Skip to main content

Advertisement

Log in

A Three Dimensional Anchorage Independent In Vitro System for the Prolonged Growth of Embryoid Bodies to Study Cancer Cell Behaviour and Anticancer Agents

  • Protocols
  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

We describe a three dimensional (3D) anchorage independent in vitro protocol for the prolonged growth of human embryoid bodies (EBs) up to 90 days. We grew hESCs (46XX) in methylcellulose (MC) in motion culture in the presence of EB medium (EB), EB medium with Matrigel (EB + MAT), bulk culture medium (BCM), and BCM medium with Matrigel (BCM + MAT). All four experimental groups produced embryoid bodies (EBs) which with prolonged growth to 90 days acquired blood vessels and tissues from all three germ layers. Based on histology, microarray gene expression profiles and the definition for experimental teratomas, we could classify the EBs into early EBs, mature EBs and teratomas. The EB + MAT group produced the highest number of teratomas and their microarray data suggested the presence of inductive microenvironment niches and activation of pathways for self-organization, morphogenesis and growth. When we microinjected hepatocarcinoma-Green Fluorescent Protein cells (HepG2-GFP) (46XY) into the teratomas, after 10 days the HepG2-GFP cells had grown inside the teratoma as confirmed by confocal microscopy and SRY gene analysis. This 3D-MC-(EB + MAT) in vitro system requires few cells to produce many teratomas, can be used to test pluripotency of potential human embryonic and induced pluripotent stem cell lines (hESC, hiPSC), and is an experimental humanized platform to study cancer cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shih, C. Forman, S. J. Chu, P. & Slovak, M. (2007). Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells & Development, 16, 893–902.

    Article  CAS  Google Scholar 

  2. Prokhorova, T. A. Harkness, L. M. Frandsen, U. Ditzel, N. Schrøder, H. D. Burns, J. S. et al. (2009). Teratoma formation by human embryonic stem cells is site-dependent and enhanced by the presence of Matrigel. Stem Cells and Development, 18, 47–54.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, K. Tanabe, K. Ohnuki, M. Narita, M. Ichisaka, T. Tomoda, K. et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  4. Blum, B. & Benvenisty, N. (2008). The tumorigenicity of human embryonic stem cells. Advanced Cancer Research, 100, 133–158.

    Article  Google Scholar 

  5. Brivanlou, A. H. Gage, F. H. Jaenisch, R. Jessell, T. Melton, D. & Rossant, J. (2003). Setting standards for human embryonic stem cells. Science, 300, 913–916.

    Article  CAS  PubMed  Google Scholar 

  6. Tzukerman, M. Rosenberg, T. Ravel, Y. Reiter, I. Coleman, R. & Skorecki, K. (2003). An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells. Proceedings of the National Academy of Sciences USA, 100, 13507–13512.

    Article  CAS  Google Scholar 

  7. Tzukerman, M. Rosenberg, T. Reiter, I. Eliezer, S. B. Denkberg, G. Coleman, R. et al. (2006). The influence of a human embryonic stem cell-derived microenvironment on targeting of human solid tumor xenografts. Cancer Research, 66, 3792–3801.

    Article  CAS  PubMed  Google Scholar 

  8. Lensch, M. W. Schlaeger, T. M. Zon, L. I. & Daley, G. Q. (2007). Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell, 1, 253–258.

    Article  CAS  PubMed  Google Scholar 

  9. Aleckovic, M. & Simon, C. (2008). Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reproductive Biomedicine Online, 17, 270–280.

    Article  PubMed  Google Scholar 

  10. Itskovitz-Eldor, J. Schuldiner, M. Karsenti, D. Eden, A. Yanuka, O. Amit, M. et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine, 6, 88–95.

    CAS  PubMed  Google Scholar 

  11. Karbanova, J. & Mokry, J. (2002). Histological and histochemical analysis of embryoid bodies. Acta Histochemistry, 104, 361–365.

    Article  Google Scholar 

  12. Rust, W. L. Sadasivam, A. & Dunn, N. R. (2006). Three-dimensional extracellular matrix stimulates gastrulation-like events in human embryoid bodies. Stem Cells and Development, 15, 889–904.

