Skip to main content

Advertisement

Log in

Pyroptosis Inhibition in Disease Treatment: Opportunities and Challenges

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) is at the center of immune responses, with different types of PCD occurring based on bodily conditions at a given moment. The main three types of PCD include pyroptosis, necroptosis, and apoptosis. Both pyroptosis and necroptosis induce an inflammatory response while apoptosis avoids eliciting an inflammatory reaction. Recently, pyroptosis has come to the forefront of immunology research due to tremendous potential that has been revealed surrounding the regulators of pyroptosis. In addition to previously known regulators of pyroptosis (ZBP1 and NLRP3 genes), a family of proteins called Gasdermin has been discovered. Specifically, Gasdermin D (GSDMD), when cleaved, participates in the onset of pyroptosis of inflammatory diseases. The N-terminal cleaved portion of the molecule causes cellular membrane openings releasing interleukin-18 and IL-1β, inducing pyroptosis. It is hypothesized that the inhibition of GSDMD using drugs such as Dimethyl Fumarate (DMF) and Disulfiram may halt the progression of certain inflammatory diseases including Multiple Sclerosis (MS), autoimmune encephalitis etc. While there is not yet a concrete treatment for pyroptic cell death in inflammatory disease using GSDMD inhibition, there is ample evidence to suggest that there may be success in future studies and therapeutic applications of GSDMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Okin, D., & Medzhitov, R. (2012). Evolution of inflammatory diseases. Curr Biol, 22(17), R733–740. https://doi.org/10.1016/j.cub.2012.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 7(2), 99–109. https://doi.org/10.1038/nrmicro2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mamik, M. K., & Power, C. (2017). Inflammasomes in neurological diseases: emerging pathogenic and therapeutic concepts. Brain, 140(9), 2273–2285. https://doi.org/10.1093/brain/awx133.

    Article  PubMed  Google Scholar 

  4. Zeng, C., Wang, R., & Tan, H. (2019). Role of Pyroptosis in Cardiovascular Diseases and its Therapeutic Implications. Int J Biol Sci, 15(7), 1345–1357. https://doi.org/10.7150/ijbs.33568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greenberg, S. J. (2003). A Concise History of Immunology.

  6. Lieberman, J., Wu, H., & Kagan, J. C. (2019). Gasdermin D activity in inflammation and host defense. Sci Immunol, 4(39). https://doi.org/10.1126/sciimmunol.aav1447.

  7. Janeway, C. (1989). Immunogenicity signals 1,2,3 … and 0. Immunol Today, 10(9), 283–286. https://doi.org/10.1016/0167-5699(89)90081-9.

    Article  CAS  PubMed  Google Scholar 

  8. Tang, D., Kang, R., Coyne, C. B., Zeh, H. J., & Lotze, M. T. (2012). PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev, 249(1), 158–175. https://doi.org/10.1111/j.1600-065X.2012.01146.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burdette, B. E., Esparza, A. N., Zhu, H., & Wang, S. (2021). Gasdermin D in pyroptosis. Acta Pharm Sin B, 11(9), 2768–2782. https://doi.org/10.1016/j.apsb.2021.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C., & Chen, X. (2021). Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther, 6(1), 128. https://doi.org/10.1038/s41392-021-00507-5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B. L., Rajendiran, T. M., & Núñez, G. (2013). K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 38(6), 1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., & Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660–665. https://doi.org/10.1038/nature15514.

    Article  CAS  PubMed  Google Scholar 

  13. Aglietti, R. A., Estevez, A., Gupta, A., Ramirez, M. G., Liu, P. S., Kayagaki, N., & Dueber, E. C. (2016). GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci USA, 113(28), 7858–7863. https://doi.org/10.1073/pnas.1607769113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flores-Romero, H., Ros, U., & Garcia-Saez, A. J. (2020). Pore formation in regulated cell death. EMBO J, 39(23), e105753. https://doi.org/10.15252/embj.2020105753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, G., & Zhen, X. (2014). Pyroptosis and Neurological Diseases. Neuroimmunol Neuroinfl, 1(2), 60. https://doi.org/10.4103/2347-8659.139716.

    Article  Google Scholar 

  16. McKenzie, B. A., Mamik, M. K., Saito, L. B., Boghozian, R., Monaco, M. C., Major, E. O., & Power, C. (2018). Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci USA, 115(26), E6065–E6074. https://doi.org/10.1073/pnas.1722041115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pickering, R. J., & Bryant, C. E. (2020). Preventing pores and inflammation. Science, 369(6511), 1564–1565. https://doi.org/10.1126/science.abe0917.

