Skip to main content

Advertisement

Log in

Wnt Signaling, Stem Cells, and the Cellular Origin of Breast Cancer

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The breast epithelium comprises cells at different stages of differentiation, including stem cells, progenitor cells, and more differentiated epithelial and myoepithelial cells. Wnt signaling plays a critical role in regulating stem/progenitor cells in the mammary gland as well as other tissue compartments. Furthermore, there is strong evidence suggesting that aberrant activation of Wnt signaling induces mammary tumors from stem/progenitor cells, and that Wnt exerts its oncogenic effects through LRP5/6-mediated activation of β-catenin and mTOR pathways. Recent studies using avian retrovirus-mediated introduction of oncogenes into a small subset of somatic mammary cells suggest that polyoma middle T antigen (PyMT) may also preferentially transform stem/progenitor cells. These observations suggest that stem/progenitor cells in the mammary gland may be especially susceptible to oncogenic transformation. Whether more differentiated cells may also be transformed by particular oncogenes is actively debated; it is presently unclear whether stem cells or differentiated mammary cells are more susceptible to transformation by individual oncogenes. Better stem cell and progenitor cell markers as well as the ability to specifically target oncogenes into different mammary cell types will be needed to determine the spectrum of oncogene transformation for stem cells versus more differentiated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LRP:

low-density lipoprotein receptor-related protein

mTOR:

mammalian target of rapamycin

FRP:

Frizzled-related protein

tva:

tumor virus A

MMTV:

mouse mammary tumor virus

WAP:

whey acidic protein

PyMT:

polyoma middle T antigen

SMA:

smooth muscle actin

RCASBP(A)/RCAS:

replication-competent, ALV-LTR, splice acceptor, Bryan-RSV pol, subgroup A

References

  1. Wiseman, B. S., & Werb, Z. (2002). Stromal effects on mammary gland development and breast cancer. Science, 296(5570), 1046–1049.

    PubMed  CAS  Google Scholar 

  2. Hennighausen, L., & Robinson, G. W. (2005). Information networks in the mammary gland. Nature Reviews Molecular Cell Biology, 6(9), 715–725.

    PubMed  CAS  Google Scholar 

  3. Veltmaat, J. M., Mailleux, A. A., Thiery, J. P., & Bellusci, S. (2003). Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation, 71(1), 1–17.

    PubMed  CAS  Google Scholar 

  4. DeOme, K. B., Faulkin, L. J., Jr., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.

    PubMed  CAS  Google Scholar 

  5. Daniel, C. W., De Ome, K. B., Young, J. T., Blair, P. B., Faulkin, L. J., Jr. (1968). The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 53–60.

    Google Scholar 

  6. Smith, G. H., & Medina, D. (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. Journal of Cell Science, 90(Pt 1), 173–183.

    PubMed  Google Scholar 

  7. Kordon, E. C., & Smith, G. H. (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development, 125(10), 1921–1930.

    PubMed  CAS  Google Scholar 

  8. Smith, G. H. (1996). Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 39(1), 21–31.

    PubMed  CAS  Google Scholar 

  9. Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079), 993–997.

    PubMed  CAS  Google Scholar 

  10. Lindvall, C., Evans, N. C., Zylstra, C. R., Li, Y., Alexander, C. M., & Williams, B. O. (2006). The WNT signaling receptor, LRP5, is required for mammary ductal stem cell activity and WNT1-induced tumorigenesis. Journal of Biological Chemistry, 281, 35081–35087.

    PubMed  CAS  Google Scholar 

  11. Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072), 84–88.

    PubMed  CAS  Google Scholar 

  12. Smalley, M., & Ashworth, A. (2003). Stem cells and breast cancer: A field in transit. Nature Reviews Cancer, 3(11), 832–844.

    PubMed  CAS  Google Scholar 

  13. Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: Transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.

    PubMed  CAS  Google Scholar 

  14. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M., & Smalley, M. J. (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 8(1), R7.

    PubMed  Google Scholar 

  15. Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245(1), 42–56.

    CAS  Google Scholar 

  16. Li, Y., & Rosen, J. M. (2005). Stem/progenitor cells in mouse mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 10(1), 17–24.

    PubMed  Google Scholar 

  17. Welm, A. L., Kim, S., Welm, B. E., & Bishop, J. M. (2005). MET and MYC cooperate in mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4324–4329.

