Skip to main content
Log in

Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We have previously described new pathways of vitamin D3 activation by CYP11A1 to produce a variety of metabolites including 20(OH)D3 and 20,23(OH)2D3. These can be further hydroxylated by CYP27B1 to produce their C1α-hydroxyderivatives. CYP11A1 similarly initiates the metabolism of lumisterol (L3) through sequential hydroxylation of the side chain to produce 20(OH)L3, 22(OH)L3, 20,22(OH)2L3 and 24(OH)L3. CYP11A1 also acts on 7-dehydrocholesterol (7DHC) producing 22(OH)7DHC, 20,22(OH)27DHC and 7-dehydropregnenolone (7DHP) which can be converted to the D3 and L3 configurations following exposure to UVB. These CYP11A1-derived compounds are produced in vivo and are biologically active displaying anti-proliferative, anti-inflammatory, anti-cancer and pro-differentiation properties. Since the protective role of the classical form of vitamin D3 (1,25(OH)2D3) against UVB-induced damage is recognized, we recently tested whether novel CYP11A1-derived D3- and L3-hydroxyderivatives protect against UVB-induced damage in epidermal human keratinocytes and melanocytes. We found that along with 1,25(OH)2D3, CYP11A1-derived D3-hydroxyderivatives and L3 and its hydroxyderivatives exert photoprotective effects. These included induction of intracellular free radical scavenging and attenuation and repair of DNA damage. The protection of human keratinocytes against DNA damage included the activation of the NRF2-regulated antioxidant response, p53-phosphorylation and its translocation to the nucleus, and DNA repair induction. These data indicate that novel derivatives of vitamin D3 and lumisterol are promising photoprotective agents. However, detailed mechanisms of action, and the involvement of specific nuclear receptors, other vitamin D binding proteins or mitochondria, remain to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holick, M. F., & Clark, M. B. (1978). The photobiogenesis and metabolism of vitamin D. Federation Proceedings, 37, 2567–2574.

    CAS  PubMed  Google Scholar 

  2. Holick, M. F. (2003). Vitamin D: a millenium perspective. Journal of Cellular Biochemistry, 88, 296–307. https://doi.org/10.1002/jcb.10338.

    Article  CAS  PubMed  Google Scholar 

  3. Bikle, D. D. (2011). Vitamin D: an ancient hormone. Experimental Dermatology, 20, 7–13. https://doi.org/10.1111/j.1600-0625.2010.01202.x.

    Article  CAS  PubMed  Google Scholar 

  4. Jenkinson, C. (2019). The vitamin D metabolome: an update on analysis and function. Cell Biochemistry and Function. https://doi.org/10.1002/cbf.3421.

  5. Tuckey, R. C., Cheng, C. Y. S., & Slominski, A. T. (2019). The serum vitamin D metabolome: what we know and what is still to discover. The Journal of Steroid Biochemistry and Molecular Biology, 186, 4–21. https://doi.org/10.1016/j.jsbmb.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  6. Slominski, A. T., et al. (2015). Novel activities of CYP11A1 and their potential physiological significance. The Journal of Steroid Biochemistry and Molecular Biology, 151, 25–37. https://doi.org/10.1016/j.jsbmb.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  7. Guryev, O., Carvalho, R. A., Usanov, S., Gilep, A., & Estabrook, R. W. (2003). A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proceedings of the National Academy of Science of the USA, 100, 14754–14759. https://doi.org/10.1073/pnas.2336107100.

    Article  CAS  Google Scholar 

  8. Slominski, A., et al. (2005). The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. The FEBS Journal, 272, 4080–4090. https://doi.org/10.1111/j.1742-4658.2005.04819.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tuckey, R. C., et al. (2011). Production of 22-hydroxy metabolites of vitamin D3 by cytochrome p450scc (CYP11A1) and analysis of their biological activities on skin cells. Drug Metabolism and Diposition, 39, 1577–1588. https://doi.org/10.1124/dmd.111.040071.

    Article  CAS  Google Scholar 

  10. Tuckey, R. C., et al. (2008). Pathways and products for the metabolism of vitamin D3 by cytochrome P450scc. The FEBS Journal, 275, 2585–2596. https://doi.org/10.1111/j.1742-4658.2008.06406.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang, E. K. et al.(2010). Purified mouse CYP27B1 can hydroxylate 20,23-dihydroxyvitamin D3, producing 1alpha,20,23-trihydroxyvitamin D3, which has altered biological activity. Drug Metabolism and Diposition, 38, 1553–1559. https://doi.org/10.1124/dmd.110.034389.

    Article  CAS  Google Scholar 

  12. Tieu, E. W., et al. (2012). Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1. The Journal of the Steroid Biochemistry and Molecular Biology, 129, 163–171. https://doi.org/10.1016/j.jsbmb.2011.11.012.

    Article  CAS  Google Scholar 

  13. Tang, E. K., et al. (2013). Hydroxylation of CYP11A1-derived products of vitamin D3 metabolism by human and mouse CYP27B1. Drug Metabolism and Diposition, 41, 1112–1124. https://doi.org/10.1124/dmd.113.050955.

