Skip to main content

Advertisement

Log in

Long-term Fate of Allogeneic Neural Stem Cells Following Transplantation into Injured Spinal Cord

  • Report
  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

To characterize the fate of allogeneic neural stem cells (NSCs) following transplantation into injured spinal cord, green fluorescent protein (GFP)-NSCs isolated from GFP transgenic Sprague–Dawley rat embryos were transplanted into contused spinal cords of Wistar rats. The GFP-NSCs survived for at least 6 months in injured spinal cord; most of them differentiated rapidly into astrocytes, and a few were able to undergo proliferation. After transplantation, the GFP-NSCs remained in the transplantation site at the early stage, and then migrated along white-matter, and gathered around the injured cavity. At 6 months post-transplantation, CD8 T-lymphocytes infiltrated the spinal cord, and mixed lymphocyte culture from host and donor showed that lymphocytes from the host spleen were primed by allogeneic GFP-NSCs. At 12 months post-transplantation, most GFP cells in the spinal cord lost their morphology and disintegrated. The Basso, Beattie and Bresnahan score and footprint analysis indicated that the improvement of locomotor function in transplanted rats appeared only at the early stage, and was not seen even at 6 months after transplantation All these results suggest that the allogeneic NSCs, after transplantation into injured spinal cord, activate the host immune system. Therefore, if immunosuppressive agents are not used, the grafted allogeneic NSCs, although they can survive for a long time, are subjected to host immune rejection, and the effect of NSCs on functional recovery is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ben-Hur, T., Idelson, M., Khaner, H., Pera, M., Reinhartz, E., Itzik, A., et al. (2004). Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells, 22(7), 1246–1255.

    Article  PubMed  Google Scholar 

  2. Roberts, T. J., Price, J., Williams, S. C., & Modo, M. (2006). Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience, 139(4), 1187–1199.

    Article  CAS  PubMed  Google Scholar 

  3. Cao, Q., Xu, X. M., Devries, W. H., Enzmann, G. U., Ping, P., Tsoulfas, P., et al. (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Journal of Neuroscience, 25, 6947–6957.

    Article  CAS  PubMed  Google Scholar 

  4. Hasegawa, K., Chang, Y. W., Li, H., Berlin, Y., Ikeda, O., Kane-Goldsmith, N., et al. (2005). Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Experimental Neurology, 193, 394–410.

    Article  CAS  PubMed  Google Scholar 

  5. Lepore, A. C. & Fischer, I. (2005). Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Experimental Neurology, 194, 230–242.

    Article  CAS  PubMed  Google Scholar 

  6. Popovich, P. G. & Longbrake, E. E. (2008). Can the immune system be harnessed to repair the CNS? Nature Reviews Neuroscience, 9, 481–493.

    Article  CAS  PubMed  Google Scholar 

  7. Rossi, F. & Cattaneo, E. (2002). Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nature Reviews Neuroscience, 3(5), 401–409.

    Article  CAS  PubMed  Google Scholar 

  8. Boyd, A. S., Higashi, Y., & Wood, K. J. (2005). Transplanting stem cells: potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Advanced Drug Delivery Reviews, 57(13), 1944–1969.

    Article  CAS  PubMed  Google Scholar 

  9. Griffiths, M., Neal, J. W., & Gasque, P. (2007). Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. International Review of Neurobiology, 82, 29–55.

    Article  CAS  PubMed  Google Scholar 

  10. Fleming, J. C., Norenberg, M. D., Ramsay, D. A., Dekaban, G. A., Marcillo, A. E., Saenz, A. D., et al. (2006). The cellular inflammatory response in human spinal cords after injury. Brain, 129, 3249–3269. Pt.

    Article  PubMed  Google Scholar 

  11. Ben-Hur, T. (2008). Immunomodulation by neural stem cells. Journal of Neurological Science, 265, 102–104.

    Article  CAS  Google Scholar 

  12. Marano, J. E., Sun, D., Zama, A. M., Young, W., & Uzumcu, M. (2008). Orthotopic transplantation of neonatal GFP rat ovary as experimental model to study ovarian development and toxicology. Reproductive Toxicology, 26, 191–196.

    Article  CAS  PubMed  Google Scholar 

  13. Rauch, M. F., Hynes, S. R., Bertram, J., Redmond, A., Robinson, R., Williams, C., et al. (2009). Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. European Journal of Neuroscience, 29, 132–145.

    Article  PubMed  Google Scholar 

  14. Yin, L., Fu, S. L., Shi, G. Y., Li, Y., Jin, J. Q., Ma, Z. W., et al. (2008). Expression and regulation of major histocompatibility complex on neural stem cells and their lineages. Stem Cells and Development, 17, 53–65.