    Google Scholar 

  18. Grimm, S. L, Seagroves, T. N., Kabotyanski, E. B., Hovey, R. C., Vonderhaar, B. K., Lydon, P., et al. (2002). Disruption of steroid and prolactin receptor patterning in the mamamry gland correlates with a block in lobuloalveolar development. Molecular Endocrinology, 16(12), 2675–2691.

    PubMed  CAS  Google Scholar 

  19. Sotgia, F., Williams, T. M., Cohen, A. W., Minetti, C., Pestell, R. G., & Lisanti, M. P. (2005). Caveolin-1-deficient mice have an increased mammary stem cell population with upregulation of Wnt/beta-catenin signaling. Cell Cycle, 4(12), 1808–1816.

    PubMed  CAS  Google Scholar 

  20. Robinson, G. W., McKnight, R. A., Smith, G. H., & Hennighausen, L. (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development, 121(7), 2079–2090.

    PubMed  CAS  Google Scholar 

  21. Woodward, W. A., Chen, M. S., Behbod, F., & Rosen, J. M. (2005). On mammary stem cells. Journal of Cell Science, 118(Pt 16), 3585–3594.

    PubMed  CAS  Google Scholar 

  22. Liu, S., Dontu, G., Wicha, M. S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 7(3), 86–95.

    PubMed  CAS  Google Scholar 

  23. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 3(12), 895–902.

    PubMed  CAS  Google Scholar 

  24. Valk-Lingbeek, M. E., Bruggeman, S. W., & van Lohuizen, M. (2004). Stem cells and cancer; the polycomb connection. Cell, 118(4), 409–418.

    PubMed  CAS  Google Scholar 

  25. Eaton, S. (2006). Release and trafficking of lipid-linked morphogens. Current Opinion in Genetics & Development, 16(1), 17–22.

    CAS  Google Scholar 

  26. Bejsovec, A. (2005). Wnt pathway activation: New relations and locations. Cell, 120(1), 11–14.

    PubMed  CAS  Google Scholar 

  27. Willert, K., & Jones, K. A. (2006). Wnt signaling: Is the party in the nucleus? Genes & Development, 20(11), 1394–1404.

    CAS  Google Scholar 

  28. Gordon, M. D., & Nusse, R. (2006). Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. Journal of Biological Chemistry, 281(32), 22429–22433.

    PubMed  CAS  Google Scholar 

  29. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469–480.

    PubMed  CAS  Google Scholar 

  30. Du, S. J., Purcell, S. M., Christian, J. L., McGrew, L. L., & Moon, R. T. (1995). Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Molecular and Cellular Biology, 15(5), 2625–2634.

    PubMed  CAS  Google Scholar 

  31. Shimizu, H., Julius, M. A., Giarre, M., Zheng, Z., Brown, A. M., & Kitajewski, J. (1997). Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth & Differentiation, 8(12), 1349–1358.

    CAS  Google Scholar 

  32. Wong, G. T., Gavin, B. J., & McMahon, A. P. (1994). Differential transformation of mammary epithelial cells by Wnt genes. Molecular and Cellular Biochemistry, 14(9), 6278–6286.

    CAS  Google Scholar 

  33. Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., et al. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438(7069), 873–877.

    PubMed  CAS  Google Scholar 

  34. Davidson, G., Wu, W., Shen, J., Bilic, J., Fenger, U., Stannek, P., et al. (2005). Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature, 438(7069), 867–872.

    PubMed  CAS  Google Scholar 

  35. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., et al. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955–968.

    PubMed  CAS  Google Scholar 

  36. Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124(3), 471–484.

    PubMed  CAS  Google Scholar 

  37. Veeman, M. T., Axelrod, J. D., Moon, R. T. (2003). A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Developmental Cell, 5(3), 367–377.

    PubMed  CAS  Google Scholar 

  38. Meneghini, M. D., Ishitani, T., Carter, J. C., Hisamoto, N., Ninomiya-Tsuji, J., Thorpe, C. J., et al. (1999). MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature, 399(6738), 793–797.

    PubMed  CAS  Google Scholar 

  39. Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., et al. (1999). The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 399(6738), 798–802.

    PubMed  CAS  Google Scholar 

  40. Smit, L., Baas, A., Kuipers, J., Korswagen, H., van de Wetering, M., & Clevers, H. (2004). Wnt activates the Tak1/Nemo-like kinase pathway. Journal of Biological Chemistry, 279(17), 17232–17240.