    Article  CAS  PubMed  Google Scholar 

  18. Mills, E. A., Ogrodnik, M. A., Plave, A., & Mao-Draayer, Y. (2018). Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis. Front Neurol, 9, 5. https://doi.org/10.3389/fneur.2018.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Humphries, F., Shmuel-Galia, L., Ketelut-Carneiro, N., Li, S., Wang, B., Nemmara, V. V., & Fitzgerald, K. A. (2020). Succination inactivates gasdermin D and blocks pyroptosis. Science, 369(6511), 1633–1637. https://doi.org/10.1126/science.abb9818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stokes, M., & Abdijadid, S. (2023). Disulfiram. StatPearls [Internet]. https://pubmed.ncbi.nlm.nih.gov/29083801/.

  21. Veverka, K. A., Johnson, K. L., Mays, D. C., Lipsky, J. J., & Naylor, S. (1997). Inhibition of aldehyde dehydrogenase by disulfiram and its metabolite methyl diethylthiocarbamoyl-sulfoxide. Biochem Pharmacol, 53(4), 511–518. https://doi.org/10.1016/s0006-2952(96)00767-8.

    Article  CAS  PubMed  Google Scholar 

  22. Hu, J. J., Liu, X., Xia, S., Zhang, Z., Zhang, Y., Zhao, J., & Wu, H. (2020). FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol, 21(7), 736–745. https://doi.org/10.1038/s41590-020-0669-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benaoudia, S., Martin, A., Puig Gamez, M., Gay, G., Lagrange, B., Cornut, M., & Henry, T. (2019). A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. EMBO Rep, 20(9), e48235. https://doi.org/10.15252/embr.201948235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K., & Oliveira, M. J. (2018). Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol, 9, 847. https://doi.org/10.3389/fimmu.2018.00847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Franchi, S., Sacerdote, P., Moretti, S., Gerra, G., Leccese, V., Tallone, M. V., & Somaini, L. (2010). The effects of alcoholism pharmacotherapy on immune responses in alcohol-dependent patients. Int J Immunopathol Pharmacol, 23(3), 847–855. https://doi.org/10.1177/039463201002300320.

    Article  CAS  PubMed  Google Scholar 

  26. Bonnekoh, B., Böckelmann, R., Ambach, A., & Gollnick, H. (2001). Dithranol and dimethylfumarate suppress the interferon-gamma-induced up-regulation of cytokeratin 17 as a putative psoriasis autoantigen in vitro. Skin Pharmacol Appl Skin Physiol, 14(4), 217–225. https://doi.org/10.1159/000056350.

    Article  CAS  PubMed  Google Scholar 

  27. Frank, D., & Vince, J. E. (2019). Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ, 26(1), 99–114. https://doi.org/10.1038/s41418-018-0212-6.

    Article  PubMed  Google Scholar 

  28. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P. & & Kroemer, G. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gao, J., Qiu, X., Xi, G., Liu, H., Zhang, F., Lv, T., & Song, Y. (2018). Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in nonsmall cell lung cancer. Oncol Rep, 40(4), 1971–1984. https://doi.org/10.3892/or.2018.6634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rae, C., Tesson, M., Babich, J. W., Boyd, M., Sorensen, A., & Mairs, R. J. (2013). The role of copper in disulfiram-induced toxicity and radiosensitization of cancer cells. J Nucl Med, 54(6), 953–960. https://doi.org/10.2967/jnumed.112.113324.

    Article  CAS  PubMed  Google Scholar 

  31. Ramos-Junior, E. S., & Morandini, A. C. (2017). Gasdermin: A new player to the inflammasome game. Biomed J, 40(6), 313–316. https://doi.org/10.1016/j.bj.2017.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ryter, S. W., & Choi, A. M. K. (2014). Cell Death and Repair in Lung Disease. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms: Elsevier Inc. pp. 2558–2574.

  33. Xia, X., Wang, X., Cheng, Z., Qin, W., Lei, L., Jiang, J., & Hu, J. (2019). The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis, 10(9), 650. https://doi.org/10.1038/s41419-019-1883-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fontana, M. F., & Vance, R. E. (2011). Two signal models in innate immunity. Immunol Rev, 243(1), 26–39. https://doi.org/10.1111/j.1600-065X.2011.01037.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

N. Kolliputi laboratory was funded by the Joy McCann Culverhouse endowment to the Division of Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Contributions

N.B.: wrote the article, R.F.L.: Revised and approved. N.K.: Revised and approved.

Corresponding author

Correspondence to Narasaiah Kolliputi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandharam, N., Lockey, R.F. & Kolliputi, N. Pyroptosis Inhibition in Disease Treatment: Opportunities and Challenges. Cell Biochem Biophys 81, 615–619 (2023). https://doi.org/10.1007/s12013-023-01181-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01181-w

Keywords

Navigation