Skip to main content

Advertisement

Log in

Exploring the Origins of the Normal Prostate and Prostate Cancer Stem Cell

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 04 September 2008

Abstract

Prostate epithelial stem cells (PSCs) are primed by the urogenital mesenchyme to initiate bud formation and branching morphogenesis, ultimately culminating in a glandular structure composed of luminal, basal and neuroendocrine cells. Identity of this cell has remained elusive however cell populations enriched for cells exhibiting stem cell characteristics express the stem cell markers CD133+, α2β1hi, CD44 and Sca-1 along with embryonic stem cell factors including Oct-1, Nanog, Sox2 and nestin. Androgens are critical to prostate organogenesis and play a major role in normal prostate function and the development of prostate cancer. Cell lineage is another variable in the development of prostate cancer. This review discusses the embryonic prostate stem cell niche, normal prostate development, isolation and characterization of normal prostate and prostate cancer stem cells, and current concepts on the origin of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66, 9339–9344.

    Article  PubMed  CAS  Google Scholar 

  2. Bell, D. R., & Van Zant, G. (2004). Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene, 23, 7290–7296.

    Article  PubMed  CAS  Google Scholar 

  3. Feinberg, A. P., Ohlsson, R., & Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature Reviews Genetics, 7, 21–33.

    Article  PubMed  CAS  Google Scholar 

  4. Kellokumpu-Lehtinen, P., Santti, R., & Pelliniemi, L. J. (1979). Early cytodifferentiation of human prostatic urethra and Leydig cells. Anatomical Record, 194, 429–443.

    Article  PubMed  CAS  Google Scholar 

  5. Kellokumpu-Lehtinen, P. (1983). Localization of acid phosphatase activity in testosterone-treated prostatic urethra of human fetuses. Prostate, 4, 265–270.

    Article  PubMed  CAS  Google Scholar 

  6. Kellokumpu-Lehtinen, P., Santti, R., & Pelliniemi, L. J. (1980). Correlation of early cytodifferentiation of the human fetal prostate and Leydig cells. Anatomical Record, 196, 263–273.

    Article  PubMed  CAS  Google Scholar 

  7. Kellokumpu-Lehtinen, P., Santti, R. S., & Pelliniemi, L. J. (1981). Development of human fetal prostate in culture. Urological Research, 9, 89–98.

    Article  PubMed  CAS  Google Scholar 

  8. Kellokumpu-Lehtinen, P., & Pelliniemi, L. J. (1988). Hormonal regulation of differentiation of human fetal prostate and Leydig cells in vitro. Folia Histochemica et Cytobiologica, 26, 113–117.

    PubMed  CAS  Google Scholar 

  9. Cunha, G. R. (1972). Epithelio-mesenchymal interactions in primordial gland structures which become responsive to androgenic stimulation. Anatomical Record, 172, 179–195.

    Article  PubMed  CAS  Google Scholar 

  10. Takeda, H., Mizuno, T., & Lasnitzki, I. (1985). Autoradiographic studies of androgen-binding sites in the rat urogenital sinus and postnatal prostate. Journal of Endocrinology, 104, 87–92.

    PubMed  CAS  Google Scholar 

  11. Cunha, G. R., Donjacour, A. A., Cooke, P. S., et al. (1987). The endocrinology and developmental biology of the prostate. Endocrine Reviews, 8, 338–362.

    PubMed  CAS  Google Scholar 

  12. Donjacour, A. A., & Cunha, G. R. (1993). Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology, 132, 2342–2350.

    Article  PubMed  CAS  Google Scholar 

  13. Cunha, G. R., & Lung, B. (1978). The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen- insensitive (Tfm) mice. Journal of Experimental Zoology, 205, 181–193.

    Article  PubMed  CAS  Google Scholar 

  14. Aumueller, G., Seitz, J., & Riva, A. (1994). Functional Morphology of Prostate Gland pp. 61–112. Kluwer Academic.

  15. Kellokumpu-Lehtinen, P. (1980). The histochemical localization of acid phosphatase in human fetal urethral and prostatic epithelium. Investigative Urology, 17, 435–440.

    PubMed  CAS  Google Scholar 

  16. Wernert, N., Seitz, G., & Achtstatter, T. (1987). Immunohistochemical investigation of different cytokeratins and vimentin in the prostate from the fetal period up to adulthood and in prostate carcinoma. Pathology, Research and Practice, 182, 617–626.

    PubMed  CAS  Google Scholar 

  17. Aumuller, G., Seitz, J., & Bischof, W. (1983). Immunohistochemical study on the initiation of acid phosphatase secretion in the human prostate. Cytochemistry and biochemistry of acid phosphatases IV. Journal of Andrology, 4, 183–191.

