Saitou, M., & Matsui, Y. (2005). Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Development Biology, 278, 440–58.

    Article  CAS  Google Scholar 

  48. Hajkova, P., Ancelin, K., Waldmann, T., et al. (2008). Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature, 452, 877–81.

    Article  CAS  PubMed  Google Scholar 

  49. Hayashi, K., & Surani, A. (2009). Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell, 4, 493–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hubner, K., Fuhrmann, G., Christenson, L., et al. (2003). Derivation of oocytes from mouse embryonic stem cells. Science, 300, 1251–6.

    Article  PubMed  CAS  Google Scholar 

  51. Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., & Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 427, 148–54.

    Article  CAS  PubMed  Google Scholar 

  52. Ginsburg, M., Snow, M. H. L., & Mclaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development, 110, 521–9.

    CAS  PubMed  Google Scholar 

  53. Elliott, M. A., de Miguel, M. P., Rebel, V. I., et al. (2007). Identifying genes differentially expressed between PGCs and ES cells reveals a role for CREB-binding protein in germ cell survival. Dev Biol, 311, 347–58.

    CAS  PubMed  Google Scholar 

  54. Zwaka, T. P., & Thomson, J. A. (2005). A germ cell origin of embryonic stem cells? Development, 132, 227–33.

    Article  CAS  PubMed  Google Scholar 

  55. Wylie, C. (1999). Germ cells. Cell, 96(2), 165–74.

    Article  CAS  PubMed  Google Scholar 

  56. Pesce, M., Wang, X., Wolgemuth, D. J., & Scholer, H. (1998). Differential expression of the Oct-4 transcription factor during mouse germ call development. Mech Dev, 71, 89–98.

    Article  CAS  PubMed  Google Scholar 

  57. Quinlan, G. A., Williams, E. A., Tan, S.-S., & Tam, P. P. L. (1995). Neuroectodermal fate of epiblast cells in the distal region of the mouse egg cylinder: Implication for body plan organization during early embryogenesis. Development, 121, 87–98.

    CAS  PubMed  Google Scholar 

  58. Tsang, T. E., Khoo, P.-L., Jamieson, R. V., et al. (2001). The allocation and differentiation of mouse primordial germ cells. Int J Dev Biol, 45(3), 549–55.

    CAS  PubMed  Google Scholar 

  59. Surani MA, Ancelin K, Hajkova P, et al. Mechanism of mouse germ cell specification: a genetic program regulation epigenetic reprogramming. Cold Spring Harbor Symposium Quantitative Biology 2004;69:1–9.

    Google Scholar 

  60. Ohinata, Y., Payer, B., O’Carrol, D., Ancelin, K., Ono, Y., Sano, M., et al. (2005). Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 436, 207–13.

    Article  CAS  PubMed  Google Scholar 

  61. Vincent, S. D., Dunn, N. R., Sciammas, R., Sharipo-Shalef, M., Davis, M. M., Calame, K., et al. (2005). The zinc finger transcriptional repressor Blimps1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in mouse. Development, 132, 1315–25.

    Article  CAS  PubMed  Google Scholar 

  62. Yamaguchi, S., Kimura, H., Tada, M., Nakatsuji, N., & Tada, T. (2005). Nanog expression in mouse germ cell development. Gene Expr Patterns, 5, 639–46.

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi, K., & Surani, A. (2009). Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development, 136, 3549–56.

    Article  CAS  PubMed  Google Scholar 

  64. Donovan, P. J., Stott, D., Cairns, L. A., Heasman, J., & Wylie, C. C. (1986). Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell, 44, 831–8.

    Article  CAS  PubMed  Google Scholar 

  65. De Miguel MP, Donovan PJ. Isolation and Culture of Mouse Germ Cells. Methods in Molecular Biology, Vol. 137, Developmental Biology Protocols, Vol. III. In: Tuan RS, Lo CW, editors. Totowa, NJ: Humana Press Inc; 2000. 38, 403–408.

  66. De Miguel, M. P., Cheng, L., Holland, E. C., et al. (2002). Dissection of the KIT signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc Natl Acad Sci USA, 99, 10458–63.

