Skip to main content

Advertisement

Log in

Stem Cell Origin of Death-from-Cancer Phenotypes of Human Prostate and Breast Cancers

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

In clinical terms, all human cancers diagnosed in individuals can be divided in two major categories: malignant tumors that will be cured with the existing cancer therapies and tumors that have therapy-resistant phenotypes and will return after initial treatment as incurable metastatic disease. These tumors manifesting clinically lethal death-from-cancer phenotypes represent the most formidable challenge of experimental, translational, and clinical cancer research. Clinical genomics data demonstrate that gene expression signatures associated with the “stemness” state of a cell are informative as molecular predictors of cancer therapy outcome and can help to identify cancer patients with therapy-resistant tumors. Here, we present experimental and clinical evidence in support of the BMI1 pathway rule indicating a genetic link between the stemness state and therapy-resistant death-from-cancer phenotypes. Our analysis demonstrates that therapy-resistant and therapy-responsive cancer phenotypes manifest distinct patterns of association with stemness/differentiation pathways, suggesting that therapy-resistant and therapy-responsive tumors develop within genetically distinct stemness/differentiation programs. These differences can be exploited for development of prognostic and therapy selection genetic tests utilizing a microarray-based cancer therapy outcome predictor algorithm. One of the major regulatory pathways manifesting distinct patterns of association with therapy-resistant and therapy-responsive cancer phenotypes is the Polycomb group proteins chromatin silencing pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sell, S., & Pierce, G. B. (1994). Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Laboratory Investigation, 70, 6–22.

    PubMed  CAS  Google Scholar 

  2. Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—a paradigm shift. Cancer Research, 66, 1883–1890.

    Article  PubMed  CAS  Google Scholar 

  3. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principle of stem-cell biology to cancer. Nature Review Cancer, 3, 895–902.

    Article  CAS  Google Scholar 

  4. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  5. Glinsky, G. V., Olga Berezovska, O., & Glinskii, A. B. (2005).Microarray analysis identifies a death from cancer signature predicting therapy failure in patients with multiple types of cancer. Journal of Clinical Investigation, 115, 1503–1521.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071.

    Article  PubMed  CAS  Google Scholar 

  7. Lessard, J., & Sauvageau, G. (2003). BMI-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255–260.

    Article  PubMed  CAS  Google Scholar 

  8. Park, I.-K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302–305.

    Article  PubMed  CAS  Google Scholar 

  9. Molofsky, A. V., Pardal, R., Iwashita, T., Park, I.-K., Clarke, M. F., & Morrison, S. J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962–967.

    Article  PubMed  CAS  Google Scholar 

  10. Dick, J. E. (2003). Self-renewal writ in blood. Nature, 423, 231–233.

    Article  PubMed  CAS  Google Scholar 

  11. Lessard, J., Baban, S., & Sauvageau, G. (1998). Stage-specific expression of polycomb group genes in human bone marrow cells. Blood, 91, 1216–1224.

    PubMed  CAS  Google Scholar 

  12. Haupt, Y., Bath, M. I., Harris, A. W., & Adams, J. M. (1993). BMI-1 transgene induces lymphomas and collaborates with Myc in tumorigenesis. Oncogene, 8, 3161–3164.

    PubMed  CAS  Google Scholar 

  13. Alkema, M. J., Jacobs, H., van Lohuizen, M., & Berns, A. (1997). Perturbation of B and T cell development and predisposition to lymphomagenesis in Eμ-Bmi-1 transgenic mice require the Bmi-1 RING finger. Oncogene, 15, 899–910.

    Article  PubMed  CAS  Google Scholar 

  14. Vonlanthen, S., Heighway J., Altermatt H. J., Gugger M., Kappeler A., Borner M. M., et al. (2001). The Bmi-1 oncoprotein is differentially expressed in non-small-cell lung cancer and correlates with INK4A-ARF locus expression. British Journal of Cancer, 84, 1372–1376.

    Article  PubMed  CAS  Google Scholar 

  15. Dimri, G. P., Martinez, J.-L., Jacobs, J. J. L., Keblusek, P., Itahana, K., van Lohuizen, M., et al. (2002). The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Research, 62, 4736–4745.

