Skip to main content

Advertisement

Log in

Prospective Isolation and Functional Analysis of Stem and Differentiated Cells from the Mouse Mammary Gland

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Prospective isolation and in vitro and in vivo analysis of primary mouse mammary epithelial cells has been used to separate cell subpopulations and identify stem, progenitor and differentiated cell compartments. Progress has been made from cell separation strategies based on a single marker of the luminal epithelial or myoepithelial compartments to use of markers that allow simultaneous isolation of non-epithelial, basal/myoepithelial and luminal epithelial cells. Transplant analysis has shown that mammary stem cells are found in the basal/myoepithelial compartment, whereas in vitro colony progenitors are found in the luminal compartment. A basal population enriched for stem cell activity can be purified from the myoepithelial cells and the most recent data shows that the luminal population can now be prospectively split into estrogen receptor positive and estrogen receptor negative cells. Future work aims to molecularly characterise these populations to identify new drug targets, which can be used to specifically kill breast cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111, Nov 1.

    PubMed  CAS  Google Scholar 

  2. Sell, S. (2004). Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology, 51(1), 1–28, Jul.

    PubMed  Google Scholar 

  3. Singh, S. K., Clarke, I. D., Hide, T., & Dirks, P. B. (2004). Cancer stem cells in nervous system tumors. Oncogene, 23(43), 7267–7273, Sep 20.

    PubMed  CAS  Google Scholar 

  4. Wang, J. C., & Dick, J. E. (2005). Cancer stem cells: Lessons from leukemia. Trends in Cell Biology, 15(9), 494–501, Sep.

    PubMed  CAS  Google Scholar 

  5. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988, Apr 1.

    PubMed  CAS  Google Scholar 

  6. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 3(7), 730–737, Jul.

    PubMed  CAS  Google Scholar 

  7. Galli, R., Binda, E., Orfanelli, U., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64(19), 7011–7021, Oct 1.

    PubMed  CAS  Google Scholar 

  8. Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648, Feb 17.

    PubMed  CAS  Google Scholar 

  9. Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828, Sep 15.

    PubMed  CAS  Google Scholar 

  10. Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401, Nov 18.

    PubMed  CAS  Google Scholar 

  11. Alonso, L., & Fuchs, E. (2003). Stem cells in the skin: Waste not, Wnt not. Genes & Development, 17(10), 1189–1200, May 15.

    CAS  Google Scholar 

  12. Galli, R., Gritti, A., Bonfanti, L., & Vescovi, A. L. (2003). Neural stem cells: An overview. Circulation Research, 92(6), 598–608, Apr 4.

    PubMed  CAS  Google Scholar 

  13. Potten, C. S., & Loeffler, M. (1990). Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110(4), 1001–1020, Dec.

    PubMed  CAS  Google Scholar 

  14. Seaberg, R. M., & van der Kooy, D. (2003). Stem and progenitor cells: The premature desertion of rigorous definitions. Trends in Neurosciences, 26(3), 125–131, Mar.

    PubMed  CAS  Google Scholar 

  15. Smith, C. (2003). Hematopoietic stem cells and hematopoiesis. Cancer Control, 10(1), 9–16, Jan–Feb.

    PubMed  Google Scholar 

  16. Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—A paradigm shift. Cancer Research, 66(4), 1883–1890; discussion 1895–1886, Feb 15.

    PubMed  CAS  Google Scholar 

  17. Dontu, G., Abdallah, W. M., Foley, J. M., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270, May 15.

    CAS  Google Scholar 

  18. Reynolds, B. A., & Weiss, S. (1996). Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Developments in Biologicals, 175(1), 1–13, Apr 10.

    CAS  Google Scholar 

  19. Weiss, S., Reynolds, B. A., Vescovi, A. L., Morshead, C., Craig, C. G., & van der Kooy, D. (1996). Is there a neural stem cell in the mammalian forebrain? Trends in Neurosciences, 19(9), 387–393, Sep.

    PubMed  CAS  Google Scholar 

  20. Miller, S. J., Lavker, R. M., & Sun, T. T. (2005). Interpreting epithelial cancer biology in the context of stem cells: Tumor properties and therapeutic implications. Biochimica et Biophysica Acta, 1756(1), 25–52, Sep 25.