    Article  PubMed  CAS  Google Scholar 

  67. Mann, J. R. (2001). Imprinting in the germ line. Stem Cells, 19, 287–94.

    Article  CAS  PubMed  Google Scholar 

  68. Yamazaki, Y., Mann, M. R., Lee, S. S., et al. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA, 100, 12207–12.

    Article  CAS  PubMed  Google Scholar 

  69. Lee, J., Inoue, K., Ono, R., et al. (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129, 1807–17.

    Article  CAS  PubMed  Google Scholar 

  70. Surani, M. A., Hayashi, K., & Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell, 129, 747–62.

    Article  CAS  Google Scholar 

  71. Oosterhuis, J. W., & Looijenga, L. H. (2005). Testicular germ-cell tumors in a broader perspective. Nat Rev Cancer, 5, 210–22.

    Article  CAS  PubMed  Google Scholar 

  72. De Miguel, M. P., Arnalich-Montiel, F., López-Iglesias, P., Blázquez-Martínez, A., & Nistal, M. (2009). Epiblast-derived cells in embryonic and adult tissues. Int J Dev Biol, 53(8–10), 1529–40.

    Article  PubMed  Google Scholar 

  73. Kucia, M., Ratajczak, J., Reca, R., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2004). Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis, 32(1), 52–7.

    Article  CAS  PubMed  Google Scholar 

  74. Kucia, M., Reca, R., Jala, V. R., Ratajczak, J., & Ratajczak, M. Z. (2005). Bone marrow as a home of heterogenous population of nonhematopoietic stem cells. Leukemia, 19(7), 1118–27.

    Article  CAS  PubMed  Google Scholar 

  75. Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4 + SSEA-1 + Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–69.

    Article  CAS  PubMed  Google Scholar 

  76. Kucia, M., Wysoczynski, M., Wu, W., Zuba-Surma, E. K., Ratajczak, J., & Ratajczak, M. Z. (2008). Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells, 26, 2083–92.

    Article  CAS  PubMed  Google Scholar 

  77. Zuba-Surma, E. K., Kucia, M., Dawn, B., Guo, Y., Ratajczak, M. Z., & Bolli, R. (2008). Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Am Cell Cardiol, 44(5), 865–73.

    Article  CAS  Google Scholar 

  78. Wojakowski, W., Tendera, M., Kucia, M., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol, 53(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  79. Zuba-Surma, E. K., Kucia, M., Wu, W., et al. (2008). Very small embryonic-like cells (VSELs) are present in adult murine organs: imagestream based morphological analysis and distribution studies. Cytom A, 73A(12), 1116–27.

    Article  CAS  Google Scholar 

  80. Samokhvalov, I. M., Samokhvalov, N. I., & Nishikawa, S. (2007). Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature, 446(7139), 1056–61.

    Article  CAS  PubMed  Google Scholar 

  81. Zuba-Surma, E. K., Kucia, M., Rui, L., et al. (2009). Fetal liver very small embryonic/epiblast like stem cells follow developmental migratory pathway of hematopoietic stem cells. Ann NY Acad Sci, 1176, 205–18.

    Article  PubMed  Google Scholar 

  82. Ratajczak, M. Z., Zuba-Surma, E. K., Wysoczynsky, M., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol, 36, 742–51.

    Article  CAS  PubMed  Google Scholar 

  83. Ratajczac, M. Z., Machalinski, B., Wajakowski, W., Ratajczac, J., & Kucia, M. (2007). A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia, 21, 860–7.

    Google Scholar 

  84. De Felici, M., & McLaren, A. (1983). In vitro culture of mouse primordial germ cells. Exp Cell Res, 144, 417–27.

    Article  PubMed  Google Scholar 

  85. Upadhyay, S., & Zamboni, L. (1982). Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci U S A, 79(21), 6584–88.

    Article  CAS  PubMed  Google Scholar 

  86. Gobel, U., Schneider, D., Calaminus, G., Haas, R., Schimdt, P., & Harms, D. (2000). Germ cell tumors in childhood and adolescence. Ann Oncol, 11, 263–71.