    PubMed  CAS  Google Scholar 

  18. McNeal, J. E. (1981). The zonal anatomy of the prostate. Prostate, 2, 35–49.

    Article  PubMed  CAS  Google Scholar 

  19. Timms, B. G., Mohs, T. J., & Didio, L. J. (1994). Ductal budding and branching patterns in the developing prostate. Journal of Urology, 151, 1427–1432.

    PubMed  CAS  Google Scholar 

  20. Sugimura, Y., Cunha, G. R., & Donjacour, A. A. (1986). Morphogenesis of ductal networks in the mouse prostate. Biology of Reproduction, 34, 961–971.

    Article  PubMed  CAS  Google Scholar 

  21. Lee, C., Sensibar, J. A., Dudek, S. M., Hiipakka, R. A., & Liao, S. T. (1990). Prostatic ductal system in rats: regional variation in morphological and functional activities. Biology of Reproduction, 43, 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  22. De Marzo, A. M., Meeker, A. K., Epstein, J. I., & Coffey, D. S. (1998). Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. American Journal of Pathology, 153, 911–919.

    PubMed  Google Scholar 

  23. Isaacs, J. T. (2008). Prostate stem cells and benign prostatic hyperplasia. Prostate, 68(9), 1025–1034.

    Article  PubMed  CAS  Google Scholar 

  24. Tsujimura, A., Koikawa, Y., Salm, S., et al. (2002). Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. Journal of Cell Biology, 157, 1257–1265.

    Article  PubMed  CAS  Google Scholar 

  25. Kyprianou, N., & Isaacs, J. T. (1988). Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology, 123, 2124–2131.

    Article  PubMed  CAS  Google Scholar 

  26. De Marzo, A. M., Nelson, W. G., Meeker, A. K., & Coffey, D. S. (1998). Stem cell features of benign and malignant prostate epithelial cells. Journal of Urology, 160, 2381–2392.

    Article  PubMed  Google Scholar 

  27. Bonkhoff, H., Stein, U., & Remberger, K. (1994). The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate, 24, 114–118.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, S., Garcia, A. J., Wu, M., Lawson, D. A., Witte, O. N., & Wu, H. (2006). Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proceedings of the National Academy of Sciences of the United States of America, 103, 1480–1485.

    Article  PubMed  CAS  Google Scholar 

  29. Signoretti, S., Waltregny, D., Dilks, J., et al. (2000). p63 is a prostate basal cell marker and is required for prostate development. American Journal of Pathology, 157, 1769–1775.

    PubMed  CAS  Google Scholar 

  30. Signoretti, S., Pires, M. M., Lindauer, M., et al. (2005). p63 regulates commitment to the prostate cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 102, 11355–11360.

    Article  PubMed  CAS  Google Scholar 

  31. Uzgare, A. R., Xu, Y., & Isaacs, J. T. (2004). In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. Journal of Cellular Biochemistry, 91, 196–205.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, A. Y., & Peehl, D. M. (2001). Characterization of cultured human prostatic epithelial cells by cluster designation antigen expression. Cell & Tissue Research, 305, 389–397.

    Article  CAS  Google Scholar 

  33. Aumuller, G., Leonhardt, M., Renneberg, H., von Rahden, B., Bjartell, A., & Abrahamsson, P. A. (2001). Semiquantitative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells. Prostate, 46, 108–115.

    Article  PubMed  CAS  Google Scholar 

  34. Kurita, T., Medina, R. T., Mills, A. A., & Cunha, G. R. (2004). Role of p63 and basal cells in the prostate. Development, 131, 4955–4964.

    Article  PubMed  CAS  Google Scholar 

  35. Evans, G. S., & Chandler, J. A. (1987). Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate, 11, 339–351.

    Article  PubMed  CAS  Google Scholar 

  36. English, H. F., Santen, R. J., & Isaacs, J. T. (1987). Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate, 11, 229–242.

    Article  PubMed  CAS  Google Scholar 

  37. Bonkhoff, H., & Remberger, K. (1996). Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate, 28, 98–106.

    Article  PubMed  CAS  Google Scholar 

  38. Jin, R. J., Wang, Y., Masumori, N., et al. (2004). NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Research, 64, 5489–5495.

    Article  PubMed  CAS  Google Scholar 

  39. Mirosevich, J., Gao, N., Gupta, A., Shappell, S. B., Jove, R., & Matusik, R. J. (2006). Expression and role of Foxa proteins in prostate cancer. Prostate, 66, 1013–1029.

    Article  PubMed  CAS  Google Scholar 

  40. Gupta, A., Wang, Y.-Q., Browne, C., et al. (2008). Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. The Prostate, 68, 50–60.

    Article  PubMed  CAS  Google Scholar 

  41. Jorgensen, M. C., Ahnfelt-Ronne, J., Hald, J., Madsen, O. D., Serup, P., & Hecksher-Sorensen, J. (2007). An illustrated review of early pancreas development in the mouse. Endocrine Reviews, 28, 685–705.