    PubMed  CAS  Google Scholar 

  21. Liu, S., Dontu, G., & Wicha, M. S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 7(3), 86–95.

    PubMed  CAS  Google Scholar 

  22. Salsbury, A. J. (1975). The significance of the circulating cancer cell. Cancer Treatment Reviews, 2(1), 55–72, Mar.

    PubMed  CAS  Google Scholar 

  23. DeOme, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520, Jun.

    PubMed  CAS  Google Scholar 

  24. Medina, D. (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 1(1), 5–19, Jan.

    PubMed  CAS  Google Scholar 

  25. Kordon, E. C., & Smith, G. H. (1998).An entire functional mammary gland may comprise the progeny from a single cell. Development, 125(10), 1921–1930, May.

    PubMed  CAS  Google Scholar 

  26. Smith, G. H. (1996). Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 39(1), 21–31.

    PubMed  CAS  Google Scholar 

  27. Shackleton, M., Vaillant, F., Simpson, K. J., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072), 84–88, Jan 5.

    PubMed  CAS  Google Scholar 

  28. Stingl, J., Eirew, P., Ricketson, I., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079), 993–997, Feb 23.

    PubMed  CAS  Google Scholar 

  29. Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245(1), 42–56, May 1.

    CAS  Google Scholar 

  30. Kenney, N. J., Smith, G. H., Lawrence, E., Barrett, J. C., & Salomon, D. S. (2001).Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. Journal of Biomedicine and Biotechnology, 1(3), 133–143.

    PubMed  CAS  Google Scholar 

  31. Richert, M. M., Schwertfeger, K. L., Ryder, J. W., & Anderson, S. M. (2000). An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 5(2), 227–241, Apr.

    PubMed  CAS  Google Scholar 

  32. Bartek, J., Durban, E. M., Hallowes, R. C., & Taylor-Papadimitriou, J. A (1985). subclass of luminal epithelial cells in the human mammary gland, defined by antibodies to cytokeratins. Journal of Cell Science, 75, 17–33, Apr.

    PubMed  CAS  Google Scholar 

  33. Smalley, M., & Ashworth, A. (2003). Stem cells and breast cancer: A field in transit. Nature Reviews. Cancer, 3(11), 832–844, Nov.

    PubMed  CAS  Google Scholar 

  34. Williams, J. M., & Daniel, C. W. (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Developments in Biologicals, 97(2), 274–290, Jun.

    CAS  Google Scholar 

  35. Srinivasan, K., Strickland, P., Valdes, A., Shin, G. C., & Hinck, L. (2003). Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Developments in Cell, 4(3), 371–382, Mar.

    CAS  Google Scholar 

  36. Sapino, A., Macri, L., Gugliotta, P., et al. (1993). mmunophenotypic properties and estrogen dependency of budding cell structures in the developing mouse mammary gland. Differentiation, 55(1), 13–18, Dec.

    PubMed  CAS  Google Scholar 

  37. Chepko, G., & Smith, G. H. (1997). Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue & Cell, 29(2), 239–253, Apr.

    CAS  Google Scholar 

  38. Smalley, M. J. (1995). Clonal characterisation of mouse mammary luminal epithelial and myoepithelial cells. University of London.

  39. Smalley, M. J., Titley, J., & O'Hare, M. J. (1998). Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In vitro Cellular & Developmental Biology. Animal, 34(9), 711–721, Oct.

    CAS  Google Scholar 

  40. Smalley, M. J., Titley, J., Paterson, H., Perusinghe, N., Clarke, C., & O'Hare, M. J. (1999). Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. Journal of Histochemistry and Cytochemistry, 47(12), 1513–1524, Dec.

    PubMed  CAS  Google Scholar 

  41. O'Hare, M. J., Ormerod, M. G., Monaghan, P., Lane, E. B., & Gusterson, B. A. (1991). Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation, 46(3), 209–221, Apr.

    PubMed  Google Scholar 

  42. Dundas, S. R., Ormerod, M. G., Gusterson, B. A., & O’Hare, M. J. (1991). Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. Journal of Cell Science, 100(Pt 3), 459–471, Nov.

    PubMed  Google Scholar 

  43. Naylor, S., Smalley, M. J., Robertson, D., Gusterson, B. A., Edwards, P. A., & Dale, T. C. (2000). Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. Journal of Cell Science, 113(Pt 12), 2129–2138, Jun.

    PubMed  CAS  Google Scholar 

  44. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C.M., Smalley, M. J. (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 8(1), R7.

    Google Scholar 

  45. Sonnenberg, A., Daams, H., Van der Valk, M. A., Hilkens, J., & Hilgers, J. (1986). Development of mouse mammary gland: Identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. Journal of Histochemistry and Cytochemistry, 34(8), 1037–1046, Aug.

