Skip to main content

Advertisement

Log in

The Molecular Mechanism of Induced Pluripotency: A Two-Stage Switch

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Pluripotent stem cells are basic cells with an indefinite self-renewal capacity and the potential to generate all the cell types of the three germinal layers. So far, the major source for pluripotent stem cells is the inner cell mass of the blastocysts: embryonic stem (ES) cells. Potential clinical application of ES cells is faced with many practical and ethical concerns. So, a major breakthrough was achieved in 2006, when it was shown that pluripotent stem cells could be obtained by transducing mouse embryonic and adult fibroblasts with a limited set of defined transcription factors. These reprogrammed cells, named induced pluripotent stem (iPS) cells, resembled ES cells in many of their characteristics. Since this initial study, iPS cell research has taken an incredible flight, and to date iPS cells have been generated from cells from several species using different sets of reprogramming factors. Given the potential to generate patient-specific cell populations without the need for human embryonic cells, iPS cell technology has been received with great excitement by research and medical communities. However, many questions regarding the actual molecular process of induced reprogramming remain unanswered and need to be addressed before iPS cells can go to the clinic. In this review, we start by summarizing recent advances in iPS cell research and inventory the hurdles that still need to be taken before safe clinical application. Our major aim, however, is to review the available data on the molecular processes underlying pluripotency reprogramming and present a two-stage switch model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676. doi:10.1016/j.cell.2006.07.024.

    Article  PubMed  CAS  Google Scholar 

  2. Tokuzawa, Y., Kaiho, E., Maruyama, M., et al. (2003). Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Molecular and Cellular Biology, 23, 2699–2708. doi:10.1128/MCB.23.8.2699-2708.2003.

    Article  PubMed  CAS  Google Scholar 

  3. Nichols, J., Zevnik, B., Anastassiadis, K., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–391. doi:10.1016/S0092-8674(00)81769-9.

    Article  PubMed  CAS  Google Scholar 

  4. Mitsui, K., Tokuzawa, Y., Itoh, H., et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642. doi:10.1016/S0092-8674(03)00393-3.

    Article  PubMed  CAS  Google Scholar 

  5. Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70. doi:10.1016/j.stem.2007.05.014.

    Article  PubMed  CAS  Google Scholar 

  6. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317. doi:10.1038/nature05934.

    Article  PubMed  CAS  Google Scholar 

  7. Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324. doi:10.1038/nature05944.

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872. doi:10.1016/j.cell.2007.11.019.

    Article  PubMed  CAS  Google Scholar 

  9. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920. doi:10.1126/science.1151526.

    Article  PubMed  CAS  Google Scholar 

  10. Park, I. H., Zhao, R., West, J. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451, 141–146. doi:10.1038/nature06534.

    Article  PubMed  CAS  Google Scholar 

  11. Mali, P., Ye, Z., Hommond, H. H., et al. (2008). Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 26, 1998–2005. doi:10.1634/stemcells.2008-0346.

    Article  PubMed  CAS  Google Scholar 

  12. Lowry, W. E., Richter, L., Yachechko, R., et al. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105, 2883–2888. doi:10.1073/pnas.0711983105.

    Article  PubMed  CAS  Google Scholar 

  13. Liao, J., Wu, Z., Wang, Y., et al. (2008). Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Research, 18, 600–603. doi:10.1038/cr.2008.51.

    Article  PubMed  CAS  Google Scholar 

  14. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26, 101–106. doi:10.1038/nbt1374.

    Article  PubMed  CAS  Google Scholar 

  15. Dimos, J., Rodolfa, K., Niakan, K., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–1221. doi:10.1126/science.1158799.

    Article  PubMed  CAS  Google Scholar 

  16. Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886. doi:10.1016/j.cell.2008.07.041.

    Article  PubMed  CAS  Google Scholar 

  17. Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., & Hochedlinger, K. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 3, 340–345. doi:10.1016/j.stem.2008.08.003.

    Article  PubMed  CAS  Google Scholar 

  18. Aasen, T., Raya, A., Barrero, M., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26, 1276–1284. doi:10.1038/nbt.1503.

