Skip to main content

Advertisement

Log in

Nuclear Proteome Analysis of Monkey Embryonic Stem Cells During Differentiation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

An Erratum to this article was published on 27 February 2010

An Erratum to this article was published on 27 February 2010

Abstract

The nuclear proteome enables, manages, and regulates the genome by the collective actions and interactions of proteins found in the nucleus. We applied a proteomic approach to analyze a nuclear proteome during embryonic stem cell (ESC) proliferation, and 3 and 9 days after initiation of differentiation. The nuclei were isolated from cells and their proteins were separated using 2-DE. Out of about 560 protein spots reproducible detected on any give gel, 49 differentially expressed proteins were identified by Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI TOF/TOF) mass spectrometry. Of them, several nuclear located proteins involved in chromatin remodeling, transcription regulation, apoptosis, cell proliferation, and differentiation were identified including CTBP1, MM-1, RUVBL1, HCC-1, SGTA, SUMO2, and Galectin-1. Functional interaction analysis of differentially expressed proteins revealed that most of nuclear proteins had a direct interaction with c-Myc and p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Baharvand, H., Fathi, A., van Hoof, D., & Salekdeh, G. H. (2007). Concise review: trends in stem cell proteomics. Stem Cells, 25, 1888–1903.

    Article  CAS  PubMed  Google Scholar 

  2. Gorg, A., Weiss, W., & Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4, 3665–3685.

    Article  PubMed  Google Scholar 

  3. Elliott, S. T., Crider, D. G., Garnham, C. P., Boheler, K. R., & Van Eyk, J. E. (2004). Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics, 4, 3813–3832.

    Article  CAS  PubMed  Google Scholar 

  4. Baharvand, H., Hajheidari, M., Kazemi Ashtiani, S., & Salekdeh, G. H. (2006). Proteomic signature of human embryonic stem cells. Proteomics, 6, 3544–3549.

    Article  PubMed  Google Scholar 

  5. Baharvand, H., Fathi, A., Gourabi, H., Mollamohammadi, S., & Salekdeh, G. H. (2008). Identification of mouse embryonic stem cell-associated proteins. Journal of Proteome Research, 7, 412–423.

    Article  CAS  PubMed  Google Scholar 

  6. Guo, X., Ying, W., Wan, J., et al. (2001). Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro. Electrophoresis, 22, 3067–3075.

    Article  CAS  PubMed  Google Scholar 

  7. Kadota, M., Nishigaki, R., Wang, C. C., et al. (2004). Proteomic signatures and aberrations of mouse embryonic stem cells containing a single human chromosome 21 in neuronal differentiation: an in vitro model of Down syndrome. Neuroscience, 129, 325–335.

    Article  CAS  PubMed  Google Scholar 

  8. Barthelery, M., Salli, U., & Vrana, K. E. (2007). Nuclear proteomics and directed differentiation of embryonic stem cells. Stem Cells Development, 16, 905–919.

    Article  CAS  Google Scholar 

  9. Buhr, N., Carapito, C., Schaeffer, C., Kieffer, E., Van Dorsselaer, A., & Viville, S. (2008). Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells. Electrophoresis, 29, 2381–2390.

    Article  CAS  PubMed  Google Scholar 

  10. Jaishankar, A., Barthelery, M., Freeman, W. M., Salli, U., Ritty, T. M., & Vrana, K. E. (2009). Human embryonic and mesenchymal stem cells express different nuclear proteomes. Stem Cells Development, 18, 793–802.

    Article  CAS  Google Scholar 

  11. Kurisaki, A., Hamazaki, T. S., Okabayashi, K., et al. (2005). Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor. Biochemical and Biophysical Research Communications, 335, 667–675.

    Article  CAS  PubMed  Google Scholar 

  12. Suemori, H., Tada, T., Torii, R., et al. (2001). Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Developmental Dynamics, 222, 273–279.

    Article  CAS  PubMed  Google Scholar 

  13. Nasrabadi, D., Rezaei, M., Pirhaji, L., et al. (2009). Proteomic analysis of monkey embryonic stem cell during differentiation. Journal of Proteome Research, 8, 1527–1539.