    PubMed  CAS  Google Scholar 

  46. Das, N. K., Hosick, H. L., & Nandi, S. (1974). Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium. Journal of the National Cancer Institute, 52(3), 849–861, Mar.

    PubMed  CAS  Google Scholar 

  47. Singh, S., & Gupta, P. D. (1994). Tampering with cytokeratin expression results in cell dysfunction. Epithelial Cell Biology, 3(2), 79–83.

    PubMed  CAS  Google Scholar 

  48. Vassar, R., Coulombe, P. A., Degenstein, L., Albers, K., & Fuchs, E. (1991). Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell, 64(2), 365–380, Jan 25.

    PubMed  CAS  Google Scholar 

  49. Kumemura, H., Harada, M., Omary, M. B., et al. (2004). Aggregation and loss of cytokeratin filament networks inhibit golgi organization in liver-derived epithelial cell lines. Cell Motility and the Cytoskeleton, 57(1), 37–52, Jan.

    PubMed  CAS  Google Scholar 

  50. Parry, G., Beck, J. C., Moss, L., Bartley, J., & Ojakian, G. K. (1990). Determination of apical membrane polarity in mammary epithelial cell cultures: the role of cell–cell, cell–substratum, and membrane–cytoskeleton interactions. Experimental Cell Research, 188(2), 302–311, Jun.

    PubMed  CAS  Google Scholar 

  51. Taylor-Papadimitriou, J., & Lane, E. B. (1987). Keratin expression in the mammary gland. In C. M. Neville, & C. W. Daniel (Eds.), The mammary gland: Development, regulation and function (pp. 181–215). New York: Plenum.

    Google Scholar 

  52. Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 6(1), 1–11.

    PubMed  CAS  Google Scholar 

  53. Blum, J. L., & Wicha, M. S. (1988). Role of the cytoskeleton in laminin induced mammary gene expression. Journal of Cellular Physiology, 135(1), 13–22, Apr.

    PubMed  CAS  Google Scholar 

  54. Li ML, Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., & Bissell, M. J. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84(1), 136–140, Jan.

    PubMed  CAS  Google Scholar 

  55. Deugnier, M. A., Faraldo, M. M., Rousselle, P., Thiery, J. P., & Glukhova, M. A. (1999). Cell–extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. Journal of Cell Science, 112(Pt 7), 1035–1044, Apr.

    PubMed  CAS  Google Scholar 

  56. Streuli, C. H., Bailey, N., & Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. Journal of Cell Biology, 115(5), 1383–1395, Dec.

    PubMed  CAS  Google Scholar 

  57. Kleinman, H. K., McGarvey, M. L., Hassell, J. R., et al. (1986). Basement membrane complexes with biological activity. Biochemistry, 25(2), 312–318, Jan 28.

    PubMed  CAS  Google Scholar 

  58. Farrelly, N., Lee, Y. J., Oliver, J., Dive, C., & Streuli, C. H. (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. Journal of Cell Biology, 144(6), 1337-1348, Mar 22.

    PubMed  CAS  Google Scholar 

  59. Streuli, C. H., & Gilmore, A. P. (1999). Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. Journal of Mammary Gland Biology and Neoplasia, 4(2), 183–191, Apr.

    PubMed  CAS  Google Scholar 

  60. Pullan, S., Wilson, J., Metcalfe, A., et al. (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. Journal of Cell Science, 109(Pt 3), 631–642, Mar.

    PubMed  CAS  Google Scholar 

  61. Cary, L. A., Han, D. C., & Guan, J. L. (1999). Integrin-mediated signal transduction pathways. Histology and Histopathology, 14(3), 1001–1009, Jul.

    PubMed  CAS  Google Scholar 

  62. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687, Sep 20.

    PubMed  CAS  Google Scholar 

  63. Pozzi, A., & Zent, R. (2003). Integrins: Sensors of extracellular matrix and modulators of cell function. Nephron Exp Nephrology, 94(3), e77–e84.

    CAS  Google Scholar 

  64. Schatzmann, F., Marlow, R., & Streuli, C. H. (2003). Integrin signaling and mammary cell function. Journal of Mammary Gland Biology and Neoplasia, 8(4), 395–408, Oct.

    PubMed  Google Scholar 

  65. Taddei, I., Faraldo, M. M., Teuliere, J., Deugnier, M. A., Thiery, J. P., & Glukhova, M. A. (2003). ntegrins in mammary gland development and differentiation of mammary epithelium. Journal of Mammary Gland Biology and Neoplasia, 8(4), 383–394, Oct.