    PubMed  CAS  Google Scholar 

  41. Chen, A. E., Ginty, D. D., Fan, C. M. (2005). Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature, 433(7023), 317–322.

    PubMed  CAS  Google Scholar 

  42. Semenov, M. V., Tamai, K., Brott, B. K., Kuhl, M., Sokol, S., & He, X. (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Current Biology, 11(12), 951–961.

    PubMed  CAS  Google Scholar 

  43. He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development, 131(8), 1663–1677.

    PubMed  CAS  Google Scholar 

  44. Wehrli, M., Dougan, S. T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel-Ohayon, D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407(6803), 527–530.

    PubMed  CAS  Google Scholar 

  45. Inoue, T., Oz, H. S., Wiland, D., Gharib, S., Deshpande, R., Hill, R. J., et al. (2004). C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell, 118(6), 795–806.

    PubMed  CAS  Google Scholar 

  46. Lu, W., Yamamoto, V., Ortega, B., & Baltimore, D. (2004). Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell, 119(1), 97–108.

    PubMed  CAS  Google Scholar 

  47. Yoshikawa, S., McKinnon, R. D., Kokel, M., & Thomas, J. B. (2003). Wnt-mediated axon guidance via the Drosophila derailed receptor. Nature, 422(6932), 583–588.

    PubMed  CAS  Google Scholar 

  48. Mikels, A. J., & Nusse, R. (2006). Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biology, 4(4), e115.

    PubMed  Google Scholar 

  49. Oishi, I., Suzuki, H., Onishi, N., Takada, R., Kani, S., Ohkawara, B., et al. (2003). The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes to Cells, 8(7), 645–654.

    PubMed  CAS  Google Scholar 

  50. Teo, R., Mohrlen, F., Plickert, G., Muller, W. A., & Frank, U. (2006). An evolutionary conserved role of Wnt signaling in stem cell fate decision. Developments in Biologicals, 289(1), 91–99.

    Article  CAS  Google Scholar 

  51. Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C. M., von Laue, C. C., Snyder, P., et al. (2000). WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature, 407(6801), 186–189.

    PubMed  CAS  Google Scholar 

  52. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.

    PubMed  CAS  Google Scholar 

  53. Huelsken, J., & Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Current Opinion in Genetics & Development, 11(5), 547–553.

    CAS  Google Scholar 

  54. Kleber, M., & Sommer, L. (2004). Wnt signaling and the regulation of stem cell function. Current Opinion in Cell Biology, 16(6), 681–687.

    PubMed  CAS  Google Scholar 

  55. Nguyen, H., Rendl, M., & Fuchs, E. (2006). Tcf3 governs stem cell features and represses cell fate determination in skin. Cell, 127(1), 171–183.

    PubMed  CAS  Google Scholar 

  56. Polesskaya, A., Seale, P., & Rudnicki, M. A. (2003). Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell, 113(7), 841–852.

    PubMed  CAS  Google Scholar 

  57. Miyoshi, K., Shillingford, J. M., Le Provost, F., Gounari, F., Bronson, R., von Boehmer, H., et al. (2002). Activation of beta-catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proceedings of the National Academy of Sciences of the United States of America, 99(1), 219–224.

  58. Miyoshi, K., Rosner, A., Nozawa, M., Byrd, C., Morgan, F., Landesman-Bollag, E., et al. (2002). Activation of different Wnt/beta-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogenes, 21(36), 5548–5556.

    CAS  Google Scholar 

  59. Sansom, O. J., Reed, K. R., Hayes, A. J., Ireland, H., Brinkmann, H., Newton, I. P., et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & Development, 18(12), 1385–1390.

    CAS  Google Scholar 

  60. Radtke, F., & Clevers, H. (2005). Self-renewal and cancer of the gut: Two sides of a coin. Science, 307(5717), 1904–1909.

    PubMed  CAS  Google Scholar 

  61. Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.

    PubMed  CAS  Google Scholar 

  62. Pinto, D., Gregorieff, A., Begthel, H., Clevers, H. (2003). Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes & Development, 17(14), 1709–1713.

    CAS  Google Scholar 

  63. Kuhnert, F., Davis, C. R., Wang, H. T., Chu, P., Lee, M., Yuan, J., et al. (2004). Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 266–271.

    PubMed  CAS  Google Scholar 

  64. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105(4), 533–545.