    Article  PubMed  CAS  Google Scholar 

  19. Huangfu, D., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26, 1269–1275. doi:10.1038/nbt.1502.

    Article  PubMed  CAS  Google Scholar 

  20. Tateishi, K., He, J., Taranova, O., Liang, G., D’Alessio, A., & Zhang, Y. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journal of Biological Chemistry, 283, 31601–31607. doi:10.1074/jbc.M806597200.

    Article  PubMed  CAS  Google Scholar 

  21. Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318, 1920–1923. doi:10.1126/science.1152092.

    Article  PubMed  CAS  Google Scholar 

  22. Wernig, M., Zhao, J. P., Pruszak, J., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 105, 5856–5861. doi:10.1073/pnas.0801677105.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Research 2009; In press.

  24. Zhang, J., Wilson, G. F., Soerens, A. G., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41. doi:10.1161/CIRCRESAHA.108.192237.

    Article  PubMed  CAS  Google Scholar 

  25. Narazaki, G., Uosaki, H., Teranishi, M., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118, 498–506. doi:10.1161/CIRCULATIONAHA.108.769562.

    Article  PubMed  Google Scholar 

  26. Xu, D., Alipio, Z., Fink, L. M., et al. (2009). Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 808–813. doi:10.1073/pnas.0812090106.

    Article  PubMed  CAS  Google Scholar 

  27. Ebert, A. D., Yu, J., Rose, F. F., Jr., Mattis, V. B., Lorson, C. L., Thomson, J. A., et al. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457, 277–280. doi:10.1038/nature07677.

    Article  PubMed  CAS  Google Scholar 

  28. Blelloch, R., Venere, M., Yen, J., & Ramalho-Santos, M. (2007). Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1, 245–247. doi:10.1016/j.stem.2007.08.008.

    Article  PubMed  CAS  Google Scholar 

  29. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. iPS Cell Generation Using a Single Lentiviral Stem Cell Cassette. Stem Cells. 2008; In press.

  30. Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977. doi:10.1016/j.cell.2009.02.013.

    Article  PubMed  CAS  Google Scholar 

  31. Carey, B. W., Markoulaki, S., Hanna, J., et al. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 106, 157–162. doi:10.1073/pnas.0811426106.

    Article  PubMed  CAS  Google Scholar 

  32. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949. doi:10.1126/science.1162494.

    Article  PubMed  CAS  Google Scholar 

  33. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953. doi:10.1126/science.1164270.

    Article  PubMed  CAS  Google Scholar 

  34. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature online 2009.

  35. Yamanaka, S. (2009). A fresh look at iPS cells. Cell, 137, 13–17. doi:10.1016/j.cell.2009.03.034.

    Article  PubMed  CAS  Google Scholar 

  36. Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384. doi:10.1016/j.stem.2009.04.005.

    Article  PubMed  CAS  Google Scholar 

  37. Ponzielli, R., Katz, S., Barsyte-Lovejoy, D., & Penn, L. Z. (2005). Cancer therapeutics: targeting the dark side of Myc. European Journal of Cancer, 41, 2485–2501. doi:10.1016/j.ejca.2005.08.017.

    Article  PubMed  CAS  Google Scholar 

  38. Aoi, T., Yae, K., Nakagawa, M., et al. (2008). Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321, 699–702. doi:10.1126/science.1154884.

    Article  PubMed  CAS  Google Scholar 

  39. Wernig, M., Meissner, A., Cassady, J. P., & Jaenisch, R. (2008). c-Myc is dispensible for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2, 10–12. doi:10.1016/j.stem.2007.12.001.

    Article  PubMed  CAS  Google Scholar 

  40. Chen, Y., Shi, L., Zhang, L., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. Journal of Biological Chemistry, 283, 17969–17978. doi:10.1074/jbc.M802917200.

    Article  PubMed  CAS  Google Scholar 

  41. Trosko, J. E. (2006). From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion. Annals of the New York Academy of Sciences, 1089, 36–58. doi:10.1196/annals.1386.018.

    Article  PubMed  CAS  Google Scholar 

  42. Rowland, B. D., & Peeper, D. S. (2006). KLF4, p21 and context-dependent opposing forces in cancer. Nature Reviews Cancer, 6, 11–23. doi:10.1038/nrc1780.

    Article  PubMed  CAS  Google Scholar 

  43. Duinsbergen, D., Eriksson, M., 't Hoen, P. A., Frisén, J., & Mikkers, H. (2008). Induced pluripotency with endogenous and inducible genes. Experimental Cell Research, 314, 3255–3263. doi:10.1016/j.yexcr.2008.06.024.