    Article  CAS  PubMed  Google Scholar 

  14. Blum, H., Beier, H., & Gross, H. J. (1987). Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 8, 93–99.

    Article  CAS  Google Scholar 

  15. Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Electrophoresis, 9, 255–262.

    Article  CAS  PubMed  Google Scholar 

  16. Jensen, L. J., Kuhn, M., Stark, M., et al. (2009). STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37, D412–D416.

    Article  CAS  PubMed  Google Scholar 

  17. Jónsson, Z. O., Jha, S., Wohlschlegel, J. A., & Dutta, A. (2004). Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Molecular Cell, 16, 465–477.

    Article  PubMed  Google Scholar 

  18. Wood, M. A., McMahon, S. B., & Cole, M. D. (2000). An ATPase/Helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Molecular Cell, 5, 321–330.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, Y., Kwon, S. W., Anselmo, A., Kaur, K., & White, M. A. (2004). Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. Journal of Biological Chemistry, 279, 20999–21002.

    Article  CAS  PubMed  Google Scholar 

  20. Boyd, J. M., Subramanian, T., Schaeper, U., La Regina, M., Bayley, S., & Chinnadurai, G. (1993). A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO Journal, 12, 469–478.

    CAS  PubMed  Google Scholar 

  21. Chinnadurai, G. (2002). CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Molecular Cell, 9, 213–224.

    Article  CAS  PubMed  Google Scholar 

  22. Shi, Y., Sawada, J., Sui, G., et al. (2003). Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature, 422, 735–738.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, C. L., McKinsey, T. A., Lu, J., & Olson, E. N. (2001). Association of COOH-terminal-binding Protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. Journal of Biological Chemistry, 276, 35–39.

    Article  CAS  PubMed  Google Scholar 

  24. Mori, K., Maeda, Y., Kitaura, H., Taira, T., Iguchi-Ariga, S. M. M., & Ariga, H. (1998). MM-1, a novel c-Myc-associating protein that represses transcriptional activity of c-Myc. Journal of Biological Chemistry, 273, 29794–29800.

    Article  CAS  PubMed  Google Scholar 

  25. Fukuda, S., Wu, D. W., Stark, K., & Pelus, L. M. (2002). Cloning and characterization of a proliferation-associated cytokine-inducible protein, CIP29. Biochemical and Biophysical Research Communications, 292, 593–600.

    Article  CAS  PubMed  Google Scholar 

  26. Bomsztyk, K., Denisenko, O., & Ostrowski, J. (2004). hnRNP K: one protein multiple processes. BioEssays, 26, 629–638.

    Article  CAS  PubMed  Google Scholar 

  27. Bomsztyk, K., Van Seuningen, I., Suzuki, H., Denisenko, O., & Ostrowski, J. (1997). Diverse molecular interactions of the hnRNP K protein. FEBS Letters, 403, 113–115.

    Article  CAS  PubMed  Google Scholar 

  28. Moumen, A., Masterson, P., O’Connor, M. J., & Jackson, S. P. (2005). hnRNP K: An HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell, 123, 1065–1078.

    Article  CAS  PubMed  Google Scholar 

  29. Cziepluch, C., Kordes, E., Poirey, R., Grewenig, A., Rommelaere, J., & Jauniaux, J. C. (1998). Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. Journal of Virology, 72, 4149–4156.

    CAS  PubMed  Google Scholar 

  30. D’Andrea, L. D., & Regan, L. (2003). TPR proteins: the versatile helix. Trends in Biochemical Sciences, 28, 655–662.

    Article  PubMed  Google Scholar 

  31. Wang, H., Shen, H., Wang, Y., et al. (2005). Overexpression of small glutamine-rich TPR-containing protein promotes apoptosis in 7721 cells. FEBS Letters, 579, 1279–1284.

    Article  CAS  PubMed  Google Scholar 

  32. Perillo, N. L., Marcus, M. E., & Baum, L. G. (1998). Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. Journal of Molecular Medicine, 76, 402–412.

    Article  CAS  PubMed  Google Scholar 

  33. Sakaguchi, M., Shingo, T., Shimazaki, T., et al. (2006). A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 7112–7117.

    Article  CAS  PubMed  Google Scholar 

  34. Cowling, V. H., & Cole, M. D. (2006). Mechanism of transcriptional activation by the Myc oncoproteins. Seminars in Cancer Biology, 16, 242–252.