    Article  CAS  PubMed  Google Scholar 

  13. Cameron, C. M. Hu, W. S. & Kaufman, D. S. (2006). Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnology and Bioengineering, 94, 938–948.

    Article  CAS  PubMed  Google Scholar 

  14. Du, P. Kibbe, W. A. & Lin, S. M. (2008). Lumi: a pipeline for processing Illumina microarray. Bioinformatics, 24, 1547–1548.

    Article  CAS  PubMed  Google Scholar 

  15. Lin, S. M. Du, P. Huber, W. & Kibbe, W. A. (2008). Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Research, 36, e11.

    Article  PubMed  CAS  Google Scholar 

  16. Sturn, A. Quackenbush, J. & Trajanoski, Z. (2002). Genesis: cluster analysis of microarray data. Bioinformatics, 18, 207–208.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, D. W. Sherman, B. T. & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.

    Article  CAS  Google Scholar 

  18. Liu, X. Yu, X. Zack, D. J. Zhu, H. & Qian, J. (2008). TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics, 9, 271–275.

    Article  PubMed  CAS  Google Scholar 

  19. Pirooznia, M. Nagarajan, V. & Deng, Y. (2007). GeneVenn: a web application for comparing gene lists using Venn diagrams. Bioinformation, 1, 420–422.

    PubMed  Google Scholar 

  20. ten Berge, D. Koole, W. Fuerer, C. Fish, M. Eroglu, E. & Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell, 3, 508–518.

    Article  PubMed  CAS  Google Scholar 

  21. Blum, B. Bar-Nur, O. Golan-Lev, T. & Benvenisty, N. (2009). The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nature Biotechology, 27, 281–287.

    Article  CAS  Google Scholar 

  22. Garner, E. & Raj, K. (2008). Protective mechanisms of p53–p21-pRb proteins against DNA damage-induced cell death. Cell Cycle, 7, 277–282.

    CAS  PubMed  Google Scholar 

  23. Croucher, D. R. Saunders, D. N. Lobov, S. & Ranson, M. (2008). Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nature Review Cancer, 8, 535–545.

    Article  CAS  Google Scholar 

  24. Wu, M. X. (2003). Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis. Apoptosis, 8, 11–18.

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Porath, I. Thomson, M. W. Carey, V. J. Ge, R. Bell, G. W. & Regev, A. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40, 499–507.

    Article  CAS  PubMed  Google Scholar 

  26. Kleinman, H. K. & Martin, G. R. (2005). Matrigel: basement membrane matrix with biological activity. Seminars in Cancer Biology, 15, 378–386.

    Article  CAS  PubMed  Google Scholar 

  27. Philip, D. Chen, S. S. Fitzgerald, W. Orenstein, J. Margolis, L. & Kleinman, H. (2005). Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells, 23, 288–296.

    Article  Google Scholar 

  28. Reubinoff, B. E. Pera, M. F. Fong, C. Y. Trounson, A. & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vivo. Nature Biotechology, 18, 399–404.

    Article  CAS  Google Scholar 

  29. Mauck, R. L. Li, W. J. & Tuan, R. S. (2009). Microenvironmental determinants of stem cell fate. In U. Meyer, J. Handschel, H. P. Weismann & T. Meyer (Eds.), Fundamentals of tissue engineering and regenerative medicine. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr Gan Shu Uin (National University of Singapore) for a gift of the HepG2-GFP cells. This project was supported by funds from the National University of Singapore (R-174-000-089-133) and the National Medical Research Council, Singapore (R-174-000-103-213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariff Bongso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, CY., Chak, LL., Subramanian, A. et al. A Three Dimensional Anchorage Independent In Vitro System for the Prolonged Growth of Embryoid Bodies to Study Cancer Cell Behaviour and Anticancer Agents. Stem Cell Rev and Rep 5, 410–419 (2009). https://doi.org/10.1007/s12015-009-9092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9092-y

Keywords

Navigation