    Article  CAS  Google Scholar 

  14. Lin, Z., et al. (2015). Chemical synthesis and biological activities of 20S,24S/R-Dihydroxyvitamin D3 epimers and their 1alpha-hydroxyl derivatives. Journal of Medicinal Chemistry, 58, 7881–7887. https://doi.org/10.1021/acs.jmedchem.5b00881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tieu, E. W., et al. (2015). Metabolism of 20-hydroxyvitamin D3 and 20,23-dihydroxyvitamin D3 by rat and human CYP24A1. The Journal of Steroid Biochemistry and Molecular Biology, 149, 153–165. https://doi.org/10.1016/j.jsbmb.2015.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng, C. Y., Slominski, A. T., & Tuckey, R. C. (2016). Hydroxylation of 20-hydroxyvitamin D3 by human CYP3A4. The Journal of Steroid Biochemistry and Molecular Biology, 159, 131–141. https://doi.org/10.1016/j.jsbmb.2016.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Slominski, A. T., et al. (2015). Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Scientific Report, 5, 14875 https://doi.org/10.1038/srep14875.

    Article  CAS  Google Scholar 

  18. Slominski, A. T., et al. (2015). Novel non-calcemic secosteroids that are produced by human epidermal keratinocytes protect against solar radiation. The Journal of Steroid Biochemistry and Molecular Biology, 148, 52–63. https://doi.org/10.1016/j.jsbmb.2015.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Slominski, A. T., et al. (2012). In vivo evidence for a novel pathway of vitamin D(3) metabolism initiated by P450scc and modified by CYP27B1. FASEB Journal, 26, 3901–3915. https://doi.org/10.1096/fj.12-208975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Slominski, A. T., Kim, T. K., Li, W., & Tuckey, R. C. (2016). Classical and non-classical metabolic transformation of vitamin D in dermal fibroblasts. Experimental Dermatology, 25, 231–232. https://doi.org/10.1111/exd.12872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slominski, A. et al.(2006). An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2. The FEBS Journal, 273, 2891–2901. https://doi.org/10.1111/j.1742-4658.2006.05302.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen, M. N., Slominski, A., Li, W., Ng, Y. R., & Tuckey, R. C. (2009). Metabolism of vitamin D2 to 17,20,24-trihydroxyvitamin D2 by cytochrome p450scc (CYP11A1). Drug Metabolism and Diposition, 37, 761–767. https://doi.org/10.1124/dmd.108.025619.

    Article  CAS  Google Scholar 

  23. Slominski, A. T. et al.(2011). 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. The American Journal of Physiology: Cell Physiology, 300, C526–C541. https://doi.org/10.1152/ajpcell.00203.2010.

    Article  CAS  Google Scholar 

  24. Slominski, A. T. et al.(2014). In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland. Molecular and Cellular Endocrinology, 383, 181–192. https://doi.org/10.1016/j.mce.2013.12.012.

    Article  CAS  PubMed  Google Scholar 

  25. Slominski, A., et al. (2004). A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. European Journal of Biochemistry, 271, 4178–4188. https://doi.org/10.1111/j.1432-1033.2004.04356.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slominski, A. T., et al. (2009). Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. PloS ONE, 4, e4309 https://doi.org/10.1371/journal.pone.0004309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slominski, A. T., et al. (2012). Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes. The International Journal of Biochemistry & Cell Biology, 44, 2003–2018. https://doi.org/10.1016/j.biocel.2012.07.027.

    Article  CAS  Google Scholar 

  28. Tuckey, R. C., et al. (2014). Lumisterol is metabolized by CYP11A1: discovery of a new pathway. The International Journal of Biochemistry & Cell Biology, 55, 24–34. https://doi.org/10.1016/j.biocel.2014.08.004.

    Article  CAS  Google Scholar 

  29. Slominski, A. T., et al. (2017). Characterization of a new pathway that activates lumisterol in vivo to biologically active hydroxylumisterols. Scientific Reports, 7, 11434. https://doi.org/10.1038/s41598-017-10202-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tuckey, R. C., et al. (2018). CYP27A1 acts on the pre-vitamin D3 photoproduct, lumisterol, producing biologically active hydroxy-metabolites. The Journal of Steroid Biochemistry and Molecular Biology, 181, 1–10. https://doi.org/10.1016/j.jsbmb.2018.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zmijewski, M. A., et al. (2008). Synthesis and photo-conversion of androsta- and pregna-5,7-dienes to vitamin D3-like derivatives. Photochemmical and Photobiollogical Science, 7, 1570–1576. https://doi.org/10.1039/b809005j.

    Article  CAS  Google Scholar 

  32. Zmijewski, M. A., et al. (2009). Photo-conversion of two epimers (20R and 20S) of pregna-5,7-diene-3beta, 17alpha, 20-triol and their bioactivity in melanoma cells. Steroids, 74, 218–228. https://doi.org/10.1016/j.steroids.2008.10.017.

    Article  CAS  PubMed  Google Scholar 

  33. Zmijewski, M. A. et al.(2010). Synthesis and photochemical transformation of 3beta,21-dihydroxypregna-5,7-dien-20-one to novel secosteroids that show anti-melanoma activity. Steroids, 76, 193–203. https://doi.org/10.1016/j.steroids.2010.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Slominski, A. T., et al. (2018). On the role of classical and novel forms of vitamin D in melanoma progression and management. The Journal of Steroid Biochemistry and Molecular Biology, 177, 159–170. https://doi.org/10.1016/j.jsbmb.2017.06.013.