    Article  PubMed  CAS  Google Scholar 

  44. Eminli, S., Utikal, J., Arnold, K., Jaenisch, R., & Hochedlinger, K. (2008). Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells, 26, 2467–2474. doi:10.1634/stemcells.2008-0317.

    Article  PubMed  CAS  Google Scholar 

  45. Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2, 525–528. doi:10.1016/j.stem.2008.05.011.

    Article  PubMed  CAS  Google Scholar 

  46. Kim, J. B., Zaehres, H., Wu, G., et al. (2008). Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454, 646–650. doi:10.1038/nature07061.

    Article  PubMed  CAS  Google Scholar 

  47. Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T., & Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biology, 6, 2237–2247. doi:10.1371/journal.pbio.0060253.

    Article  CAS  Google Scholar 

  48. Kim, J. B., Sebastiano, V., Wu, G., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136, 411–419. doi:10.1016/j.cell.2009.01.023.

    Article  PubMed  CAS  Google Scholar 

  49. Qin, D., Gan, Y., Shao, K., et al. (2008). Mouse meningiocytes express sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors. Journal of Biological Chemistry, 283, 33730–33735. doi:10.1074/jbc.M806788200.

    Article  PubMed  CAS  Google Scholar 

  50. Huangfu, D., Maehr, R., Guo, W., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26, 795–797. doi:10.1038/nbt1418.

    Article  PubMed  CAS  Google Scholar 

  51. Marson, A., Foreman, R., Chevalier, B., et al. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 3, 132–135. doi:10.1016/j.stem.2008.06.019.

    Article  PubMed  CAS  Google Scholar 

  52. Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Schöler, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3, 568–574. doi:10.1016/j.stem.2008.10.004.

    Article  PubMed  CAS  Google Scholar 

  53. Mikkelsen, T. S., Hanna, J., Zhang, X., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454, 49–55. doi:10.1038/nature07056.

    Article  PubMed  CAS  Google Scholar 

  54. Pesce, M., & Scholer, H. R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells, 19, 271–27. doi:10.1634/stemcells.19-4-271.

    Article  PubMed  CAS  Google Scholar 

  55. Pesce, M., & Scholer, H. (2000). Oct4: control of totipotency and germline determination. Molecular Reproduction and Development, 55, 452–457. doi:10.1002/(SICI)1098-2795(200004)55:4<452::AID-MRD14>3.0.CO;2-S.

    Article  PubMed  CAS  Google Scholar 

  56. Gidekel, S., Pizov, G., Bergman, Y., & Pikarsky, E. (2003). Oct-3/4 is a dosedependent oncogenic fate determinant. Cancer Cell, 4, 361–370. doi:10.1016/S1535-6108(03)00270-8.

    Article  PubMed  CAS  Google Scholar 

  57. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376. doi:10.1038/74199.

    Article  PubMed  CAS  Google Scholar 

  58. Zaehres, H., Lensch, M. W., Daheron, L., Stewart, S. A., Itskovitz-Eldor, J., & Daley, G. Q. (2005). High-efficiency RNA interference in human embryonic stem cells. Stem Cells, 23, 299–305. doi:10.1634/stemcells.2004-0252.

    Article  PubMed  CAS  Google Scholar 

  59. Kehler, J., Tolkunova, E., Koschorz, B., et al. (2004). Oct4 is required for primordial germ cell survival. EMBO Reports, 5, 1078–1083. doi:10.1038/sj.embor.7400279.

    Article  PubMed  CAS  Google Scholar 

  60. Cheng, L., Sung, M. T., Cossu-Rocca, P., et al. (2007). OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. Journal of Pathology, 211, 1–9. doi:10.1002/path.2105.

    Article  PubMed  CAS  Google Scholar 

  61. Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., & Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development, 17, 126–140. doi:10.1101/gad.224503.

    Article  PubMed  CAS  Google Scholar 

  62. Miyagi, S., Saito, T., Mizutani, K., et al. (2004). The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Molecular and Cellular Biology, 24, 4207–4220. doi:10.1128/MCB.24.10.4207-4220.2004.

