Skip to main content
Log in

The Skin: A Home to Multiple Classes of Epithelial Progenitor Cells

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

To maintain homeostasis in the adult skin, epithelial keratinocyte stem cells are thought to divide infrequently giving rise to short-lived (transit amplifying) cells that undergo a limited number of cell divisions and ultimately terminal differentiation. This model for the epidermal stem cell niche has increased in complexity by the multiple putative progenitor keratinocyte populations that have recently been identified in distinct regions of the interfollicular epidermis and hair follicle appendages. Under normal conditions, these progenitor populations are long-lived and able to sustain the cellular input to certain epidermal structures including the interfollicular epidermis and sebaceous gland. Other putative epithelial progenitors derived from the hair follicle possess high in vitro proliferative capacity and are able to regenerate skin, hair and sebaceous lineages in transplantation studies. These new findings present the cutaneous epithelium as a highly compartmentalized structure potentially maintained by multiple classes of progenitor cells. In this review, we will discuss the implications of these new putative epithelial progenitor populations and their potential to be influenced by external stimuli for skin homeostasis and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lajtha, L. G. (1979). Stem cell concepts. Differentiation, 14, 23–34.

    Article  PubMed  CAS  Google Scholar 

  2. Owens, D. M., & Watt, F. M. (2003). Contribution of stem cells and differentiated cells to epidermal tumours. Nature Reviews. Cancer, 3, 444–451.

    Article  PubMed  CAS  Google Scholar 

  3. Withers, H. R. (1967). Recovery and repopulation in vivo by mouse skin epithelial cells during fractionated irradiation. Radiation Research, 32, 227–239.

    Article  PubMed  CAS  Google Scholar 

  4. Potten, C. S., & Hendry, J. H. (1973). Letter: Clonogenic cells and stem cells in epidermis. International Journal of Radiation Biology, 24, 537–540.

    Article  CAS  Google Scholar 

  5. Mackenzie, I. C., & Bickenbach, J. R. (1985). Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell & Tissue Research, 242, 551–556.

    CAS  Google Scholar 

  6. Morris, R. J., Fischer, S. M., & Slaga, T. J. (1985). Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinctive cell populations. Journal of Investigative Dermatology, 84, 277–281.

    Article  PubMed  CAS  Google Scholar 

  7. Schneider, T. E., Barland, C., Alex, A. M., et al. (2003). Measuring stem cell frequency in epidermis: a quantitative in vivo functional assay for long-term repopulating cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 11412–11417.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, P. H., & Watt, F. M. (1993). Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 73, 713–724.

    Article  PubMed  CAS  Google Scholar 

  9. Tani, H., Morris, R. J., & Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences of the United States of America, 97, 10960–10965.

    Article  PubMed  CAS  Google Scholar 

  10. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  11. Trempus, C. S., Morris, R. J., Bortner, C. D., et al. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. Journal of Investigative Dermatology, 120, 501–511.

    Article  PubMed  CAS  Google Scholar 

  12. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118, 635–648.

    Article  PubMed  CAS  Google Scholar 

  13. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  14. Ghazizadeh, S., & Taichman, L. B. (2001). Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO Journal, 20, 1215–1222.

    Article  PubMed  CAS  Google Scholar 

  15. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T., & Lavker, R. M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 102, 451–461.

    Article  PubMed  CAS  Google Scholar 

  16. Levy, V., Lindon, C., Harfe, B. D., & Morgan, B. A. (2005). Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Developmental Cell, 9, 855–861.

    Article  PubMed  CAS  Google Scholar 

  17. Horsley, V., O’Carroll, D., Tooze, R., et al. (2006). Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell, 126, 597–609.

    Article  PubMed  CAS  Google Scholar 

  18. Ito, M., Liu, Y., Yang, Z., et al. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine, 11, 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  19. Fuchs, E. (2007). Scratching the surface of skin development. Nature, 445, 834–842.

    Article  PubMed  CAS  Google Scholar 

  20. Niemann, C., Owens, D. M., Hulsken, J., Birchmeier, W., & Watt, F. M. (2002). Expression of DNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development, 129, 95–109.

    PubMed  CAS  Google Scholar 

  21. Clayton, E., Doupe, D. P., Klein, A. M., Winton, D. J., Simons, B. D., & Jones, P. H. (2007). A single type of progenitor cell maintains normal epidermis. Nature, 446, 185–189.

    Article  PubMed  CAS  Google Scholar 

  22. Jones, P. H., Simons, B. D., & Watt, F. M. (2007). Sic transit gloria: farewell to the epidermal transit amplifying cell. Cell Stem Cell, 1, 371–381.

    Article  PubMed  CAS  Google Scholar 

  23. Ohyama, M., Terunuma, A., Tock, C. L., et al. (2006). Characterization and isolation of stem cell-enriched human hair follicle bulge cells. Journal of Clinical Investigation, 116, 249–260.

    Article  PubMed  CAS  Google Scholar 

  24. Watt, F. M. (2002). Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO Journal, 21, 3919–3926.

    Article  PubMed  CAS  Google Scholar 

  25. Nijhof, J. G., Braun, K. M., Giangreco, A., et al. (2006). The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development, 133, 3027–3037.