    Article  CAS  PubMed  Google Scholar 

  35. Bikle, D. D. (2010). Vitamin D and the skin. Journal of Bone and Mineral Metabolism, 28, 117–130. https://doi.org/10.1007/s00774-009-0153-8.

    Article  CAS  PubMed  Google Scholar 

  36. Bikle, D. D.(2011). Vitamin D metabolism and function in the skin. Molecular and Cellular Endocrinology, 347, 80–89. https://doi.org/10.1016/j.mce.2011.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holick, M. F.(2007). Vitamin D deficiency. The New England Journal of Medicine, 357, 266–281. https://doi.org/10.1056/NEJMra070553.

    Article  CAS  PubMed  Google Scholar 

  38. Plum, L. A., & DeLuca, H. F. (2010). Vitamin D, disease and therapeutic opportunities. Nature Reviews Drug Discovery, 9, 941–955. https://doi.org/10.1038/nrd3318.

    Article  CAS  PubMed  Google Scholar 

  39. Bikle, D. D.(2008). Vitamin D receptor, UVR, and skin cancer: a potential protective mechanism. The Journal of Investigative Dermatology, 128, 2357–2361. https://doi.org/10.1038/jid.2008.249.

    Article  CAS  PubMed  Google Scholar 

  40. Elias, P. M. (2012). Structure and function of the stratum corneum extracellular matrix. The Journal of Investigative Dermatology, 132, 2131–2133. https://doi.org/10.1038/jid.2012.246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bikle, D. D.(2010). Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends in Endocrinology and Metabolism, 21, 375–384. https://doi.org/10.1016/j.tem.2010.01.003.

    Article  CAS  PubMed  Google Scholar 

  42. Indra, A. K., et al. (2007). Malignant transformation of DMBA/TPA-induced papillomas and nevi in the skin of mice selectively lacking retinoid-X-receptor alpha in epidermal keratinocytes. The Journal of Investigative Dermatology, 127, 1250–1260. https://doi.org/10.1038/sj.jid.5700672.

    Article  CAS  PubMed  Google Scholar 

  43. Carlberg, C., & Molnar, F. (2012). Current status of vitamin d signaling and its therapeutic applications. Current Topics in Medicinal Chemistry, 12, 528–547.

    Article  CAS  Google Scholar 

  44. Khanal, R. C., & Nemere, I. (2007). The ERp57/GRp58/1,25D3-MARRS receptor: multiple functional roles in diverse cell systems. Current Medicinal Chemistry, 14, 1087–1093. https://doi.org/10.2174/092986707780362871.

    Article  CAS  PubMed  Google Scholar 

  45. Nemere, I., Garbi, N., Hammerling, G., & Hintze, K. J. (2012). Role of the 1,25D3-MARRS receptor in the 1,25(OH)2D3-stimulated uptake of calcium and phosphate in intestinal cells. Steroids, 77, 897–902. https://doi.org/10.1016/j.steroids.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  46. Nemere, I., Garbi, N., & Winger, Q. (2015). The 1,25D3-MARRS receptor/PDIA3/ERp57 and lifespan. The Journal of Cellular Biochemistry, 116, 380–385. https://doi.org/10.1002/jcb.24986.

    Article  CAS  PubMed  Google Scholar 

  47. Tohda, C., Urano, T., Umezaki, M., Nemere, I., & Kuboyama, T. (2012). Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Scientific Reports, 2, 535. https://doi.org/10.1038/srep00535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, J., et al. (2013). Plasma membrane Pdia3 and VDR interact to elicit rapid responses to 1alpha,25(OH)2D3. Cell Signal, 25, 2362–2373. https://doi.org/10.1016/j.cellsig.2013.07.020.