    PubMed  CAS  Google Scholar 

  16. Raaphorst, F. M. Vermeer, M., Fieret, E., Blokzijl, T., Mommers, E., Buerger, H., et al. (2003). Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia, 5, 481–488.

    PubMed  CAS  Google Scholar 

  17. Leung, C., Lingbeek, M., Shakhova, O., Liu, J., Tanger, E., Saremaslani, P., et al. (2004). BMI1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 428, 337–341.

    Article  PubMed  CAS  Google Scholar 

  18. Berezovska, O. P., Glinskii, A. B., Yang, Z., Li, X. M., Hoffman, R. M., & Glinsky, G. V. (2006). Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle, 5, 1886–1901.

    PubMed  CAS  Google Scholar 

  19. van Leenders, G. J., Dukers, D., Hessels, D., van den Kieboom, S. W., Hulsbergen, C. A., Witjes, J. A., et al. (2006). Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. European Urology, (in press).

  20. Kim, J. H., Yoon, S. Y., Kim, C. N., Joo, J. H., Moon, S. K., Choe, I. S., et al. (2004). The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Letter, 203, 217–224.

    Article  CAS  Google Scholar 

  21. Reinisch, C., Kandutsch, S., Uthman, A., & Pammer, J. (2006). BMI-1: A protein expressed in stem cells, specialized cells and tumors of the gastrointestinal tract. Histology and Histopathology, 21, 1143–1149.

    PubMed  CAS  Google Scholar 

  22. Glinsky, G. V. (2005). Death-from-cancer signatures and contribution of stem cells to metastatic cancer. Cell Cycle, 4, 1171–1175.

    PubMed  CAS  Google Scholar 

  23. Glinsky, G. V. (2006). Genomic models of metastatic cancer: Functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle, 5, 1208–1216.

    PubMed  CAS  Google Scholar 

  24. Glinsky, G. V. (2006). Integration of HapMap-based SNP pattern analysis and gene expression profiling reveals common SNP profiles for cancer therapy outcome predictor genes. Cell Cycle, 5, 2613–2625.

    PubMed  CAS  Google Scholar 

  25. Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., et al. (2006). Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clinical Cancer Research, 12, 5615–5621.

    Article  PubMed  CAS  Google Scholar 

  26. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  27. Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353.

    Article  PubMed  CAS  Google Scholar 

  28. Ivanova, N., Dobrin, R., Lu, R., Kotenko, I., Levorse, J., DeCoste, C., et al. (2006). Dissecting self-renewal in stem cells with RNA interference. Nature, 442, 533–538.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., et al. (2006). Control of developmental regulators by polycomb in human embryonic stem cells. Cell, 125, 301–313.

    Article  PubMed  CAS  Google Scholar 

  30. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  31. Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al. (2006). The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929–1935.

    Article  PubMed  CAS  Google Scholar 

  32. Ohm, J. E., McGarvey, K. M., Yu, X., Cheng, L., Schuebel, K. E., Cope, L., et al. (2007). A stem cell–like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genetics, 39, 237–242.

    Article  PubMed  CAS  Google Scholar 

  33. Widschwendter, M., Fiegl, H., Egle, D., Mueller-Holzner, E., Spizzo, G., Marth, C., et al. (2007). Epigenetic stem cell signature in cancer. Nature Genetics, 39, 157–158.

    Article  PubMed  CAS  Google Scholar 

  34. Schlesinger, Y., Straussman, R., Keshet, I., Farkash, S., Hecht, M., Zimmerman, J., et al. (2007). Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genetics, 39, 232–236.

    Article  PubMed  CAS  Google Scholar 

  35. Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 439, 871–874.

    Article  PubMed  CAS  Google Scholar 

  36. Reynolds, P. A., Sigaroudinia, M., Zardo, G., Wilson, M. B., Benton, G. M., Miller, C. J., et al. (2006). Tumor suppressor p16INK4A regulates Polycomb-mediated DNA hypermethylation in human mammary epithelial cells. The Journal of Biological Chemistry, 281, 24790–24802.

    Article  CAS  Google Scholar 

  37. Valk-Lingbeek, M. E., Bruggeman, S. W. M., & van Lohuizen, M. (2004). Stem cells and cancer: The Polycomb connection. Cell, 118, 409–418.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R. S., et al. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature, 431, 873–878.