    PubMed  CAS  Google Scholar 

  65. Chu, E. Y., Hens, J., Andl, T., Kairo, A., Yamaguchi, T. P., Brisken, C., et al. (2004). Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development, 131(19), 4819–4829.

    PubMed  CAS  Google Scholar 

  66. Boras-Granic, K., Chang, H., Grosschedl, R., Hamel, P. A. (2006). Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Developments in Biologicals, 295, 219–231.

    CAS  Google Scholar 

  67. van Genderen, C., Okamura, R. M., Farinas, I., Quo, R. G., Parslow, T. G., Bruhn, L., et al. (1994). Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice. Genes & Development, 8(22), 2691–2703.

    Google Scholar 

  68. Liu, G., Bafico, A., & Aaronson, S. A. (2005). The mechanism of endogenous receptor activation functionally distinguishes prototype canonical and noncanonical Wnts. Molecular and Cellular Biology, 25(9), 3475–3482.

    PubMed  CAS  Google Scholar 

  69. Andl, T., Reddy, S. T., Gaddapara, T., & Millar, S. E. (2002). WNT signals are required for the initiation of hair follicle development. Developmental Cell, 2(5), 643–653.

    PubMed  CAS  Google Scholar 

  70. Weber-Hall, S. J., Phippard, D. J., Niemeyer, C. C., & Dale, T. C. (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation, 57(3), 205–214.

    PubMed  CAS  Google Scholar 

  71. Brisken, C., Heineman, A., Chavarria, T., Elenbaas, B., Tan, J., Dey, S. K., et al. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes & Development, 14(6), 650–654.

    CAS  Google Scholar 

  72. Teperam, S. B., McCrea, P. D., & Rosen, J. M. (2003). A beta-catenin survival signal is required for normal lobular development in the mammary gland. Journal of Cell Science, 116(Pt 6), 1137–1149.

    Google Scholar 

  73. Hsu, W., Shakya, R., & Costantini, F. (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. Journal of Cell Biology, 155(6), 1055–1064.

    PubMed  CAS  Google Scholar 

  74. Nusse, R. (2005). Wnt signaling in disease and in development. Cell Research, 15(1), 28–32.

    PubMed  CAS  Google Scholar 

  75. Kinzler, K. W., & Vogelstein B. (1996). Lessons from hereditary colorectal cancer. Cell, 87(2), 159–170.

    PubMed  CAS  Google Scholar 

  76. Polakis, P. (2000). Wnt signaling and cancer. Genes & Development, 14(15), 1837–1851.

    CAS  Google Scholar 

  77. Satoh, S., Daigo, Y., Furukawa, Y., Kato, T., Miwa, N., Nishiwaki, T., et al. (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nature Genetics, 24(3), 245–250.

    PubMed  CAS  Google Scholar 

  78. Breuhahn, K., Longerich, T., & Schirmacher, P. (2006). Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogenes, 25(27), 3787–3800.

    CAS  Google Scholar 

  79. Liu, W., Dong, X., Mai, M., Seelan, R. S., Taniguchi, K., Krishnadath, K. K., et al. (2000). Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nature Genetics, 26(2), 146–147.

    PubMed  CAS  Google Scholar 

  80. Jin, L. H., Shao, Q. J., Luo, W., Ye, Z. Y., Li, Q., & Lin, S. C. (2003). Detection of point mutations of the Axin1 gene in colorectal cancers. International Journal of Cancer, 107(5), 696–699.

    CAS  Google Scholar 

  81. Brennan, K. R., Brown, A. M. (2004). Wnt proteins in mammary development and cancer. Journal of Mammary Gland Biology and Neoplasia, 9(2), 119–131.

    PubMed  Google Scholar 

  82. Bui, T. D., Rankin, J., Smith, K., Huguet, E. L., Ruben, S., Strachan, T., et al. (1997). A novel human Wnt gene, WNT10B, maps to 12q13 and is expressed in human breast carcinomas. Oncogenes, 14(10), 1249–1253.

    CAS  Google Scholar 

  83. Bafico, A., Liu, G., Goldin, L., Harris, V., & Aaronson, S. A. (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cells, 6(5), 497–506.

    CAS  Google Scholar 

  84. Milovanovic, T., Planutis, K., Nguyen, A., Marsh, J. L., Lin, F., Hope, C., et al. (2004). Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. International Journal of Oncology, 25(5), 1337–1342.