    Article  CAS  PubMed  Google Scholar 

  49. Sequeira, V. B., et al. (2012). The role of the vitamin D receptor and ERp57 in photoprotection by 1alpha,25-dihydroxyvitamin D3. Molecular Endocrinology, 26, 574–582. https://doi.org/10.1210/me.2011-1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zbytek, B., et al. (2008). 20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation. The Journal of Investigative Dermatology, 128, 2271–2280. https://doi.org/10.1038/jid.2008.62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Janjetovic, Z., et al. (2009). 20-Hydroxycholecalciferol, product of vitamin D3 hydroxylation by P450scc, decreases NF-kappaB activity by increasing IkappaB alpha levels in human keratinocytes. PloS ONE, 4, e5988 https://doi.org/10.1371/journal.pone.0005988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Janjetovic, Z., Tuckey, R. C., Nguyen, M. N., Thorpe, Jr., E. M., & Slominski, A. T. (2010). 20,23-dihydroxyvitamin D3, novel P450scc product, stimulates differentiation and inhibits proliferation and NF-kappaB activity in human keratinocytes. Journal of Cellular Physiology, 223, 36–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, W., et al. (2010). Chemical synthesis of 20S-hydroxyvitamin D3, which shows antiproliferative activity. Steroids, 75, 926–935. https://doi.org/10.1016/j.steroids.2010.05.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Slominski, A. T., et al. (2011). Vitamin D analogs 17,20S(OH)2pD and 17,20R(OH)2pD are noncalcemic and exhibit antifibrotic activity. The Journal of Investigative Dermatology, 131, 1167–1169. https://doi.org/10.1038/jid.2010.425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Slominski, A., et al. (2013). Novel vitamin D photoproducts and their precursors in the skin. Dermatoendocrinol, 5, 7–19. https://doi.org/10.4161/derm.23938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Slominski, A., et al. (2013). 20S-hydroxyvitamin D3, noncalcemic product of CYP11A1 action on vitamin D3, exhibits potent antifibrogenic activity in vivo. The Journal of Clinical Endocrinology and Metabolism, 98, E298–E303. https://doi.org/10.1210/jc.2012-3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Slominski, A. T., et al. (2012). Novel vitamin D hydroxyderivatives inhibit melanoma growth and show differential effects on normal melanocytes. Anticancer Research, 32, 3733–3742.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, Z., et al. (2018). Investigation of 20S-hydroxyvitamin D3 analogs and their 1alpha-OH derivatives as potent vitamin D receptor agonists with anti-inflammatory activities. Scientific Reports, 8, 1478. https://doi.org/10.1038/s41598-018-19183-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Janjetovic, Z., et al. (2014). Melatonin and its metabolites ameliorate ultraviolet B-induced damage in human epidermal keratinocytes. Journal of Pineal Research, 57, 90–102. https://doi.org/10.1111/jpi.12146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Slominski, A. T., et al. (2014). RORalpha and ROR gamma are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB Journal, 28, 2775–2789. https://doi.org/10.1096/fj.13-242040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, J., et al. (2012). 20-hydroxyvitamin D3 inhibits proliferation of cancer cells with high efficacy while being non-toxic. Anticancer Research, 32, 739–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Janjetovic, Z., et al. (2011). High basal NF-kappaB activity in nonpigmented melanoma cells is associated with an enhanced sensitivity to vitamin D3 derivatives. British Journal Cancer, 105, 1874–1884. https://doi.org/10.1038/bjc.2011.458.

    Article  CAS  Google Scholar 

  63. Slominski, A. T., et al. (2010). Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PloS ONE, 5, e9907 https://doi.org/10.1371/journal.pone.0009907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wasiewicz, T., et al. (2015). Antitumor effects of vitamin D analogs on hamster and mouse melanoma cell lines in relation to melanin pigmentation. International Journal of Molecular Science, 16, 6645–6667. https://doi.org/10.3390/ijms16046645.

    Article  CAS  Google Scholar 

  65. Wierzbicka, J. M., et al. (2015). Differential antitumor effects of vitamin D analogues on colorectal carcinoma in culture. International Journal of Oncology, 47, 1084–1096. https://doi.org/10.3892/ijo.2015.3088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Skobowiat, C., et al. (2016). Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models. Oncotarget. https://doi.org/10.18632/oncotarget.14193.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, J., et al. (2014). Novel vitamin D analogs as potential therapeutics: metabolism, toxicity profiling, and antiproliferative activity. Anticancer Research, 34, 2153–2163.

    PubMed  PubMed Central  Google Scholar 

  68. Slominski, A. T., et al. (2017). Endogenously produced nonclassical vitamin D hydroxy-metabolites act as “biased” agonists on VDR and inverse agonists on RORalpha and RORgamma. The Journal of Steroid Biochemistry and Molecular Biology, 173, 42–56. https://doi.org/10.1016/j.jsbmb.2016.09.024.

    Article  CAS  PubMed  Google Scholar 

  69. Lin, Z., et al. (2017). 1alpha,20S-dihydroxyvitamin D3 interacts with vitamin D receptor: crystal structure and route of chemical synthesis. Scientific Reports, 7, 10193. https://doi.org/10.1038/s41598-017-10917-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, T.-K., et al. (2012). Correlation between secosteroid induced vitamin D receptor activity in melanoma cells and computer-modeled receptor binding strength. Molecular and Cellular Endocrinology, 361, 143–152. https://doi.org/10.1016/j.mce.2012.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Slominski, A. T. et al. (2018) Differential and overlapping effects of 20,23(OH)(2)D3 and 1,25(OH)(2)D3 on gene expression in human epidermal keratinocytes: identification of AhR as an alternative receptor for 20,23(OH)2D3. International Journal of Molecular Science, 19. https://doi.org/10.3390/ijms19103072.

  72. Shirvani, A., Kalajian, T. A., Song, A., & Holick, M. F. (2019). Disassociation of vitamin D’s calcemic activity and non-calcemic genomic activity and individual responsiveness: a randomized controlled double-blind clinical trial. Scientific Reports, 9, 17685. https://doi.org/10.1038/s41598-019-53864-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Silvagno, F., Consiglio, M., Foglizzo, V., Destefanis, M., & Pescarmona, G. (2013). Mitochondrial translocation of vitamin D receptor is mediated by the permeability transition pore in human keratinocyte cell line. PloS ONE, 8, e54716. https://doi.org/10.1371/journal.pone.0054716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abu el Maaty, M. A., Alborzinia, H., Khan, S. J., Büttner, M., & Wölfl, S. (2017). 1,25(OH)2D3 disrupts glucose metabolism in prostate cancer cells leading to a truncation of the TCA cycle and inhibition of TXNIP expression. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864, 1618–1630. https://doi.org/10.1016/j.bbamcr.2017.06.019.