    Article  CAS  PubMed  Google Scholar 

  87. Schneider, D. T., Schuster, A. E., Fritsch, M. K., et al. (2001). Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors. Cancer Res, 61, 7268–76.

    CAS  PubMed  Google Scholar 

  88. Virchow R. Editorial. Archive fuer pathologische anatomie und physiologie fuer klinische medizin 1855;8:23–54.

  89. Houghton, J. M., Stoicov, C., Nomura, S., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306, 1568–71.

    Article  CAS  PubMed  Google Scholar 

  90. Donovan, P. J., & De Miguel, M. P. (2003). Turning germ cells into stem cells. Curr Opin Genet Dev, 13, 463–71.

    Article  CAS  PubMed  Google Scholar 

  91. Stevens, L. C. (1970). The development of transplantable teratocarcinomas from intratesticular grafts of pre-and post-implantation mouse embryos. Dev Biol, 21, 364.

    Article  CAS  PubMed  Google Scholar 

  92. Solter, D., Dominis, M., & Damjanov, I. (1981). Embryo-derived teratocarcinoma. III. Development of tumors from teratocarcinoma-permissive and non-permissive strain embryos transplanted to F1 hybrids. Int J Cancer, 28, 479–83.

    Article  CAS  PubMed  Google Scholar 

  93. Kimura, T., Suzuki, A., Fujita, Y., et al. (2003). Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development, 130(8), 1691–700.

    Article  CAS  PubMed  Google Scholar 

  94. Clark, A. T., Rodriguez, R. T., Bodnar, M. S., et al. (2004). Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells, 22(2), 169–79.

    Article  CAS  PubMed  Google Scholar 

  95. Finch, B. W., & Ephrussi, B. (1967). Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridation with cells of permanent lines. Proc Natl Acad Sci USA, 57, 615–21.

    Article  CAS  PubMed  Google Scholar 

  96. Brinster, R. L. (1974). The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med Sci, 140(4), 1049–56.

    Article  CAS  Google Scholar 

  97. Rossant, J., & Mcburney, M. W. (1982). The development potential of a euploid male teratocarcinoma cell line after blastocyst injection. J Embryol Exp Morphol, 70, 99–112.

    CAS  PubMed  Google Scholar 

  98. Matsui, Y., Zsebo, K., & Hogan, B. L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 70, 841–7.

    Article  CAS  PubMed  Google Scholar 

  99. Resnick, J. L., Bixler, L. S., Cheng, L., & Donovan, P. J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature, 359(6395), 550–1.

    Article  CAS  PubMed  Google Scholar 

  100. Shamblott, M. J., Axelman, J., Wang, S., et al. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA, 95(23), 13726–31.

    Article  CAS  PubMed  Google Scholar 

  101. Swelstad, B. B., & Kerr, C. L. (2010). Current protocols in the generation of pluripotent stem cells: theoretical methodological and clinical considerations. Stem Cells Cloning, 3, 13–27.

    CAS  Google Scholar 

  102. Turnpenny, L., Spalluto, C. M., Perrett, R. M., et al. (2006). Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells, 24(2), 212–20.

    Article  PubMed  Google Scholar 

  103. Durcova-Hills, G., Adams, I. R., Barton, S. C., Surani, M. A., & McLaren, A. (2006). The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells, 24, 1441–9.

    Article  CAS  PubMed  Google Scholar 

  104. Durcova-Hills, G., Tang, F., Doody, G., Tooze, R., & Surani, M. A. (2008). Reprogramming primordial germ cells into pluripotent stem cells. PLoS ONE, 3, e3531.

    Article  PubMed  CAS  Google Scholar 

  105. Kanatsu-Shinohara, M., Inoune, K., Lee, J., et al. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119, 1001–12.

    Article  CAS  PubMed  Google Scholar 

  106. Guan, K., Nayernia, K., Maier, L. S., et al. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440(7088), 1199–203.