    Article  CAS  PubMed  Google Scholar 

  35. Dang, C. V., O’Donnell, K. A., Zeller, K. I., Nguyen, T., Osthus, R. C., & Li, F. (2006). The c-Myc target gene network. Seminars in Cancer Biology, 16, 253–264.

    Article  CAS  PubMed  Google Scholar 

  36. Knoepfler, P. S. (2007). Myc goes global: new tricks for an old oncogene. Cancer Research, 67, 5061–5063.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer, N., Kim, S. S., & Penn, L. Z. (2006). The Oscar-worthy role of Myc in apoptosis. Seminars in Cancer Biology, 16, 275–287.

    Article  CAS  PubMed  Google Scholar 

  38. Li, L. H., Nerlov, C., Prendergast, G., MacGregor, D., & Ziff, E. B. (1994). c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO Journal, 13, 4070–4079.

    CAS  PubMed  Google Scholar 

  39. Satou, A., Taira, T., Iguchi-Ariga, S. M. M., & Ariga, H. (2001). A novel transrepression pathway of c-Myc recruitment of a transcriptional corepressor complex to c-Myc BY MM-1, A c-Myc-binding protein. Journal of Biological Chemistry, 276, 46562–46567.

    Article  CAS  PubMed  Google Scholar 

  40. Tomonaga, T., & Levens, D. (1995). Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator. Journal of Biological Chemistry, 270, 4875–4881.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, B. B., Lu, R., Wang, W. C., & Jin, Y. (2006). Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 347, 1129–1137.

    Article  CAS  PubMed  Google Scholar 

  42. Grisendi, S., Mecucci, C., Falini, B., & Pandolfi, P. P. (2006). Nucleophosmin and cancer. Nature Reviews Cancer, 6, 493–505.

    Article  CAS  PubMed  Google Scholar 

  43. Li, Z., Boone, D., & Hann, S. R. (2008). Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proceedings of the National Academy of Sciences of the United States of America, 105, 18794–18799.

    Article  CAS  PubMed  Google Scholar 

  44. Korgaonkar, C., Hagen, J., Tompkins, V., et al. (2005). Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Molecular and Cellular Biology, 25, 1258–1271.

    Article  CAS  PubMed  Google Scholar 

  45. Baharvand, H., Hajheidari, M., Ashtiani, S. K., & Salekdeh, G. H. (2006). Proteomic signature of human embryonic stem cells. Proteomics, 6, 3544–3549.

    Article  PubMed  Google Scholar 

  46. Barthelery, M., Salli, U., & Vrana, K. E. (2008). Enhanced nuclear proteomics. Proteomics, 8, 1832–1838.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was funded by a grant provided from Royan Institute.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Baharvand or Ghasem Hosseini Salekdeh.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12015-010-9127-4

Electronic Supplemantary Material

Below is the link to the electronic supplementary material.

Fig. S1

Morphological and flow cytometry analyses of undifferentiated and differentiated monkey ESCs. a Phase contrast photomicrographs of a colony of monkey ESCs grown on feeder cells. b High magnification of ESCs. Each cell displays a compact morphology and a high nucleus-cytoplasmic ratio containing prominent nucleoli, typical of undifferentiated ESC. c The ESC line had a normal karyotype (42 XY). Representative flow cytometric analysis of key ESC markers, including Oct-4 d, SSEA-4 e, Tra-1-60 f, and Tra-1-81 g. The cells expressing markers compared with isotype control (white peaks) were termed as the marker-positive population. Percentages of double positive for SSEA-4/TRA-1-60 h and SSEA-4/TRA-1-81 i are indicated in the dot plots. The percentages of undifferentiated and differentiated ESCs are presented in l. The differentiating EBs were cultured in suspension for 9 days (Fig. 1 j = day 3, k = day 9) (DOC 188 kb)

Table S1

(DOC 17.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasrabadi, D., Larijani, M.R., Fathi, A. et al. Nuclear Proteome Analysis of Monkey Embryonic Stem Cells During Differentiation. Stem Cell Rev and Rep 6, 50–61 (2010). https://doi.org/10.1007/s12015-009-9109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9109-6

Keyword

Navigation