    Article  CAS  PubMed  Google Scholar 

  15. Fischer, I. (2000). Candidate cells for transplantation into the injured CNS. Progress in Brain Research, 128, 253–257.

    Article  CAS  PubMed  Google Scholar 

  16. Rao, M. S. & Mayer-Proschel, M. (2000). Precursor cells for transplantation. Progress in Brain Research, 128, 273–292.

    Article  CAS  PubMed  Google Scholar 

  17. Bjorklund, A., Dunnett, S. B., Brundin, P., Stoessl, A. J., Freed, C. R., Breeze, R. E., et al. (2003). Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurology, 2(7), 437–445.

    Article  PubMed  Google Scholar 

  18. Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., et al. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14069–14074.

    Article  CAS  PubMed  Google Scholar 

  19. Muraoka, K., Shingo, T., Yasuhara, T., Kameda, M., Yuan, W., Hayase, H., et al. (2006). The high integration and differentiation potential of autologous neural stem cell transplantation compared with allogeneic transplantation in adult rat hippocampus. Experimental Neurology, 199(2), 311–327.

    Article  CAS  PubMed  Google Scholar 

  20. Tarasenko, Y. I., Gao, J., Nie, L., Johnson, K. M., Grady, J. J., Hulsebosch, C. E., et al. (2007). Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. Journal of Neuroscience Research, 85(1), 47–57.

    Article  CAS  PubMed  Google Scholar 

  21. Guzman, R., Uchida, N., Bliss, T. M., He, D., Christopherson, K. K., Stellwagen, D., et al. (2007). Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proceedings of the National Academy of Sciences USA, 104(24), 10211–10216.

    Article  CAS  Google Scholar 

  22. Zhu, J., Zhou, L., & XingWu, F. (2006). Tracking neural stem cells in patients with brain trauma. New England Journal of Medicine, 355(22), 2376–2378.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, D. E., Tsuji, K., Kim, Y. R., Mueller, F. J., Eom, H. S., Snyder, E. Y., et al. (2006). Neural stem cell transplant survival in brains of mice: assessing the effect of immunity and ischemia by using real-time bioluminescent imaging. Radiology, 241(3), 822–830.

    Article  PubMed  Google Scholar 

  24. Lepore, A. C., Neuhuber, B., Connors, T. M., Han, S. S., Liu, Y., Daniels, M. P., et al. (2006). Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience, 142(1), 287–304.

    Article  CAS  PubMed  Google Scholar 

  25. Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C. M., & Fehlings, M. G. (2006). Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. Journal of Neuroscience, 26, 3377–3389.

    Article  CAS  PubMed  Google Scholar 

  26. Syed, Y. A., Baer, A. S., Lubec, G., Hoeger, H., Widhalm, G., & Kotter, M. R. (2008). Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. Neurosurgical Focus, 24(3–4), E5.

    Article  PubMed  Google Scholar 

  27. Wang, F. & Zhu, Y. (2008). The interaction of Nogo-66 receptor with Nogo-p4 inhibits the neuronal differentiation of neural stem cells. Neuroscience, 151(1), 74–81.

    Article  PubMed  Google Scholar 

  28. Stirling, D. P., Khodarahmi, K., Liu, J., McPhail, L. T., McBride, C. B., Steeves, J. D., et al. (2004). Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. Journal of Neuroscience, 24(9), 2182–2190.

    Article  CAS  PubMed  Google Scholar 

  29. Ikegami, T., Nakamura, M., Yamane, J., Katoh, H., Okada, S., Iwanami, A., et al. (2005). Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. European Journal of Neuroscience, 22(12), 3036–3046.

    Article  PubMed  Google Scholar 

  30. Lee, S. T., Park, J. E., Lee, K., Kang, L., Chu, K., Kim, S. U., et al. (2006). Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington’s disease. Journal of Neuroscience Methods, 152, 250–254.

    Article  CAS  PubMed  Google Scholar 

  31. Belmadani, A., Tran, P. B., Ren, D., & Miller, R. J. (2006). Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. Journal of Neuroscience, 26, 3182–3191.

    Article  CAS  PubMed  Google Scholar 

  32. Guzman, R., Bliss, T., De Los Angeles, A., Moseley, M., & Palmer, T. (2008). Steinberg G. Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. Journal of Neuroscience Research, 86, 873–882.