    Article  PubMed  CAS  Google Scholar 

  39. Henry, K. W., Anastasia Wyce, A., Lo, W.-S., Duggan, L. J., Emre, N. C. T., Kao, C.-F., et al. (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes & Development, 17, 2648–2663.

    Article  CAS  Google Scholar 

  40. Francis, N. J., Saurin, A. J., Shao, Z., & Kingston, R. E. (2001). Reconstitution of a functional core polycomb repressive complex. Molecular Cell, 8, 545–556.

    Article  PubMed  CAS  Google Scholar 

  41. Poux, S., Melfi, R., & Pirrotta, V. (2001). Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes & Development, 15, 2509–2514.

    Article  CAS  Google Scholar 

  42. Kuzmichev, A., Jenuwein, T., Tempst, P., & Reinberg, D. (2004). Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Molecular Cell, 14, 183–193.

    Article  PubMed  CAS  Google Scholar 

  43. Bracken, A. P., Pasini, D., Capra, M., Prosperini1, E., Colli, E., & Helin, K. (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO Journal, 22, 5323–5335.

    Article  PubMed  CAS  Google Scholar 

  44. Chang, B. D., Watanabe, K., Broude, E. V., Fang, J., Poole, J. C., Kalinichenko, T. V., et al. (2000). Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: Implications for carcinogenesis, senescence, and age-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 97, 4291–4296.

    Article  PubMed  CAS  Google Scholar 

  45. Weinman, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q., & Farnham, P. J. (2001). Use of chromatin immunoprecipitation to clone novel E2F target promoters. Molecular and Cellular Biology, 21, 6820–6832.

    Article  Google Scholar 

  46. Kirmizis, A., Bartley, S. M., & Farnham, P. J. (2003). Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Molecular Cancer Therapeutics, 2, 113–121.

    PubMed  CAS  Google Scholar 

  47. Jiang, Y., Saavedra, H. I., Holloway, M. P., Leone, G., & Altura, R. A. (2004). Aberrant regulation of Survivin by the RB/E2F family of proteins. Journal of Biological Chemistry, 279, 40511–40520.

    Article  PubMed  CAS  Google Scholar 

  48. Mousli, M., Hopfner, R., Abbady, A.-Q., Monte, D., Jeanblanc, M., Oudet, P., et al. (2003). ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. British Journal of Cancer, 89, 120–127.

    Article  PubMed  CAS  Google Scholar 

  49. Hopfner, R., Mousli, M., Jeltsch, J.-M., Voulgaris, A., Lutz, Y., Marin, C., et al. (2000). ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase II-alpha expression. Cancer Research, 60, 121–128.

    PubMed  CAS  Google Scholar 

  50. Unoki, M., Nishidate, T., & Nakamura, Y. (2004). ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene, 23, 7601–7610.

    Article  PubMed  CAS  Google Scholar 

  51. Muto, M., Kanari, Y., Kubo, E., Takabe, T., Kurihara, T., Fujimori, A., et al. (2002). Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. Journal of Biological Chemistry, 277, 34549–34555.

    Article  PubMed  CAS  Google Scholar 

  52. Glinsky, G. V., Glinskii, A. B., Stephenson, A. J., Hoffman, R. M., Gerald, W. L. (2004). Expression profiling predicts clinical outcome of prostate cancer. Journal of Clinical Investigation, 113, 913–923.

    Article  PubMed  CAS  Google Scholar 

  53. Reese, B. E., Bachman, K. E., Stephen, B., Baylin, S. B., & Rountree, M. R. (2003). The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Molecular and Cellular Biology, 23, 3226–3236.

    Article  PubMed  CAS  Google Scholar 

  54. Sarraf, S., & Stancheva, I. (2004). Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Molecular Cell, 15, 595–605.

    Article  PubMed  CAS  Google Scholar 

  55. Narla, G., Heath, K. E., Reeves, H. L., Li, D., Giono, L. E., Kimmelman, A. C., et al. (2001). KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science, 294, 2563–2566.

    Article  PubMed  CAS  Google Scholar 

  56. Benzeno, S., Narla, G., Allina, J., Cheng, G. Z., Reeves, H. L., Banck, M. S., et al. (2004). Cyclin dependent kinase inhibition by the KLF6 tumor suppressor protein through interaction with cyclin D1. Cancer Research, 64, 3885–3891.