    Article  CAS  Google Scholar 

  75. Zhang, P., et al. (2019). Vitamin D and testosterone co-ordinately modulate intracellular zinc levels and energy metabolism in prostate cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 189, 248–258. https://doi.org/10.1016/j.jsbmb.2019.01.006.

    Article  CAS  PubMed  Google Scholar 

  76. Ricca, C., et al. (2019). Vitamin D inhibits the epithelial-mesenchymal transition by a negative feedback regulation of TGF-beta activity. The Journal of Steroid Biochemistry and Molecular Biology, 187, 97–105. https://doi.org/10.1016/j.jsbmb.2018.11.006.

    Article  CAS  PubMed  Google Scholar 

  77. Rybchyn, M. S., et al. (2018). Enhanced repair of UV-induced DNA damage by 1,25-Dihydroxyvitamin D3 in skin is linked to pathways that control cellular energy. The Journal of Investigative Dermatology, 138, 1146–1156. https://doi.org/10.1016/j.jid.2017.11.037.

    Article  CAS  PubMed  Google Scholar 

  78. Ricca, C. et al. (2018). Vitamin D receptor is necessary for mitochondrial function and cell Health. International Journal of Molecular Science, 19. https://doi.org/10.3390/ijms19061672.

  79. Slominski, A. T., Zmijewski, M. A., Plonka, P. M., Szaflarski, J. P., Paus, R., & How, U. V. (2018). Light touches the brain and endocrine system through skin, and why. Endocrinology, 159, 1992–2007. https://doi.org/10.1210/en.2017-03230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wondrak, G. T., Jacobson, M. K., & Jacobson, E. L. (2006). Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochemical and Photobiological Sciences, 5, 215–237. https://doi.org/10.1039/b504573h.

    Article  CAS  PubMed  Google Scholar 

  81. Pfeifer, G. P., & Besaratinia, A. (2012). UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochemical and Photobiological Sciences, 11, 90–97. https://doi.org/10.1039/c1pp05144j.

    Article  CAS  PubMed  Google Scholar 

  82. Brash, D. E. (2015). UV signature mutations. Photochemistry and Photobiology, 91, 15–26. https://doi.org/10.1111/php.12377.

    Article  CAS  PubMed  Google Scholar 

  83. Janjetovic, Z., et al. (2017). Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Scientific Reports, 7, 1274. https://doi.org/10.1038/s41598-017-01305-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kleszczynski, K., et al. (2015). Melatonin compensates silencing of heat shock protein 70 and suppresses ultraviolet radiation-induced inflammation in human skin ex vivo and cultured keratinocytes. Journal of Pineal Research, 58, 117–126. https://doi.org/10.1111/jpi.12197.

    Article  CAS  PubMed  Google Scholar 

  85. Kleszczyński, K., Zillikens, D., & Fischer, T. W. (2016). Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). Journal of Pineal Research, 61, 187–197. https://doi.org/10.1111/jpi.12338.

    Article  CAS  PubMed  Google Scholar 

  86. Kleszczynski, K. et al. (2018). Melatonin and its metabolites ameliorate UVR-induced mitochondrial oxidative stress in human MNT-1 melanoma cells. International Journal of Molecular Science, 19. https://doi.org/10.3390/ijms19123786.

  87. Panich, U., Sittithumcharee, G., Rathviboon, N., & Jirawatnotai, S. (2016). Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells International, 2016, 7370642 https://doi.org/10.1155/2016/7370642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heck, D. E., Vetrano, A. M., Mariano, T. M., & Laskin, J. D. (2003). UVB light stimulates production of reactive oxygen species: unexpected role for catalase. Journal of Biological Chemistry, 278, 22432–22436. https://doi.org/10.1074/jbc.C300048200.

    Article  CAS  PubMed  Google Scholar 

  89. Drigeard Desgarnier, M. C., & Rochette, P. J. (2018). Enhancement of UVB-induced DNA damage repair after a chronic low-dose UVB pre-stimulation. DNA Repair (Amst), 63, 56–62. https://doi.org/10.1016/j.dnarep.2018.01.008.

    Article  CAS  Google Scholar 

  90. Raad, H., et al. (2017). NADPH Oxidase-1 plays a key role in keratinocyte responses to UV radiation and UVB-induced skin carcinogenesis. The Journal of Investigative Dermatology, 137, 1311–1321. https://doi.org/10.1016/j.jid.2016.12.027.

    Article  CAS  PubMed  Google Scholar 

  91. Jeayeng, S., et al. (2017). Nrf2 in keratinocytes modulates UVB-induced DNA damage and apoptosis in melanocytes through MAPK signaling. Free Radical Biology and Medicine, 108, 918–928. https://doi.org/10.1016/j.freeradbiomed.2017.05.009.