    Article  CAS  PubMed  Google Scholar 

  107. Conrad, S., Renninger, M., Hennenlotter, J., et al. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456, 344–9.

    Article  CAS  PubMed  Google Scholar 

  108. Ko, K., Tapia, N., Wu, G., et al. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cells, 5, 87–96.

    Article  CAS  Google Scholar 

  109. Mardanpour, P., Guan, K., Nolte, J., et al. (2008). Potency of germ cells and its relevance for regenerative medicine. J Anat, 213, 26–9.

    Article  PubMed  Google Scholar 

  110. Wilmut, I., Beaujean, N., de Sousa, P. A., et al. (2002). Somatic cell nuclear transfer. Nature, 419(6907), 583–6.

    Article  CAS  PubMed  Google Scholar 

  111. Kishigami, S., Wakayama, S., Thuan, N. V., et al. (2006). Production of cloned mice by somatic cell nuclear transfer. Nat Protoc, 1(1), 125–38.

    Article  CAS  PubMed  Google Scholar 

  112. Ying, Q. L., Nichols, J., Evans, E. P., & Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature, 416(6880), 545–8.

    Article  CAS  PubMed  Google Scholar 

  113. Taranger, C. K., Noer, A., Sørensen, A. L., Håkelien, A. M., Boquest, A. C., & Collas, P. (2005). Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell, 16(12), 5719–35.

    Article  CAS  PubMed  Google Scholar 

  114. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–76.

    Article  CAS  PubMed  Google Scholar 

  115. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–72.

    Article  CAS  PubMed  Google Scholar 

  116. Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.

    Article  CAS  PubMed  Google Scholar 

  117. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germ-line competent induced pluripotent stem cells. Nature, 448, 313–7.

    Article  CAS  PubMed  Google Scholar 

  118. Werning, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–24.

    Article  CAS  Google Scholar 

  119. Yu, J., Vodyanik, M. A., Smuga-otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–20.

    Article  CAS  PubMed  Google Scholar 

  120. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39–49.

    Article  CAS  PubMed  Google Scholar 

  121. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblast. Nat Biotechnol, 26, 101–6.

    Article  CAS  PubMed  Google Scholar 

  122. Feng, B., Jiang, J., Kraus, P., et al. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol, 11(2), 197–203.

    Article  CAS  PubMed  Google Scholar 

  123. Ichida, J. K., Blanchard, J., Lam, K., et al. (2009). A small-molecule inhibitor of TGF-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell, 5(5), 491–503.

    Article  CAS  PubMed  Google Scholar 

  124. Heng, J. C. D., Feng, B., Han, J., et al. (2010). The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell, 6, 167–74.

    Article  CAS  PubMed  Google Scholar 

  125. Aoi, T., Yae, K., Nakagawa, M., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321(5889), 699–702.

    Article  CAS  PubMed  Google Scholar 

  126. Hotta A, Ellis J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J Cell Biochem 2008;940–948.

  127. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322, 945–9.

    Article  CAS  PubMed  Google Scholar 

  128. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–53.

    Article  CAS  PubMed  Google Scholar 

  129. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free o vector and transgene sequences. Science, 324(5928), 797–801.

    Article  CAS  PubMed  Google Scholar 

  130. Marchetto, M. C. N., Yeo, G. W., Kainohana, O., Marsala, M., Gace, F. H., & Muotri, A. R. (2009). Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS ONE, 4(9), e7076.

    Article  PubMed  CAS  Google Scholar 

  131. Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–77.

    Article  CAS  PubMed  Google Scholar 

  132. Kaji, K., Norrby, K., Paca, A., et al. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–5.

    Article  CAS  PubMed  Google Scholar 

  133. Chang, C. W., Lai, Y. S., Pawlik, K. M., et al. (2009). Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells, 27(5), 1042–9.

    Article  CAS  PubMed  Google Scholar 

  134. Woltjen, K., Michael, I. P., Mohseni, P., et al. (2009). PiggiBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–70.

    Article  CAS  PubMed  Google Scholar 

  135. Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–4.