    PubMed  Google Scholar 

  66. de la Cruz, L., Steffgen, K., Martin, A., McGee, C., & Hathaway, H. (2004). Apoptosis and involution in the mammary gland are altered in mice lacking a novel receptor, beta1,4-Galactosyltransferase I. Developments in Biologicals, 272(2), 286–309, Aug 15.

    Article  CAS  Google Scholar 

  67. Hathaway, H. J. (2003). Cell surface beta1,4-galactosyltransferase function in mammary gland morphogenesis: Insights from transgenic and knockout mouse models. Journal of Mammary Gland Biology and Neoplasia, 8(4), 421–433, Oct.

    PubMed  Google Scholar 

  68. Hathaway, H. J., & Shur, B. D. (1996). Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta1,4-galactosyltransferase. Development, 122(9), 2859–2872, Sep.

    PubMed  CAS  Google Scholar 

  69. Barcellos-Hoff, M. H. (1992). Mammary epithelial reorganization on extracellular matrix is mediated by cell surface galactosyltransferase. Experimental Cell Research, 201(1), 225–234, Jul.

    PubMed  CAS  Google Scholar 

  70. Li N, Zhang, Y., Naylor, M. J., et al. (2005). Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO Journal, 24(11), 1942–1953, Jun 1.

    PubMed  CAS  Google Scholar 

  71. Faraldo, M. M., Deugnier, M. A., Lukashev, M., Thiery, J. P., & Glukhova, M. A. (1998). Perturbation of beta1-integrin function alters the development of murine mammary gland. EMBO Journal, 17(8), 2139–2147, Apr 15.

    PubMed  CAS  Google Scholar 

  72. Wang, F., Hansen, R. K., Radisky, D., et al. (2002). Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. Journal of the National Cancer Institute, 94(19), 1494–1503, Oct 2.

    PubMed  CAS  Google Scholar 

  73. Weaver, V. M., Petersen, O. W., Wang, F., et al. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. Journal of Cell Biology, 137(1), 231–245, Apr 7.

    PubMed  CAS  Google Scholar 

  74. Pechoux, C., Gudjonsson, T., Ronnov-Jessen, L., Bissell, M. J., & Petersen, O. W. (1999). Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Developments in Biologicals, 206(1), 88–99, Feb 1.

    Article  CAS  Google Scholar 

  75. Emerman, J. T., & Vogl, A. W. (1986). Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anatomical Record, 216(3), 405–415, Nov.

    PubMed  CAS  Google Scholar 

  76. Streuli, C. H. (1993). Extracellular matrix and gene expression in mammary epithelium. Seminars in Cell Biology, 4(3), 203–212, Jun.

    PubMed  CAS  Google Scholar 

  77. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806, Apr 1.

    PubMed  CAS  Google Scholar 

  78. Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med., 7(9), 1028–1034, Sep.

    PubMed  CAS  Google Scholar 

  79. Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med., 3(12), 1337–1345, Dec.

    PubMed  CAS  Google Scholar 

  80. Hulspas, R., & Quesenberry, P. J. (2000). Characterization of neurosphere cell phenotypes by flow cytometry. Cytometry, 40(3), 245–250, Jul 1.

    PubMed  CAS  Google Scholar 

  81. Alvi, A. J., Clayton, H., Joshi, C., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 5(1), R1–R8.

    PubMed  Google Scholar 

  82. Smalley, M. J., Titley, I., & Ashworth, A. (2005). An improved definition of mouse mammary epithelial side population cells. Cytotherapy, 7(6), 497–508.

    PubMed  CAS  Google Scholar 

  83. Jonker, J. W., Merino, G., Musters, S., et al. (2005). The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med., 11(2), 127–129, Feb.

    PubMed  CAS  Google Scholar 

  84. Ee P. L., Kamalakaran, S., Tonetti, D., He X, Ross, D. D., & Beck, W. T. (2004). Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Research, 64(4), 1247–1251, Feb 15.

    PubMed  CAS  Google Scholar 

  85. Petersen, T. W., Ibrahim, S. F., Diercks, A. H., & van den Engh, G. (2004). Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342. Cytometry, 60A(2), 173–181, Aug.

    Google Scholar 

  86. Pirruccello, S. J., & LeBien, T. W. (1986). The human B cell-associated antigen CD24 is a single chain sialoglycoprotein. Journal of Immunology, 136(10), 3779–3784, May 15.