    Article  PubMed  CAS  Google Scholar 

  57. Tang, X., Milyavsky, M., Shats, I., Erez, N., Goldfinger, N., & Rotter, V. (2004). Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene, 23, 5759–5769.

    Article  PubMed  CAS  Google Scholar 

  58. Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J., & Murphy, M. (2002). Transcriptional repression of the anti-apoptotic Survivin gene by wild type p53. Journal of Biological Chemistry, 277, 3247–3257.

    Article  PubMed  CAS  Google Scholar 

  59. Zhu, H., Chang, B. D., Uchiumi, T., & Roninson, I. B. (2002). Identification of promoter elements responsible for transcriptional inhibition of polo-like kinase 1 and topoisomerase IIalpha genes by p21(WAF1/CIP1/SDI1). Cell Cycle, 1, 59–66.

    PubMed  CAS  Google Scholar 

  60. Piluso, D., Bilan, P., & Capone, J. P. (2002). Host cell factor-1 interacts with and antagonizes transactivation by the cell cycle regulatory factor Miz-1. Journal of Biological Chemistry, 277, 46799–46808.

    Article  PubMed  CAS  Google Scholar 

  61. Staller, P., Peukert, K., Kiermaier, A., Seoane, J., Lukas, J., Karsunky, H., et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biology, 3, 392–399.

    Article  PubMed  CAS  Google Scholar 

  62. Seoane, J., Pouponnot, C., Staller, P., Schader, M., Eilers, M., & Massagué, J. (2001). TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biology, 3, 400–408.

    Article  PubMed  CAS  Google Scholar 

  63. Peukert, K., Staller, P., Schneider, A., Carmichael, G., Hanel, F., & Eilers, M. (1997). An alternative pathway for gene regulation by Myc. EMBO Journal, 16, 5672–5686.

    Article  PubMed  CAS  Google Scholar 

  64. Glinskii, A. B., Smith, B. A., Jiang, P., Li, X.-M., Yang, M., Hoffman, R. M., et al. (2003). Viable circulating metastatic cells produced in orthotopic but not ectopic prostate cancer models. Cancer Research, 63, 4239–4243.

    PubMed  CAS  Google Scholar 

  65. Berezovskaya, O., Schimmer, A. D., Glinskii, A. B., Pinilla, C., Hoffman, R. M., Reed, J. C., et al. (2005). Increased expression of apoptosis inhibitor XIAP contributes to resistance to anoikis of prostate cancer metastasis precursor cells. Cancer Research, 65, 2378–2386.

    Article  PubMed  CAS  Google Scholar 

  66. Glinsky, G. V., Glinskii, A. B., Berezovskaya, O., Smith, B. A., Jiang, P., Li, X.-M., et al. (2006). Dual-color-coded imaging of viable circulating prostate carcinoma cells reveals genetic exchange between tumor cells in vivo, contributing to highly metastatic phenotypes. Cell Cycle, 5, 191–197.

    PubMed  CAS  Google Scholar 

  67. Nowak, K., Kerl, K., Fehr, D., Kramps, C., Gessner, C., Killmer, K., et al. (2006). BMI1 is a target gene of E2F-1 and is strongly overexpressed in primary neuroblastomas. Nucleic Acid Research, 34, 1745–1754.

    Article  CAS  Google Scholar 

  68. Houghton, J., Stoicov, C., Nomura, S., Rogers, A. B., Carlson, J., Li, H., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306, 1568–1571.

    Article  PubMed  CAS  Google Scholar 

  69. Rizvi, A. Z., Swain, J. R., Davies, P. S., Bailey, A. S., Decker, A. D., Willenbring, H., et al. (2006). Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 6321–6325.

    Article  PubMed  CAS  Google Scholar 

  70. van ‘t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530–536.

    Article  Google Scholar 

  71. Wang, Y., Klijn, J., Zhang, Y., Sieuwerts, A., Look, M., Yang, F., et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet, 365, 671–679.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the grants from the Charitable Leadership Foundation (CLF, Clifton Park, New York), National Institute of Health, and Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadi V. Glinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinsky, G.V. Stem Cell Origin of Death-from-Cancer Phenotypes of Human Prostate and Breast Cancers. Stem Cell Rev 3, 79–93 (2007). https://doi.org/10.1007/s12015-007-0011-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0011-9

Keywords

Navigation