    Article  CAS  PubMed  Google Scholar 

  136. Kim, D., Kim, C. H., Moon, J., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–6.

    Article  CAS  PubMed  Google Scholar 

  137. Stadtfeld, M., Brennand, K., & Hochedlinger, K. (2008). Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr Biol, 18, 890–4.

    Article  CAS  PubMed  Google Scholar 

  138. Hanna, J., Markoulaki, S., Schorderet, P., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocyte to pluripotency. Cell, 133, 250–64.

    Article  CAS  PubMed  Google Scholar 

  139. Eminli, S., Utikal, J., Arnold, J., Jaenisch, J., & Hochedlinger, K. (2008). Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells, 26, 2467–74.

    Article  CAS  PubMed  Google Scholar 

  140. Kim, J. B., Greber, B., Araúzo-Bravo, M. J., et al. (2009). Direct reprogramming of human neural stem cells by Oct4. Nature, 461(7264), 649–643.

    Article  CAS  PubMed  Google Scholar 

  141. Marion, R. M., Strati, K., Li, H., et al. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 4(2), 141–54.

    Article  CAS  PubMed  Google Scholar 

  142. Doi, A., Park, I., Wen, B., et al. (2009). Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet, 41(12), 1350–3.

    Article  CAS  PubMed  Google Scholar 

  143. Pick, M., Stelzer, Y., Bar-Nur, O., Mayshar, Y., Eden, A., & Benvenisty, N. (2009). Clone-and Gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells, 27, 2686–90.

    Article  CAS  PubMed  Google Scholar 

  144. Deng, J., Shoemaker, R., Xie, B., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol, 27(4), 353–60.

    Article  CAS  PubMed  Google Scholar 

  145. Mikkelsen, T. S., Hanna, J., Zhang, X., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55.

    Article  CAS  PubMed  Google Scholar 

  146. Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6), 525–8.

    Article  CAS  PubMed  Google Scholar 

  147. Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cells, 3(5), 568–74.

    Article  CAS  Google Scholar 

  148. Huangfu, S., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 26(11), 1269–75.

    Article  CAS  PubMed  Google Scholar 

  149. Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T. W., & Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol, 6(10), 2237–47.

    Article  CAS  Google Scholar 

  150. Esteban, M. A., Wang, T., Qin, B., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71–9.

    Article  CAS  PubMed  Google Scholar 

  151. Vallier, L., Touboul, T., Brown, S., et al. (2009). Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells, 27, 2655–66.

    Article  CAS  PubMed  Google Scholar 

  152. Henderson, J. K., Draper, A. J. S., Baillie, B. H. S., et al. (2002). Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 20, 329–37.

    Article  CAS  PubMed  Google Scholar 

  153. Castrillon, D. H., Quade, B. J., Wang, T. Y., Quigley, C., & Crum, C. P. (2000). The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci, 97(17), 9585–90.

    Article  CAS  PubMed  Google Scholar 

  154. Eckert, D., Biermann, K., Nettersheim, D., et al. (2008). Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors. BMC Dev Biol, 8, 106.

    Article  PubMed  CAS  Google Scholar 

  155. Perrett, R. M., Turnpenny, L., Eckert, J. J., et al. (2008). The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biol Reprod, 78(5), 852–8.

    Article  CAS  PubMed  Google Scholar 

  156. Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P., & Liebaers, I. (2008). The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod, 23(8), 1742–7.

    Article  PubMed  Google Scholar 

  157. Solter, D., & Knowles, B. B. (1978). Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci, 75(11), 5565–9.

    Article  CAS  PubMed  Google Scholar 

  158. West, J. A., Viswanathan, S. R., Yabuuchi, A., et al. (2009). A role for Lin28 in primordial germ cell development and germ cell malignancy. Nature, 460(7257), 909–13.

    CAS  PubMed  Google Scholar 

  159. Fujiwara, Y., Komiya, T., Kawabata, H., et al. (1994). Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci, 91, 12258–62.

    Article  CAS  PubMed  Google Scholar 

  160. Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., & Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 17, 126–40.