    Article  CAS  PubMed  Google Scholar 

  92. Roy, S., Deep, G., Agarwal, C., & Agarwal, R. (2012). Silibinin prevents ultraviolet B radiation-induced epidermal damages in JB6 cells and mouse skin in a p53-GADD45alpha-dependent manner. Carcinogenesis, 33, 629–636. https://doi.org/10.1093/carcin/bgr299.

    Article  CAS  PubMed  Google Scholar 

  93. Lo, H. L., et al. (2005). Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest. BMC Cancer, 5, 135. https://doi.org/10.1186/1471-2407-5-135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ikehata, H., & Yamamoto, M. (2018). Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicology and Applied Pharmacology, 360, 69–77. https://doi.org/10.1016/j.taap.2018.09.038.

    Article  CAS  PubMed  Google Scholar 

  95. Ma, Q. (2013). Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, X., et al. (2013). DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control. BMC Biology, 11, 73. https://doi.org/10.1186/1741-7007-11-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oda, K., et al. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell, 102, 849–862. https://doi.org/10.1016/s0092-8674(00)00073-8.

    Article  CAS  PubMed  Google Scholar 

  98. Steegenga, W. T., van der Eb, A. J., & Jochemsen, A. G. (1996). How phosphorylation regulates the activity of p53. Journal of Molecular Biology, 263, 103–113. https://doi.org/10.1006/jmbi.1996.0560.

    Article  CAS  PubMed  Google Scholar 

  99. Gupta, R., et al. (2007). Photoprotection by 1,25 dihydroxyvitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products. The Journal of Investigative Dermatology, 127, 707–715. https://doi.org/10.1038/sj.jid.5700597.

    Article  CAS  PubMed  Google Scholar 

  100. Lee, J., & Youn, J. I. (1998). The photoprotective effect of 1,25-dihydroxyvitamin D3 on ultraviolet light B-induced damage in keratinocyte and its mechanism of action. Journal of Dermatological Science, 18, 11–18.

    Article  CAS  Google Scholar 

  101. Wong, G. et al. (2004). 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway. The Journal of Steroid Biochemistry and Molecular Biology, 89–90, 567–570. https://doi.org/10.1016/j.jsbmb.2004.03.072.

    Article  CAS  PubMed  Google Scholar 

  102. De Haes, P., et al. (2005). 1,25-Dihydroxyvitamin D3 and analogues protect primary human keratinocytes against UVB-induced DNA damage. Journal of Photochemistry and Photobiology B, 78, 141–148. https://doi.org/10.1016/j.jphotobiol.2004.09.010.

    Article  CAS  Google Scholar 

  103. Dixon, K. M., et al. (2007). In vivo relevance for photoprotection by the vitamin D rapid response pathway. The Journal of Steroid Biochemistry and Molecular Biology, 103, 451–456. https://doi.org/10.1016/j.jsbmb.2006.11.016.

    Article  CAS  PubMed  Google Scholar 

  104. Mason, R. S., et al. (2010). Photoprotection by 1alpha,25-dihydroxyvitamin D and analogs: further studies on mechanisms and implications for UV-damage. The Journal of Steroid Biochemistry and Molecular Biology, 121, 164–168. https://doi.org/10.1016/j.jsbmb.2010.03.082.

    Article  CAS  PubMed  Google Scholar 

  105. Gordon-Thomson, C., et al. (2014). Protection from ultraviolet damage and photocarcinogenesis by vitamin D compounds. Advances in Experimental Medicine and Biology, 810, 303–328. https://doi.org/10.1007/978-1-4939-0437-2_17.

    Article  PubMed  Google Scholar 

  106. Tongkao-On, W., et al. (2013). Novel vitamin D compounds and skin cancer prevention. Dermatoendocrinol, 5, 20–33. https://doi.org/10.4161/derm.23939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dixon, K. M., et al. (2013). Vitamin D and death by sunshine. International Journal of Molecular Science, 14, 1964–1977. https://doi.org/10.3390/ijms14011964.

    Article  CAS  Google Scholar 

  108. Dixon, K. M., et al. (2012). Differential photoprotective effects of 1,25-dihydroxyvitamin D3 and a low calcaemic deltanoid. Photochemical and Photobiological Sciences, 11, 1825–1830. https://doi.org/10.1039/c2pp25208b.

    Article  CAS  PubMed  Google Scholar 

  109. Makarova, A., et al. (2017). Vitamin D3 produced by skin exposure to UVR inhibits murine basal cell carcinoma carcinogenesis. The Journal of Investigative Dermatology, 137, 2613–2619. https://doi.org/10.1016/j.jid.2017.05.037.

    Article  CAS  PubMed  Google Scholar 

  110. Scott, J. F., et al. (2017). Oral vitamin D rapidly attenuates inflammation from sunburn: an interventional study. The Journal of Investigative Dermatology, 137, 2078–2086. https://doi.org/10.1016/j.jid.2017.04.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dixon, K. M., et al. (2005). Skin cancer prevention: a possible role of 1,25dihydroxyvitamin D3 and its analogs. The Journal of Steroid Biochemistry and Molecular Biology, 97, 137–143. https://doi.org/10.1016/j.jsbmb.2005.06.006.