    Article  PubMed  CAS  Google Scholar 

  63. Yuan, H., Corbi, N., Basilico, C., & Dailey, L. (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes and Development, 9, 2635–2645. doi:10.1101/gad.9.21.2635.

    Article  PubMed  CAS  Google Scholar 

  64. Nishimoto, M., Miyagi, S., Katayanagi, T., Tomioka, M., Muramatsu, M., & Okuda, A. (2003). The embryonic Octamer factor 3/4 displays distinct DNA binding specificity from those of other Octamer factors. Biochemical and Biophysical Research Communications, 302, 581–586. doi:10.1016/S0006-291X(03)00218-3.

    Article  PubMed  CAS  Google Scholar 

  65. Masui, S., Nakatake, Y., Toyooka, Y., et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 9, 625–635. doi:10.1038/ncb1589.

    Article  PubMed  CAS  Google Scholar 

  66. Chew, J. L., Loh, Y. H., Wensheng, Z., et al. (2005). Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Molecular and Cellular Biology, 25, 6031–6046.

    Article  PubMed  CAS  Google Scholar 

  67. Ferri, A. L., Cavallaro, M., Braida, D., et al. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131, 3805–3819. doi:10.1242/dev.01204.

    Article  PubMed  CAS  Google Scholar 

  68. Williamson, K. A., Hever, A. M., Rainger, J., et al. (2006). Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Human Molecular Genetics, 15, 1413–1422. doi:10.1093/hmg/ddl064.

    Article  PubMed  CAS  Google Scholar 

  69. Kelberman, D., Rizzoti, K., Avilion, A., et al. (2006). Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitarygonadal axis in mice and humans. Journal of Clinical Investigation, 116, 2442–2455.

    PubMed  CAS  Google Scholar 

  70. Dong, C., Wilhelm, D., & Koopman, P. (2004). Sox genes and cancer. Cytogenet Genome Research, 105, 442–447. doi:10.1159/000078217.

    Article  CAS  Google Scholar 

  71. Dang, C. V., O’Donnell, K. A., Zeller, K. I., Nguyen, T., Osthus, R. C., & Li, F. (2006). The c-Myc target gene network. Seminars in Cancer Biology, 16, 253–264. doi:10.1016/j.semcancer.2006.07.014.

    Article  PubMed  CAS  Google Scholar 

  72. Dang, D. T., Pevsner, J., & Yang, V. W. (2000). The biology of the mammalian Kruppel-like family of transcription factors. International Journal of Biochemistry and Cell Biology, 32, 1103–1121. doi:10.1016/S1357-2725(00)00059-5.

    Article  PubMed  CAS  Google Scholar 

  73. Wei, D., Kanai, M., Huang, S., & Xie, K. (2006). Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis, 27, 23–31. doi:10.1093/carcin/bgi243.

    Article  PubMed  CAS  Google Scholar 

  74. Segre, J. A., Bauer, C., & Fuchs, E. (1999). Klf4 is a transcription factor required for establishing the barrier function of the skin. Nature Genetics, 22, 356–360. doi:10.1038/11926.

    Article  PubMed  CAS  Google Scholar 

  75. Conkright, M. D., Wani, M. A., Anderson, K. P., & Lingrel, J. B. (1999). A gene encoding an intestinal-enriched member of the Kruppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Research, 27, 1263–1270. doi:10.1093/nar/27.5.1263.

    Article  PubMed  CAS  Google Scholar 

  76. Garrett-Sinha, L. A., Eberspaecher, H., Seldin, M. F., & de Crombrugghe, B. (1996). A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. Journal of Biological Chemistry, 271, 31384–31390. doi:10.1074/jbc.271.49.31384.

    Article  PubMed  CAS  Google Scholar 

  77. Shields, J. M., Christy, R. J., & Yang, V. W. (1996). Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. Journal of Biological Chemistry, 271, 20009–20017. doi:10.1074/jbc.271.33.20009.

    Article  PubMed  CAS  Google Scholar 

  78. Nakatake, Y., Fukui, N., Iwamatsu, Y., et al. (2006). Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Molecular and Cellular Biology, 26, 72–7782. doi:10.1128/MCB.00468-06.

    Article  CAS  Google Scholar 

  79. Jiang, J., Chan, Y. S., Loh, Y. H., et al. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 10, 353–360. doi:10.1038/ncb1698.