    CAS  Google Scholar 

  87. Akashi, T., Shirasawa, T., & Hirokawa, K. (1994). Gene expression of CD24 core polypeptide molecule in normal rat tissues and human tumor cell lines. Virchows Archiv, 425(4), 399–406.

    PubMed  CAS  Google Scholar 

  88. Jackson, D., Waibel, R., Weber, E., Bell, J., & Stahel, R. A. (1992). CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Research, 52(19), 5264–5270, Oct 1.

    PubMed  CAS  Google Scholar 

  89. Kristiansen, G., Denkert, C., Schluns, K., Dahl, E., Pilarsky, C., & Hauptmann, S. (2002). CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. American Journal of Pathology, 161(4), 1215–1221, Oct.

    PubMed  CAS  Google Scholar 

  90. Kristiansen, G., Pilarsky, C., Pervan, J., et al. (2004). CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate, 58(2), 183–192, Feb 1.

    PubMed  Google Scholar 

  91. Kristiansen, G., Winzer, K. J., Mayordomo, E., et al. (2003). CD24 expression is a new prognostic marker in breast cancer. Clinical Cancer Research, 9(13), 4906–4913, Oct 15.

    PubMed  CAS  Google Scholar 

  92. Aigner, S., Sthoeger, Z. M., Fogel, M., et al. (1997). CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood, 89(9), 3385–3395, May 1.

    PubMed  CAS  Google Scholar 

  93. Sammar, M., Aigner, S., Hubbe, M., et al. (1994). Heat-stable antigen (CD24) as ligand for mouse P-selectin. International Immunology, 6(7), 1027–1036, Jul.

    PubMed  CAS  Google Scholar 

  94. Baumann, P., Cremers, N., Kroese, F., et al. (2005). CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Research, 65(23), 10783–10793, Dec 1.

    PubMed  CAS  Google Scholar 

  95. Kristiansen, G., Schluns, K., Yongwei, Y., Denkert, C., Dietel, M., & Petersen, I. (2003). CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. British Journal of Cancer, 88(2), 231–236, Jan 27.

    PubMed  CAS  Google Scholar 

  96. Anderson, E., Clarke, R. B., & Howell, A. (1998). Estrogen responsiveness and control of normal human breast proliferation. Journal of Mammary Gland Biology and Neoplasia, 3(1), 23–35, Jan.

    PubMed  CAS  Google Scholar 

  97. Bocchinfuso, W. P., & Korach, K. S. (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. Journal of Mammary Gland Biology and Neoplasia, 2(4), 323–334, Oct.

    PubMed  CAS  Google Scholar 

  98. Yager, J. D., & Davidson, N. E. (2006).Estrogen carcinogenesis in breast cancer. New England Journal of Medicine, 354(3), 270–282, Jan 19.

    PubMed  CAS  Google Scholar 

  99. Cheng, G., Weihua, Z., Warner, M., & Gustafsson, J. A. (2004). Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3739–3746, Mar 16.

    PubMed  CAS  Google Scholar 

  100. Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Developments in Biologicals, 277(2), 443–456, Jan 15.

    CAS  Google Scholar 

  101. Booth, B. W., & Smith, G. H. (2006). Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Research, 8(4), R49, Aug 1.

    PubMed  Google Scholar 

  102. Sotgia, F., Rui, H., Bonuccelli, G., Mercier, I., Pestell, R. G., & Lisanti, M. P. (2006). Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Research, 66(22), 10647–10651, Nov 15.

    PubMed  CAS  Google Scholar 

  103. Mallepell, S., Krust, A., Chambon, P., & Brisken, C. (2006). Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2196–2201, Feb 14.

    PubMed  CAS  Google Scholar 

  104. Sleeman, K. E., Kendrick, H., Robertson, D., Isacke, C. M., & Ashworth, A., Smalley, M. J. (2007). Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. Journal of Cell Biology 176(1), 19–26.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all those who contributed to or advised on the studies described above, in particular Katherine Sleeman, Azra Alvi, Mike O’Hare, Trevor Dale, Tariq Enver, Clare Isacke and Alan Ashworth.

Work in the laboratory is supported by Breakthrough Breast Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Smalley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regan, J., Smalley, M. Prospective Isolation and Functional Analysis of Stem and Differentiated Cells from the Mouse Mammary Gland. Stem Cell Rev 3, 124–136 (2007). https://doi.org/10.1007/s12015-007-0017-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0017-3

Keywords

Navigation