    Article  CAS  PubMed  Google Scholar 

  112. Dixon, K. M., et al. (2011). 1alpha,25(OH)(2)-vitamin D and a nongenomic vitamin D analogue inhibit ultraviolet radiation-induced skin carcinogenesis. Cancer Prev Res (Phila), 4, 1485–1494. https://doi.org/10.1158/1940-6207.CAPR-11-0165.

    Article  CAS  Google Scholar 

  113. Haussler, M. R., Jurutka, P. W., Mizwicki, M., & Norman, A. W. (2011). Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Practice and Research: Clinical Endocrinology and Metabolism, 25, 543–559. https://doi.org/10.1016/j.beem.2011.05.010.

    Article  CAS  PubMed  Google Scholar 

  114. Mizwicki, M. T., & Norman, A. W. (2009). The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Scientific Signal, 2, re4. https://doi.org/10.1126/scisignal.275re4.

    Article  CAS  Google Scholar 

  115. Mizwicki, M. T., et al. (2004). Identification of an alternative ligand-binding pocket in the nuclear vitamin D receptor and its functional importance in 1alpha,25(OH)2-vitamin D3 signaling. Proceedings of the Natational Academy of Science of the USA, 101, 12876–12881. https://doi.org/10.1073/pnas.0403606101.

    Article  CAS  Google Scholar 

  116. Sequeira, V. B., et al. (2013). Opening of chloride channels by 1alpha,25-dihydroxyvitamin D3 contributes to photoprotection against UVR-induced thymine dimers in keratinocytes. The Journal of Investigative Dermatology, 133, 776–782. https://doi.org/10.1038/jid.2012.343.

    Article  CAS  PubMed  Google Scholar 

  117. Hu, L., Bikle, D. D., & Oda, Y. (2013). Reciprocal role of vitamin D receptor on beta-catenin regulated keratinocyte proliferation and differentiation. The Journal of Steroid Biochemistry and Molecular Biology, 144 Pt A, 237–241. https://doi.org/10.1016/j.jsbmb.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  118. Bikle, D. D. et al.(2012). Protective role of vitamin D signaling in skin cancer formation. The Journal of Steroid Biochemistry and Molecular Biology, 136, 271–279. https://doi.org/10.1016/j.jsbmb.2012.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bikle, D. D., Oda, Y., Tu, C. L., & Jiang, Y. (2015). Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer. The Journal of Steroid Biochemistry and Molecular Biology, 148, 47–51. https://doi.org/10.1016/j.jsbmb.2014.10.017.

    Article  CAS  PubMed  Google Scholar 

  120. Bikle, D. D., Jiang, Y., Nguyen, T., Oda, Y., & Tu, C. L. (2016). Disruption of vitamin D and calcium signaling in keratinocytes predisposes to skin cancer. Frontiers in Physiology, 7, 296 https://doi.org/10.3389/fphys.2016.00296.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chagani, S., et al. (2016). In vivo role of vitamin D receptor signaling in UVB-induced DNA damage and melanocyte homeostasis. The Journal of Investigative Dermatology, 136, 2108–2111. https://doi.org/10.1016/j.jid.2016.06.004.

    Article  CAS  PubMed  Google Scholar 

  122. Wang, Z., et al. (2011). RXRalpha ablation in epidermal keratinocytes enhances UVR-induced DNA damage, apoptosis, and proliferation of keratinocytes and melanocytes. The Journal of Investigative Dermatology, 131, 177–187. https://doi.org/10.1038/jid.2010.290.

    Article  CAS  PubMed  Google Scholar 

  123. Slominski, A. T., et al. (2017). Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. Laboratory Investigation, 97, 706–724. https://doi.org/10.1038/labinvest.2017.3.

    Article  CAS  PubMed  Google Scholar 

  124. Bikle, D. D. (2015). Vitamin D receptor, a tumor suppressor in skin. Canadian Journal of Physiology and Pharmacology, 93, 349–354. https://doi.org/10.1139/cjpp-2014-0367.

    Article  CAS  PubMed  Google Scholar 

  125. Bikle, D. D. (2014). The vitamin D receptor: a tumor suppressor in skin. Advances in Experimental Medicine and Biology, 810, 282–302. https://doi.org/10.21236/ada614241.

    Article  PubMed  Google Scholar 

  126. Brozyna, A. A., Hoffman, R. M., & Slominski, A. T. (2020). Relevance of vitamin D in melanoma development, progression and therapy. Anticancer Research, 40, 473–489. https://doi.org/10.21873/anticanres.13976.

    Article  PubMed  Google Scholar 

  127. Uhmann, A. et al. (2011). Antitumoral effects of calcitriol in basal cell carcinomas involve inhibition of hedgehog signaling and induction of vitamin D receptor signaling and differentiation. Molecular Cancer Therapeutics, 10, 2179–2188. https://doi.org/10.1158/1535-7163.MCT-11-0422.

    Article  CAS  PubMed  Google Scholar 

  128. Tang, J. Y., et al. (2011). Vitamin D3 inhibits hedgehog signaling and proliferation in murine Basal cell carcinomas. Cancer Prevention Research (Philadelphia), 4, 744–751. https://doi.org/10.1158/1940-6207.CAPR-10-0285.