    PubMed  CAS  Google Scholar 

  85. Ayyanan, A., Civenni, G., Ciarloni, L., Morel, C., Mueller, N., Lefort, K., et al. (2006). Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3799–3804.

    PubMed  CAS  Google Scholar 

  86. Ugolini, F., Charafe-Jauffret, E., Bardou, V. J., Geneix, J., Adelaide, J., Labat-Moleur, F., et al. (2001). WNT pathway and mammary carcinogenesis: Loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogenes, 20(41), 5810–5817.

    CAS  Google Scholar 

  87. Klopocki, E., Kristiansen, G., Wild, P. J., Klaman, I., Castanos-Velez, E., Singer, G., et al. (2004). Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. International Journal of Oncology, 25(3), 641–649.

    PubMed  CAS  Google Scholar 

  88. Veeck, J., Niederacher, D., An, H., Klopocki, E., Wiesmann, F., Betz, B., et al. (2006). Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogenes, 25(24), 3479–3488.

    CAS  Google Scholar 

  89. Ugolini, F., Adelaide, J., Charafe-Jauffret, E., Nguyen, C., Jacquemier, J., Jordan, B., et al. (1999). Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and fibroblast growth factor receptor 1 (FGFR1) as candidate breast cancer genes. Oncogenes, 18(10), 1903–1910.

    CAS  Google Scholar 

  90. Lo, P. K., Mehrotra, J., D’Costa, A., Fackler, M. J., Garrett-Mayer, E., Argani, P., et al. (2006). Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biology & Therapy, 5(3), 281–286.

    Article  CAS  Google Scholar 

  91. Armes, J. E., Hammet, F., de Silva, M., Ciciulla, J., Ramus, S. J., Soo, W. K., et al. (2004). Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogenes, 23(33), 5697–5702.

    CAS  Google Scholar 

  92. Wong, S. C., Lo, S. F., Lee, K. C., Yam, J. W., Chan, J. K., Wendy Hsiao, W. L. (2002). Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. Journal of Pathology, 196(2), 145–153.

    PubMed  CAS  Google Scholar 

  93. Zhou, Z., Wang, J., Han, X., Zhou, J., Linder, S. (1998). Up-regulation of human secreted frizzled homolog in apoptosis and its down-regulation in breast tumors. International Journal of Cancer, 78(1), 95–99.

    CAS  Google Scholar 

  94. Nagahata, T., Shimada, T., Harada, A., Nagai, H., Onda, M., Yokoyama, S., et al. (2003). Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Science, 94(6), 515–518.

    PubMed  CAS  Google Scholar 

  95. Lin, S. Y., Xia, W., Wang, J. C., Kwong, K. Y., Spohn, B., Wen, Y., et al. (2000). Beta-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4262–4266.

    PubMed  CAS  Google Scholar 

  96. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C., & Lu, K. P. (2001). Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nature Cell Biology, 3(9), 793–801.

    PubMed  CAS  Google Scholar 

  97. Nakopoulou, L., Mylona, E., Papadaki, I., Kavantzas, N., Giannopoulou, I., Markaki, S., et al. (2006). Study of phospho-beta-catenin subcellular distribution in invasive breast carcinomas in relation to their phenotype and the clinical outcome. Modern Pathology, 19(4), 556–563.

    PubMed  CAS  Google Scholar 

  98. Dolled-Filhart, M., McCabe, A., Giltnane, J., Cregger, M., Camp, R. L., & Rimm, D. L. (2006). Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Research, 66(10), 5487–5494.

    PubMed  CAS  Google Scholar 

  99. Gillett, C. E., Miles, D. W., Ryder, K., Skilton, D., Liebman, R. D., Springall, R. J., et al. (2001). Retention of the expression of E-cadherin and catenins is associated with shorter survival in grade III ductal carcinoma of the breast. Journal of Pathology, 93(4), 433–441.

    Google Scholar 

  100. Li, Y., & Hively, W. P. (2000). Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogenes, 19(8), 1002–1009.

    CAS  Google Scholar 

  101. Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T., & Varmus. H. E. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55(4), 619–625.

    PubMed  CAS  Google Scholar 

  102. Lane, T. F., & Leder, P. (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogenes, 15(18), 2133–2144.

    CAS  Google Scholar 

  103. Gunther, E. J., Moody, S. E., Belka, G. K., Hahn, K. T., Innocent, N., Dugan, K. D., et al. (2003). Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes & Development, 17(4), 488–501.