    Article  PubMed  CAS  Google Scholar 

  80. Chen, X., Johns, D. C., Geiman, D. E., et al. (2001). Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. Journal of Biological Chemistry, 276, 30423–30428. doi:10.1074/jbc.M101194200.

    Article  PubMed  CAS  Google Scholar 

  81. McConnell, B. B., Ghaleb, A. M., Nandan, M. O., & Yang, V. W. (2007). The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays, 29, 549–557. doi:10.1002/bies.20581.

    Article  PubMed  CAS  Google Scholar 

  82. Ohnishi, S., Ohnami, S., Laub, F., et al. (2003). Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochemical and Biophysical Research Communications, 308, 251–256. doi:10.1016/S0006-291X(03)01356-1.

    Article  PubMed  CAS  Google Scholar 

  83. Katz, J. P., Perreault, N., Goldstein, B. G., et al. (2005). Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology, 128, 935–945. doi:10.1053/j.gastro.2005.02.022.

    Article  PubMed  CAS  Google Scholar 

  84. Foster, K. W., Frost, A. R., McKie-Bell, P., et al. (2000). Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Research, 60, 6488–6495.

    PubMed  CAS  Google Scholar 

  85. Wang, N., Liu, Z. H., Ding, F., et al. (2002). Downregulation of gut-enriched Kruppel-like factor expression in esophageal cancer. World Journal of Gastroenterology, 8, 966–970.

    PubMed  CAS  Google Scholar 

  86. Zhao, W., Hisamuddin, I. M., Nandan, M. O., et al. (2004). Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene, 23, 395–402. doi:10.1038/sj.onc.1207067.

    Article  PubMed  CAS  Google Scholar 

  87. Lebofsky, R., & Walter, J. C. (2007). New Myc-anisms for DNA replication and tumorigenesis? Cancer Cell, 12, 102–103. doi:10.1016/j.ccr.2007.07.013.

    Article  PubMed  CAS  Google Scholar 

  88. Patel, J. H., Loboda, A. P., Showe, M. K., Showe, L. C., & McMahon, S. B. (2004). Analysis of genomic targets reveals complex functions of MYC. Nature Reviews Cancer, 4, 562–568. doi:10.1038/nrc1393.

    Article  PubMed  CAS  Google Scholar 

  89. Cawley, S., Bekiranov, S., Ng, H. H., et al. (2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116, 499–509. doi:10.1016/S0092-8674(04)00127-8.

    Article  PubMed  CAS  Google Scholar 

  90. Cowling, V. H., & Cole, M. D. (2006). Mechanism of transcriptional activation by the Myc oncoproteins. Seminars in Cancer Biology, 16, 242–252. doi:10.1016/j.semcancer.2006.08.001.

    Article  PubMed  CAS  Google Scholar 

  91. Chang, T. C., Yu, D., Lee, Y. S., et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40, 43–50. doi:10.1038/ng.2007.30.

    Article  PubMed  CAS  Google Scholar 

  92. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R., & Bradley, A. (1993). A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes and Development, 7, 671–682. doi:10.1101/gad.7.4.671.

    Article  PubMed  CAS  Google Scholar 

  93. Baudino, T. A., McKay, C., Pendeville-Samain, H., et al. (2002). c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes and Development, 16, 2530–2543. doi:10.1101/gad.1024602.

    Article  PubMed  CAS  Google Scholar 

  94. Niwa, H. (2007). How is pluripotency determined and maintained? Development, 134, 635–646. doi:10.1242/dev.02787.

    Article  PubMed  CAS  Google Scholar 

  95. Chambers, I., Colby, D., Robertson, M., et al. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–655. doi:10.1016/S0092-8674(03)00392-1.

    Article  PubMed  CAS  Google Scholar 

  96. Chambers, I., Silva, J., Colby, D., et al. (2007). Nanog safeguards pluripotency and mediates germline development. Nature, 450, 1230–1234. doi:10.1038/nature06403.

    Article  PubMed  CAS  Google Scholar 

  97. Hyslop, L., Stojkovic, M., Armstrong, L., et al. (2005). Downregulation of nanog induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells, 23, 1035–1043. doi:10.1634/stemcells.2005-0080.