    Article  CAS  Google Scholar 

  129. Huang, P., et al. (2016). Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell, 166, 1176–1187. e1114. https://doi.org/10.1016/j.cell.2016.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nachtergaele, S., et al. (2012). Oxysterols are allosteric activators of the oncoprotein Smoothened. Nature Chemical Biology, 8, 211–220. https://doi.org/10.1038/nchembio.765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Slominski, A. T. et al. (2020). The role of classical and novel forms of vitamin D in the pathogenesis and progression of non-melanoma skin cancers. Advances in Experimental Medicine and Biology, in press.

  132. Skobowiat, C., et al. (2018). Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. Journal of Pineal Research, 65, e12501. https://doi.org/10.1111/jpi.12501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fischer, T. W., Slominski, A., Zmijewski, M. A., Reiter, R. J., & Paus, R. (2008). Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Experimental Dermatology, 17, 713–730. https://doi.org/10.1111/j.1600-0625.2008.00767.x.

    Article  CAS  PubMed  Google Scholar 

  134. Fischer, T. W., Kleszczynski, K., Hardkop, L. H., Kruse, N., & Zillikens, D. (2013). Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2’-deoxyguanosine) in ex vivo human skin. Journal of Pineal Research, 54, 303–312. https://doi.org/10.1111/jpi.12018.

    Article  CAS  PubMed  Google Scholar 

  135. Slominski, A. T., et al. (2017). Melatonin, mitochondria, and the skin. Cellulor and Molecular Life Science, 74, 3913–3925. https://doi.org/10.1007/s00018-017-2617-7.

    Article  CAS  Google Scholar 

  136. Tongkao-On, W., et al. (2015). CYP11A1 in skin: an alternative route to photoprotection by vitamin D compounds. The Journal of Steroid Biochemistry and Molecular Biology, 148, 72–78. https://doi.org/10.1016/j.jsbmb.2014.11.015.

    Article  CAS  PubMed  Google Scholar 

  137. Chaudhary, S. C., et al. (2015). Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget, 6, 36789–36814. https://doi.org/10.18632/oncotarget.5103.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chaiprasongsuk, A., et al. (2019). Protective effects of novel derivatives of vitamin D3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biology, 24, 101206. https://doi.org/10.1016/j.redox.2019.101206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Skobowiat, C., Nejati, R., Lu, L., Williams, R. W., & Slominski, A. T. (2013). Genetic variation of the cutaneous HPA axis: an analysis of UVB-induced differential responses. Gene, 530, 1–7. https://doi.org/10.1016/j.gene.2013.08.035.

    Article  CAS  PubMed  Google Scholar 

  140. Skobowiat, C., Dowdy, J. C., Sayre, R. M., Tuckey, R. C., & Slominski, A. (2011). Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. American Journal of Physiology-Endocrinology and Metabolism, 301, E484–E493. https://doi.org/10.1152/ajpendo.00217.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Skobowiat, C., & Slominski, A. T. (2015). UVB activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice. The Journal of Investigative Dermatology, 135, 1638–1648. https://doi.org/10.1038/jid.2014.450.

    Article  CAS  PubMed  Google Scholar 

  142. Chaiprasongsuk, A., Janjetovic, Z., Kim, T., Tuckey, R. C., Panich, U., & Slominski, A. T. (2019). CYP11A1-derived vitamin D-3 hydroxyderivatives protect against UVB-induced skin inflammation through the modulation of NF-kappa B signaling pathway in human keratinocytes. Journal of Investigative Dermatology, 139(5), S133.

    Article  Google Scholar 

  143. MacLaughlin, J. A., Anderson, R. R., & Holick, M. F. (1982). Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science, 216, 1001–1003. https://doi.org/10.1126/science.6281884.

    Article  CAS  PubMed  Google Scholar 

  144. Mier-Aguilar, C. A., Cashman, K. S., Raman, C., & Soldevila, G. (2016). CD5-CK2 signaling modulates erk activation and thymocyte survival. PloS ONE, 11, e0168155. https://doi.org/10.1371/journal.pone.0168155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Slominski, A., et al. (2018). Differential and overlapping effects of 20, 23(OH)2D3 and 1, 25 (OH)2D3 on gene expression in human epidermal keratinocytes: identification of AhR as an alternative receptor for 20, 23 (OH) 2D3. International Journal of Molecular Science, 19, 3072.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by NIH grants 1R01AR073004-01A1 and R01AR071189-01A1 and by a VA merit grant (no. 1I01BX004293-01A1) to A.T.S., internal (UAB) funds to A.T.S. and C.R., by the Intramural Research Program of the NIEHS, NIH Z01-ES-101585 (to A.M.J.) and RO1 ES 026219 (to M.A.).

Author Contributions

All authors contributed to the study conception and design of the review with A.T.S. serving as the primary author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej T. Slominski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slominski, A.T., Chaiprasongsuk, A., Janjetovic, Z. et al. Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem Biophys 78, 165–180 (2020). https://doi.org/10.1007/s12013-020-00913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00913-6

Keywords

Navigation