    Article  PubMed  CAS  Google Scholar 

  26. Depreter, M. G. L., Blair, N. F., Gaskell, T. L., et al. (2008). Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 961–966.

    Article  PubMed  CAS  Google Scholar 

  27. Spangrude, G. J., Heimfeld, S., & Weissman, I. L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science, 241, 58–62.

    Article  PubMed  CAS  Google Scholar 

  28. Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(+) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245, 42–56.

    Article  CAS  Google Scholar 

  29. Oh, H., Bradfute, S. B., Gallardo, T. D., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–1218.

    Article  PubMed  CAS  Google Scholar 

  30. Ito, C. Y., Li, C. Y., Bernstein, A., Dick, J. E., & Stanford, W. L. (2003). Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood, 101, 517–523.

    Article  PubMed  CAS  Google Scholar 

  31. Bradfute, S. B., Graubert, T. A., & Goodell, M. A. (2005). Roles of Sca-1 in hematopoietic stem/progenitor cell function. Experimental Hematology, 33, 836–843.

    Article  PubMed  CAS  Google Scholar 

  32. Jensen, U. B., Yan, X., Triel, C., Woo, S. H., Christensen, R., & Owens, D. M. (2008). A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. Journal of Cell Science, 121, 609–617.

    Article  PubMed  CAS  Google Scholar 

  33. Potten, C. S., & Loeffler, M. (1990). Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110, 1001–1020.

    PubMed  CAS  Google Scholar 

  34. Li, A., Pouliot, N., Redvers, R., & Kaur, P. (2004). Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. Journal of Clinical Investigation, 113, 390–400.

    PubMed  CAS  Google Scholar 

  35. Reynolds, A. J., & Jahoda, C. A. B. (1992). Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development, 115, 587–593.

    PubMed  CAS  Google Scholar 

  36. Morris, R. J., Liu, Y., Marles, L., et al. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 22, 411–417.

    Article  PubMed  CAS  Google Scholar 

  37. Cohnheim, J. (1875). Congenitales, quergestreiftes Muskelsarkon der Nieren. Virchows Archiv, 65, 64 see Cohnheim J. Lectures on General Pathology 1889; Vol II:789 (New Sydenham Society, London).

    Article  Google Scholar 

  38. Osgood, E. E. (1957). A unifying concept of the etiology of the leukemias, lymphomas, and cancers. Journal of the National Cancer Institute, 18, 155–166.

    PubMed  CAS  Google Scholar 

  39. Markert, C. L. (1968). Neoplasia: a disease of cell differentiation. Cancer Research, 28, 1908–1914.

    PubMed  CAS  Google Scholar 

  40. Potter, V. R. (1978). Phenotypic diversity in experimental hepatomas: the concept of blocked ontogeny. The 10th Walter Hubert Lecture. British Journal of Cancer, 38, 1–23.

    PubMed  CAS  Google Scholar 

  41. Hahn, W. C., & Weinberg, R. A. (2002). Rules for making human tumor cells. New England Journal of Medicine, 347, 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  42. Arnold, I., & Watt, F. M. (2001). c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Current Biology, 11, 558–568.

    Article  PubMed  CAS  Google Scholar 

  43. Niemann, C., & Watt, F. M. (2002). Designer skin: lineage commitment in postnatal epidermis. Trends in Cell Biology, 12, 185–192.

    Article  PubMed  CAS  Google Scholar 

  44. Vidal, V. P., Chaboissier, M. C., Lutzkendorf, S., et al. (2005). Sox9 is essential for outer root sheath differentiation and the formation of the hair stem compartment. Current Biology, 15, 1340–1351.

    Article  PubMed  CAS  Google Scholar 

  45. Vidal, V. P., Ortonne, N., & Schedl, A. (2008). SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. Journal of Cutaneous Pathology, 35, 373–379.

    Article  PubMed  Google Scholar 

  46. Malanchi, I., Peinado, H., Kassen, D., et al. (2008). Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature, 452, 650–654.

    Article  PubMed  CAS  Google Scholar 

  47. Taipale, J., & Beach, P. A. (2001). The Hedgehog and Wnt signaling pathways in cancer. Nature, 411, 349–354.

    Article  PubMed  CAS  Google Scholar 

  48. Leung, C., Lingbeek, M., Shaknova, O., et al. (2004). Bmi is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 428, 337–341.

    Article  PubMed  CAS  Google Scholar 

  49. Moore, R. J., Owens, D. M., Stamp, G., et al. (1999). Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Natural Medicine, 5, 828–831.

    Article  CAS  Google Scholar 

  50. Owens, D. M., Romero, M. R., Gardner, C., & Watt, F. M. (2003). Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling. Journal of Cell Science, 116, 3783–3791.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs. Angela Christiano, Colin Jahoda and Soosan Ghazizadeh for their helpful advice. This work was supported by a Florence Irving Research Career Award and National Institutes of Health R01CA114014 and R03AR054071 research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Owens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Owens, D.M. The Skin: A Home to Multiple Classes of Epithelial Progenitor Cells. Stem Cell Rev 4, 113–118 (2008). https://doi.org/10.1007/s12015-008-9022-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9022-4

Keywords

Navigation