    Article  PubMed  CAS  Google Scholar 

  98. Bhattacharya, B., Miura, T., Brandenberger, R., et al. (2004). Gene expression in human embryonic stem cell lines: unique molecular signature. Blood, 103, 2956–2964. doi:10.1182/blood-2003-09-3314.

    Article  PubMed  CAS  Google Scholar 

  99. Pan, G., Li, J., Zhou, Y., Zheng, H., & Pei, D. (2006). A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB Journal, 20, 1730–1732. doi:10.1096/fj.05-5543fje.

    Article  PubMed  CAS  Google Scholar 

  100. Loh, Y. H., Wu, Q., Chew, J. L., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440. doi:10.1038/ng1760.

    Article  PubMed  CAS  Google Scholar 

  101. Boyer, L. A., Lee, T. I., Cole, M. F., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956. doi:10.1016/j.cell.2005.08.020.

    Article  PubMed  CAS  Google Scholar 

  102. Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics., 8, 450–461. doi:10.1038/nrg2102.

    Article  PubMed  CAS  Google Scholar 

  103. McAdams, H. H., & Arkin, A. (1997). Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 94, 814–819. doi:10.1073/pnas.94.3.814.

    Article  PubMed  CAS  Google Scholar 

  104. Rosenfeld, N., Elowitz, M. B., & Alon, U. (2002). Negative autoregulation speeds the response times of transcription networks. Journal of Molecular Biology, 323, 785–793. doi:10.1016/S0022-2836(02)00994-4.

    Article  PubMed  CAS  Google Scholar 

  105. Kuroda, T., Tada, M., Kubota, H., et al. (2005). Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Molecular and Cellular Biology, 25, 2475–2485. doi:10.1128/MCB.25.6.2475-2485.2005.

    Article  PubMed  CAS  Google Scholar 

  106. Okumura-Nakanishi, S., Saito, M., Niwa, H., & Ishikawa, F. (2005). Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. Journal of Biological Chemistry, 280, 5307–5317. doi:10.1074/jbc.M410015200.

    Article  PubMed  CAS  Google Scholar 

  107. Rodda, D. J., Chew, J. L., Lim, L. H., et al. (2005). Transcriptional regulation of Nanog by OCT4 and SOX2. Journal of Biological Chemistry, 280, 24731–24737. doi:10.1074/jbc.M502573200.

    Article  PubMed  CAS  Google Scholar 

  108. Wang, J., Rao, S., Chu, J., et al. (2006). A protein interaction network for pluripotency of embryonic stem cells. Nature, 444, 364–368. doi:10.1038/nature05284.

    Article  PubMed  CAS  Google Scholar 

  109. Feldman, N., Gerson, A., Fang, J., et al. (2006). G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biology, 8, 188–194. doi:10.1038/ncb1353.

    Article  PubMed  CAS  Google Scholar 

  110. Bernstein, B. E., Mikkelsen, T. S., Xie, X., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326. doi:10.1016/j.cell.2006.02.041.

    Article  PubMed  CAS  Google Scholar 

  111. Azuara, V., Perry, P., Sauer, S., et al. (2006). Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 8, 532–538. doi:10.1038/ncb1403.

    Article  PubMed  CAS  Google Scholar 

  112. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R., & Young, R. A. (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 130, 77–88. doi:10.1016/j.cell.2007.05.042.

    Article  PubMed  CAS  Google Scholar 

  113. Boyer, L. A., Plath, K., Zeitlinger, J., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353. doi:10.1038/nature04733.

    Article  PubMed  CAS  Google Scholar 

  114. Silva, J., & Smith, A. (2008). Capturing pluripotency. Cell, 132, 532–536. doi:10.1016/j.cell.2008.02.006.

    Article  PubMed  CAS  Google Scholar 

  115. Smith, A. G., Heath, J. K., Donaldson, D. D., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336, 688–690. doi:10.1038/336688a0.

    Article  PubMed  CAS  Google Scholar 

  116. Niwa, H., Burdon, T., Chambers, I., & Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes and Development, 12, 2048–2060. doi:10.1101/gad.12.13.2048.

    Article  PubMed  CAS  Google Scholar 

  117. Liu, Y., Ji, L., Ten, Y., Wang, Y., & Pei, X. (2007). The molecular mechanism of embryonic stem cell pluripotency and self-renewal. Science in China Series C Life Sciences, 50, 619–623. doi:10.1007/s11427-007-0074-5.