    Article  CAS  PubMed  Google Scholar 

  161. Pera, M. F., Reubinoff, B., & Trounson, A. (2000). Human embryonic stem cells. J Cell Sci, 113, 5–10.

    CAS  PubMed  Google Scholar 

  162. Hayashi, K., de Sousa, C., Lopes, S. M., Tang, F., & Surani, M. A. (2008). Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell, 3, 391–401.

    Article  CAS  PubMed  Google Scholar 

  163. Rathjen, J., Lake, J. A., Bettess, M. D., Washington, J. M., Chapman, G., & Rathjen, P. D. (1999). Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci, 112(5), 601–12.

    CAS  PubMed  Google Scholar 

  164. Kerr, C. L., Hill, C. M., Blumenthal, P. D., & Gearhart, J. D. (2008). Expression of pluripotent stem cell markers in the human fetal testis. Stem Cells, 26(2), 412–21.

    Article  PubMed  Google Scholar 

  165. Kerr, C. L., Hill, C. M., Blumenthal, P. D., & Gearhart, J. D. (2008). Expression of pluripotent stem cell markers in the human fetal ovary. Hum Reprod, 23(3), 589–99.

    Article  CAS  PubMed  Google Scholar 

  166. Turnpenny, L., Brickwood, S., Spalluto, C. M., et al. (2003). Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells, 21(5), 598–609.

    Article  PubMed  Google Scholar 

  167. Chaerkady, R., Kerr, C. L., Kandasamy, K., Marimuthu, A., Gearhart, J. D., & Pandey, A. (2002). Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells. Proteomics, 10(7), 1359–73.

    Article  CAS  Google Scholar 

  168. Zeeman, A. M., Stoop, H., Boter, M., et al. (2002). VASA is a specific marker for both normal and malignant human germ cells. Lab Investig, 82(2), 159–66.

    CAS  PubMed  Google Scholar 

  169. Berstine, E. G., Hooper, M. L., Grandchamp, S., & Ephrussi, B. (1973). Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci, 70(12), 3899–903.

    Article  CAS  PubMed  Google Scholar 

  170. Wang, L., & Schultz, G. A. (1996). Expression of Oct-4 during differentiation of murine F9 cells. Biochem Cell Biol, 74(4), 579–84.

    Article  CAS  PubMed  Google Scholar 

  171. Johnson, L. R., Lamb, K. A., Gao, Q., Nowling, T. K., & Rizzino, A. (2003). Role of the transcription factor Sox-2 in the expression of the FGF-4 gene in embryonal carcinoma cells. Mol Reprod Dev, 50(4), 377–86.

    Article  Google Scholar 

  172. Chambers, I., Colby, D., Robertson, M., et al. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113(5), 643–55.

    Article  CAS  PubMed  Google Scholar 

  173. Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., & Hochedlinger, K. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 3, 340–5.

    Article  CAS  PubMed  Google Scholar 

  174. Yusa, K., Rad, R., Takeda, J., & Bradley, A. (2009). Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Meth, 6, 363–9.

    Article  CAS  Google Scholar 

  175. Kucia, M., Wu, W., & Ratajczac, M. Z. (2007). Bone marrow-derived very small embryonic-like stem cells: their developmental origin and biological significance. Dev Dyn, 236, 3309–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the “Fondo de Investigaciones Sanitarias”, Ministry of Health, and Agencia Laín Entralgo, Madrid, Spain; SAF2008-03837 from the Ministry of Science and Innovation, Spain and from the Foundation Mutua Madrileña, Spain. The authors wish to acknowledge Fatima Dominguez for excellent technical assistance, Jaime Posadas Fernandez for original drawing art and Gareth William Osborne for linguistic assistance.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. De Miguel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

P. De Miguel, M., Fuentes-Julián, S. & Alcaina, Y. Pluripotent Stem Cells: Origin, Maintenance and Induction. Stem Cell Rev and Rep 6, 633–649 (2010). https://doi.org/10.1007/s12015-010-9170-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9170-1

Keywords

Navigation