    CAS  Google Scholar 

  104. Gestl, S. A., Leonard, T. L., Biddle, J. L., Debies, M. T., & Gunther, E. J. (2006). Dormant Wnt-initiated mammary cancer can participate in reconstituting functional mammary glands. Molecular and Cellular Biology, 27(1), 195–207.

    PubMed  Google Scholar 

  105. Cunha, G. R., & Hom, Y. K. (1996). Role of mesenchymal–epithelial interactions in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 1(1), 21–37.

    PubMed  CAS  Google Scholar 

  106. Imbert, A., Eelkema, R., Jordan, S., Feiner, H., & Cowin, P. (2001). Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. Journal of Cell Biology, 153(3), 555–568.

    PubMed  CAS  Google Scholar 

  107. Michaelson, J. S., & Leder, P. (2001). beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogenes, 20(37), 5093–5099.

    CAS  Google Scholar 

  108. Teuliere, J., Faraldo, M. M., Deugnier, M. A., Shtutman, M., Ben-Ze’ev, A., Thiery, J. P., et al. (2005). Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development, 132(2), 267–277.

    PubMed  CAS  Google Scholar 

  109. Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., et al. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15853–15858.

    PubMed  CAS  Google Scholar 

  110. Liu, B. Y., McDermott, S. P., Khwaja, S. S., & Alexander, C. M. (2004). The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4158–4163.

    Google Scholar 

  111. Owens, D. M., & Watt, F. M. (2003). Contribution of stem cells and differentiated cells to epidermal tumours. Nature Reviews Cancer, 3(6), 444–451.

    PubMed  CAS  Google Scholar 

  112. Dai, C., Celestino, J. C., Okada, Y., Louis, D. N., Fuller, G. N., & Holland, E. C. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes & Development, 15(15), 1913–1925.

    CAS  Google Scholar 

  113. Bachoo, R. M., Maher, E. A., Ligon, K. L., Sharpless, N. E., Chan, S. S., You, M. J., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cells, 1(3), 269–277.

    CAS  Google Scholar 

  114. Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351(7), 657–667.

    PubMed  CAS  Google Scholar 

  115. Rosner, A., Miyoshi, K., Landesman-Bollag, E., Xu, X., Seldin, D. C., Moser, A. R., et al. (2002). Pathway pathology: Histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. American Journal of Pathology, 161(3), 1087–1097.

    PubMed  CAS  Google Scholar 

  116. Cui, X. S., & Donehower, L. A. (2000). Differential gene expression in mouse mammary adenocarcinomas in the presence and absence of wild type p53. Oncogenes, 19(52), 5988–5996.

    CAS  Google Scholar 

  117. Houghton, J., Stoicov, C., Nomura, S., Rogers, A. B., Carlson, J., Li, H., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306(5701), 1568–1571.

    PubMed  CAS  Google Scholar 

  118. Henry, M. D., Triplett, A. A., & Oh, K. B. (2004). Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogenes, 23(41), 6980–6985.

    CAS  Google Scholar 

  119. Morrison, B. W., & Leder, P. (1994). Neu and ras initiate murine mammary tumors that share genetic markers generally absent in c-myc and int-2-initiated tumors. Oncogenes, 9(12), 3417–3426.

    CAS  Google Scholar 

  120. Huang, S., Li, Y., Chen, Y., Podsypanina, K., Chamorro, M., Olshen, A. B., et al. (2005). Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice. Genome Biology, 6(10), R84.

    PubMed  Google Scholar 

  121. Lewis, B. C., Klimstra, D. S., & Varmus, H. E. (2003). The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes & Development, 17(24), 3127–3138.

    CAS  Google Scholar 

  122. Podsypanina, K., & Li, Y. (2004). Varmus H. Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype. BMC Medicine, 2, 24.

    PubMed  Google Scholar 

  123. Huang, S., Podsypanina, K., Chen, Y., Cai, W., Tsimelzon, A., Hilsenbeck, S., et al. (2006). Wnt-1 is dominant over Neu in specifying mammary tumor expression profiles. Technology in Cancer Research & Treatment, 5(6), 565–571.

    CAS  Google Scholar 

  124. Wagner, K. U., McAllister, K., Ward, T., Davis, B., Wiseman, R., & Hennighausen, L. (2001). Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Research, 10(6), 545–553.