    Article  CAS  Google Scholar 

  118. Xu, R. H., Chen, X., Li, D. S., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 20, 1261–1264. doi:10.1038/nbt761.

    Article  PubMed  CAS  Google Scholar 

  119. Qi, X., Li, T. G., Hao, J., et al. (2004). BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proceedings of the National Academy of Sciences of the United States of America, 101, 6027–6032. doi:10.1073/pnas.0401367101.

    Article  PubMed  CAS  Google Scholar 

  120. Jaenisch, R., & Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132, 567–582. doi:10.1016/j.cell.2008.01.015.

    Article  PubMed  CAS  Google Scholar 

  121. Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25, 1177–1181. doi:10.1038/nbt1335.

    Article  PubMed  CAS  Google Scholar 

  122. Hotta, A., & Ellis, J. (2008). Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry, 105, 940–948. doi:10.1002/jcb.21912.

    Article  PubMed  CAS  Google Scholar 

  123. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D., & Cole, M. D. (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell, 94, 363–374. doi:10.1016/S0092-8674(00)81479-8.

    Article  PubMed  CAS  Google Scholar 

  124. Vervoorts, J., Luscher-Firzlaff, J. M., Rottmann, S., et al. (2003). Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Reports, 4, 484–490. doi:10.1038/sj.embor.embor821.

    Article  PubMed  CAS  Google Scholar 

  125. Knoepfler, P. S., Zhang, X. Y., Cheng, P. F., et al. (2006). Myc influences global chromatin structure. EMBO Journal, 25, 2723–2734. doi:10.1038/sj.emboj.7601152.

    Article  PubMed  CAS  Google Scholar 

  126. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39–49. doi:10.1016/j.stem.2007.05.012.

    Article  PubMed  CAS  Google Scholar 

  127. Hooker, C. W., & Hurlin, P. J. (2006). Of Myc and Mnt. Journal of Cell Science, 119, 208–216. doi:10.1242/jcs.02815.

    Article  PubMed  CAS  Google Scholar 

  128. Welstead, G. G., Schorderet, P., & Boyer, L. A. (2008). The reprogramming language of pluripotency. Current Opinion in Genetics and Development, 18, 123–129. doi:10.1016/j.gde.2008.01.013.

    Article  PubMed  CAS  Google Scholar 

  129. Egli, D., Birkhoff, G., & Eggan, K. (2008). Mediators of reprogramming: transcription factors and transitions through mitosis. Nature Reviews Molecular Cell Biology, 9, 505–516. doi:10.1038/nrm2439.

    Article  PubMed  CAS  Google Scholar 

  130. Dominguez-Sola, D., Ying, C. Y., Grandori, C., et al. (2007). Nontranscriptional control of DNA replication by c-Myc. Nature, 448, 445–451. doi:10.1038/nature05953.

    Article  PubMed  CAS  Google Scholar 

  131. Wu, K. J., Grandori, C., Amacker, M., et al. (1999). Direct activation of TERT transcription by c-MYC. Nature Genetics, 21, 220–224. doi:10.1038/6010.

    Article  PubMed  CAS  Google Scholar 

  132. Rowland, B. D., Bernards, R., & Peeper, D. S. (2005). The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biology, 7, 1074–1082. doi:10.1038/ncb1314.

    Article  PubMed  CAS  Google Scholar 

  133. Zhang, W., Geiman, D. E., Shields, J. M., et al. (2000). The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. Journal of Biological Chemistry, 275, 18391–18398. doi:10.1074/jbc.C000062200.

    Article  PubMed  CAS  Google Scholar 

  134. Seoane, J., Le, H. V., & Massague, J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature, 419, 729–734. doi:10.1038/nature01119.

    Article  PubMed  CAS  Google Scholar 

  135. Lin, T., Chao, C., Saito, S., et al. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biology, 7, 165–171. doi:10.1038/ncb1211.

    Article  PubMed  CAS  Google Scholar 

  136. Evans, P. M., Zhang, W., Chen, X., et al. (2007). Krurppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. Journal of Biological Chemistry, 282, 33994–34002. doi:10.1074/jbc.M701847200.