    Article  PubMed  CAS  Google Scholar 

  42. Fargeas, C. A., Joester, A., Missol-Kolka, E., Hellwig, A., Huttner, W. B., & Corbeil, D. (2004). Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. Journal of Cell Science, 117, 4301–4311.

    Article  PubMed  CAS  Google Scholar 

  43. Richardson, G. D., Robson, C. N., Lang, S. H., Neal, D. E., Maitland, N. J., & Collins, A. T. (2004). CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science, 117, 3539–3545.

    Article  PubMed  CAS  Google Scholar 

  44. Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature reviews Cancer, 2, 584–593.

    Article  PubMed  CAS  Google Scholar 

  45. Shepherd, C. J., Rizzo, S., Ledaki, I., et al. (2008). Expression profiling of CD133(+) and CD133(-) epithelial cells from human prostate. Prostate, 68(9), 1007–1024.

    Article  PubMed  CAS  Google Scholar 

  46. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  47. Burger, P. E., Xiong, X., Coetzee, S., et al. (2005). Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proceedings of the National Academy of Sciences of the United States of America, 102, 7180–7185.

    Article  PubMed  CAS  Google Scholar 

  48. Xin, L., Lawson, D. A., & Witte, O. N. (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 6942–6947.

    Article  PubMed  CAS  Google Scholar 

  49. Li, Y., & Rosen, J. M. (2005). Stem/progenitor cells in mouse mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 10, 17–24.

    Article  PubMed  Google Scholar 

  50. Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25, 1696–1708.

    Article  PubMed  CAS  Google Scholar 

  51. Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., & Farrar, W. L. (2008). CD44(+)CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98, 756–765.

    Article  PubMed  CAS  Google Scholar 

  52. Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., & Tang, D. G. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and A. Cancer Research, 65, 6207–6219.

    Article  PubMed  CAS  Google Scholar 

  53. Brown, M. D., Gilmore, P. E., Hart, C. A., et al. (2007). Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate, 67, 1384–1396.

    Article  PubMed  Google Scholar 

  54. Gu, G., Yuan, J., Wills, M. L., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67, 4807–4815.

    Article  PubMed  CAS  Google Scholar 

  55. Pellegrini, G., Ranno, R., Stracuzzi, G., et al. (1999). The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation, 68, 868–879.

    Article  PubMed  CAS  Google Scholar 

  56. Li, H., Chen, X., Calhoun-Davis, T., Claypool, K., & Tang, D. G. (2008). PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Research, 68, 1820–1825.

    Article  PubMed  CAS  Google Scholar 

  57. Sell, S. (2004). Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology, 51, 1–28.

    Article  PubMed  Google Scholar 

  58. Stamey, T. A., Freiha, F. S., McNeal, J. E., Redwine, E. A., Whittemore, A. S., & Schmid, H. P. (1993). Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer, 71, 933–938.

    Article  PubMed  CAS  Google Scholar 

  59. Adolfsson, J. (2007). Commentary: on the incidence of histological prostate cancer and the probable diagnosis of cases with tumours too small to produce symptoms or to attract attention on physical examination–the findings of Dr Arnold Rice Rich. International Journal of Epidemiology, 36, 285–287.

    Article  PubMed  Google Scholar 

  60. Shipitsin, M., Campbell, L. L., Argani, P., et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell, 11, 259–273.

    Article  PubMed  CAS  Google Scholar 

  61. Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447, 433–440.

    Article  PubMed  CAS  Google Scholar 

  62. Krivtsov, A. V., & Armstrong, S. A. (2007). MLL translocations, histone modifications and leukaemia stem-cell development. Nature Reviews Cancer, 7, 823–833.

    Article  PubMed  CAS  Google Scholar 

  63. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Natural Medicines, 12, 1167–1174.

    Article  CAS  Google Scholar 

  64. Krivtsov, A. V., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442, 818–822.

    Article  PubMed  CAS  Google Scholar 

  65. Schalken, J. A., & van Leenders, G. (2003). Cellular and molecular biology of the prostate: stem cell biology. Urology, 62, 11–20.

    Article  PubMed  Google Scholar 

  66. Feitz, W. F., Debruyne, F. M., Vooijs, G. P., Herman, C. J., & Ramaekers, F. C. (1986). Intermediate filament proteins as tissue specific markers in normal and malignant urological tissues. Journal of Urology, 136, 922–931.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Kasper.

Additional information

Funding for this work was provided by the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK60957) and the Frances Williams Preston Laboratories of the T.J. Martell Foundation.

An erratum to this article can be found at http://dx.doi.org/10.1007/s12015-008-9044-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasper, S. Exploring the Origins of the Normal Prostate and Prostate Cancer Stem Cell. Stem Cell Rev 4, 193–201 (2008). https://doi.org/10.1007/s12015-008-9033-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9033-1

Keywords

Navigation