    PubMed  CAS  Google Scholar 

  125. Du, Z., Podsypanina, K., Huang, H., McGrath, A., Toneff, M. J., Bogoslovskaia, E., et al. (2006). Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17396–17401.

    PubMed  CAS  Google Scholar 

  126. Gunther, E. J., Belka, G. K., Wertheim, G. B., Wang, J., Hartman, J. L., Boxer, R. B., et al. (2002). A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB Journal, 16(3), 283–292.

    PubMed  CAS  Google Scholar 

  127. Politi, K., Kljuic, A., Szabolcs, M., Fisher, P., Ludwig, T., & Efstratiadis, A. (2004). ‘Designer’ tumors in mice. Oncogenes, 23(8), 1558–1565.

    CAS  Google Scholar 

  128. Holland, E. C., & Varmus, H. E. (1998). Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1218–1223.

    Google Scholar 

  129. Holland, E. C., Hively, W. P., DePinho, R. A., & Varmus, H. E. (1998). A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes & Development, 12(23), 3675–3685.

    CAS  Google Scholar 

  130. Orsulic, S., Li, Y., Soslow, R. A., Vitale-Cross, L. A., Gutkind, J. S., & Varmus, H. E. (2002). Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cells, 1, 53–62.

    CAS  Google Scholar 

  131. Montaner, S., Sodhi, A., Molinolo, A., Bugge, T. H., Sawai, E. T., He, Y., et al. (2003). Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cells, 3(1), 23–36.

    CAS  Google Scholar 

  132. Lewis, B. C., Klimstra, D. S., Socci, N. D., Xu, S., Koutcher, J. A., & Varmus, H. E. (2005). The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Molecular and Cellular Biology, 25(4), 1228–1237.

    PubMed  CAS  Google Scholar 

  133. Pao, W., Klimstra, D. S., Fisher, G. H., & Varmus, H. E. (2003). Use of avian retroviral vectors to introduce transcriptional regulators into mammalian cells for analyses of tumor maintenance. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8764–8769.

  134. Fu, S. L., Huang, Y. J., Liang, F. P., Huang, Y. F., Chuang, C. F., Wang, S. W., et al. (2005). Malignant transformation of an epithelial cell by v-Src via tv-a-mediated retroviral infection: A new cell model for studying carcinogenesis. Biochemical and Biophysical Research Communications, 338(2), 830–838.

    PubMed  CAS  Google Scholar 

  135. Federspiel, M. J., Bates, P., Young, J. A., Varmus, H. E., & Hughes, S. H. (1994). A system for tissue-specific gene targeting: Transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 11241–11245.

    Google Scholar 

  136. Fisher, G. H., Orsulic, S., Holland, E., Hively, W. P., Li, Y., Lewis, B. C., et al. (1999). Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogenes, 18(38), 5253–5260.

    CAS  Google Scholar 

  137. Orsulic, S. (2002). An RCAS-TVA-based approach to designer mouse models. Mammalian Genome, 13(10), 543–547.

    PubMed  Google Scholar 

  138. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    PubMed  CAS  Google Scholar 

  139. Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304(5675), 1331–1334.

    PubMed  CAS  Google Scholar 

  140. Wicha, M. S., Liu, S., Dontu, G. (2006). Cancer stem cells: An old idea—a paradigm shift. Cancer Research, 66(4), 1883–1890.

    PubMed  CAS  Google Scholar 

  141. Rudland, P. S. (1993). Epithelial stem cells and their possible role in the development of the normal and diseased human breast. Histology and Histopathology, 8(2), 385–404.

    PubMed  CAS  Google Scholar 

  142. Shulewitz, M., Soloviev, I., Wu, T., Koeppen, H., Polakis, P., & Sakanaka, C. (2006). Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene, 25, 4361–4369.

    PubMed  CAS  Google Scholar 

  143. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39–49.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gary Chamness and David Nadziejka for the assistance in the preparation of this manuscript. This work was supported in part by funds from the National Institutes of Health R01 CA113869 (to YL) and Project 5 of MMHCC U01 CA084243-07 (to YL; U01 PI: Dr. Jeffrey Rosen), from the USAMRMC BC030755 (to YL), and from the Van Andel Research Institute (BOW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindvall, C., Bu, W., Williams, B.O. et al. Wnt Signaling, Stem Cells, and the Cellular Origin of Breast Cancer. Stem Cell Rev 3, 157–168 (2007). https://doi.org/10.1007/s12015-007-0025-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0025-3

Keywords

Navigation