    Article  PubMed  CAS  Google Scholar 

  137. Balzer, E., & Moss, E. G. (2007). Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biology, 4, 16–25.

    PubMed  CAS  Google Scholar 

  138. Yu, F., Yao, H., Zhu, P., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123. doi:10.1016/j.cell.2007.10.054.

    Article  PubMed  CAS  Google Scholar 

  139. Kumar, M. S., Erkeland, S. J., Pester, R. E., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105, 3903–3908. doi:10.1073/pnas.0712321105.

    Article  PubMed  CAS  Google Scholar 

  140. Jackson-Grusby, L., Beard, C., Possemato, R., et al. (2001). Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genetics, 27, 31–39. doi:10.1038/83730.

    Article  PubMed  CAS  Google Scholar 

  141. Loh, Y. H., Zhang, W., Chen, X., George, J., & Ng, H. H. (2007). Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes and Development, 21, 2545–2557. doi:10.1101/gad.1588207.

    Article  PubMed  CAS  Google Scholar 

  142. Stadtfeld, M., Brennand, K., & Hochedlinger, K. (2008). Reprogramming of pancreatic β cells into induced pluripotent stem cells. Current Biology, 18, 890–894. doi:10.1016/j.cub.2008.05.010.

    Article  PubMed  CAS  Google Scholar 

  143. Verfaillie, C. (2008). The undoing of differentiation by four defined factors: a big step forward towards generating patient specific pluripotent stem cells. Journal of Hepatology, 49, 876–878. doi:10.1016/j.jhep. 2008.08.007.

    Article  PubMed  Google Scholar 

  144. Wilmut, I. (2007). The first direct reprogramming of adult human fibroblasts. Cell Stem Cell, 1, 3–594. doi:10.1016/j.stem.2007.11.013.

    Article  CAS  Google Scholar 

  145. Varas F, Stadtfeld M, De Andres-Aguayo L, et al. Fibroblast derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells. 2008; In press.

  146. Gregory, M. A., Qi, Y., & Hann, S. R. (2005). The ARF tumor suppressor: keeping Myc on a leash. Cell Cycle, 4, 249–252.

    PubMed  CAS  Google Scholar 

  147. Brambrink, T., Foreman, R., Welstead, G. G., et al. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2, 151–159. doi:10.1016/j.stem.2008.01.004.

    Article  PubMed  CAS  Google Scholar 

  148. Stadtfeld, M., Maherali, N., Breault, D., & Hochedlinger, K. (2008). Defining Molecular Cornerstones during Fibroblast to iPS Cell Reprogramming in Mouse. Cell Stem Cell, 2, 230–240. doi:10.1016/j.stem.2008.02.001.

    Article  PubMed  CAS  Google Scholar 

  149. Ruau, D., Ensenat-Waser, R., Dinger, T. C., et al. (2008). Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells. Stem Cells, 26, 920–926. doi:10.1634/stemcells.2007-0649.

    Article  PubMed  CAS  Google Scholar 

  150. Cyranoski, D. (2008). 5 things to know before jumping on the iPS bandwagon. Nature, 452, 406–408. doi:10.1038/452406a.

    Article  PubMed  CAS  Google Scholar 

  151. Hanna, J., Markoulaki, S., Schorderet, P., et al. (2008). Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133, 250–264. doi:10.1016/j.cell.2008.03.028.

    Article  PubMed  CAS  Google Scholar 

  152. Boyes, J., & Bird, A. (1992). Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO Journal, 11, 327–333.

    PubMed  CAS  Google Scholar 

  153. Lorincz, M. C., Schubeler, D., Hutchinson, S. R., Dickerson, D. R., & Groudine, M. (2002). DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Molecular and Cellular Biology, 22, 7572–7580. doi:10.1128/MCB.22.21.7572-7580.2002.

    Article  PubMed  CAS  Google Scholar 

  154. Sridharan, R., Tchieu, J., Mason, M. J., et al. (2009). Role of the murine reprogramming factors in the induction of pluripotency. Cell, 136, 364–77. doi:10.1016/j.cell.2009.01.001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjef Copray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheper, W., Copray, S. The Molecular Mechanism of Induced Pluripotency: A Two-Stage Switch. Stem Cell Rev and Rep 5, 204–223 (2009). https://doi.org/10.1007/s12015-009-9077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9077-x

Keywords

Navigation