    Article  CAS  PubMed  Google Scholar 

  33. Kimura, A., Ohmori, T., Ohkawa, R., Madoiwa, S., Mimuro, J., Murakami, T., et al. (2007). Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells, 25, 115–124.

    Article  CAS  PubMed  Google Scholar 

  34. Hori, J., Ng, T. F., Shatos, M., Klassen, H., Streilein, J. W., & Young, M. J. (2003). Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells, 21, 405–416.

    Article  PubMed  Google Scholar 

  35. Galea, I., Bechmann, I., & Perry, V. H. (2007). What is immune privilege (not)? Trends in Immunology, 28(1), 12–18.

    Article  CAS  PubMed  Google Scholar 

  36. Niederkorn, J. Y. (2006). See no evil, hear no evil, do no evil: the lessons of immune privilege. Nature Immunology, 7, 354–359.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, L. Q., Jorquera, M., Streilein, J. W., & Ishioka, M. (1995). Unconventional rejection of neural retinal allografts implanted into the immunologically privileged site of the eye. Transplantation, 59(8), 1201–1207.

    Article  CAS  PubMed  Google Scholar 

  38. Horner, P. J., Popovich, P. G., Mullin, B. B., & Stokes, B. T. (1996). A quantitative spatial analysis of the blood-spinal cord barrier. II. Permeability after intraspinal fetal transplantation. Experimental Neurology, 142, 226–243.

    Article  CAS  PubMed  Google Scholar 

  39. Popovich, P. G., Horner, P. J., Mullin, B. B., & Stokes, B. T. (1996). A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Experimental Neurology, 142, 258–275.

    Article  CAS  PubMed  Google Scholar 

  40. Whetstone, W. D., Hsu, J. Y., Eisenberg, M., Werb, Z., & Noble-Haeusslein, L. J. (2003). Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. Journal of Neuroscience Research, 74(2), 227–239.

    Article  CAS  PubMed  Google Scholar 

  41. Dai, Y., Lv, T., Wang, K., Huang, Y., Li, D., & Liu, J. (2008). Detection of acute renal allograft rejection by analysis of renal tissue proteomics in rat models of renal transplantation. Saudi Journal of Kidney Diseases and Transplantation, 19, 952–959.

    PubMed  Google Scholar 

  42. Rokahr, K. L., Sharland, A. F., Sun, J., Wang, C., Sheil, A. G., Yan, Y., et al. (1998). Paradoxical early immune activation during acceptance of liver allografts compared with rejection of skin grafts in a rat model of transplantation. Immunology, 95, 257–263.

    Article  CAS  PubMed  Google Scholar 

  43. Yang, J., Ahn, C., Jung, H. K., Kim, E. K., Kim, J. Y., Kim, Y. S., et al. (2003). The expression patterns of CD44 and CD45RB on peripheral blood T lymphocytes in the rejection of allogeneic murine skin transplantation. Transplant Immunology, 11, 197–206.

    Article  CAS  PubMed  Google Scholar 

  44. Webber, D. J., Bradbury, E. J., McMahon, S. B., & Minger, S. L. (2007). Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regenerative Medicine, 2(6), 929–945.

    Article  CAS  PubMed  Google Scholar 

  45. Llado, J., Haenggeli, C., Maragakis, N. J., Snyder, E. Y., & Rothstein, J. D. (2004). Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Molecular and Cellular Neurosciences, 27, 322–331.

    CAS  PubMed  Google Scholar 

  46. Lu, P., Jones, L. L., Snyder, E. Y., & Tuszynski, M. H. (2003). Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Experimental Neurology, 181, 115–129.

    Article  CAS  PubMed  Google Scholar 

  47. Parr, A. M., Kulbatski, I., Zahir, T., Wang, X., Yue, C., Keating, A., et al. (2008). Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience, 155, 760–770.

    Article  CAS  PubMed  Google Scholar 

  48. Ponomarev, E. D., Maresz, K., Tan, Y., & Dittel, B. N. (2007). CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. Journal of Neuroscience, 27, 10714–10721.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, X., Fu, S., Wang, Y., Yu, P., Hu, J., Gu, W., et al. (2007). Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Molecular and Cellular Neurosciences, 36, 343–354.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Major State Basic Research Development Program of China (The 973 Project, 2003CB515302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Hua Lu.

Additional information

Liang Xu and Chao-jin Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Xu, Cj., Lü, HZ. et al. Long-term Fate of Allogeneic Neural Stem Cells Following Transplantation into Injured Spinal Cord. Stem Cell Rev and Rep 6, 121–136 (2010). https://doi.org/10.1007/s12015-009-9104-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9104-y

Keywords

Navigation