Skip to main content
Log in

Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Pro-domain of a cysteine cathepsin contains a highly conserved Ex2Rx2Fx2Nx3Ix3N (ERFNIN) motif. The zymogen structure of cathepsins revealed that the Arg(R) residue of the motif is a central residue of a salt-bridge/H-bond network, stabilizing the scaffold of the pro-domain. Importance of the arginine is also demonstrated in studies where a single mutation (Arg → Trp) in human lysosomal cathepsin K (hCTSK) is linked to a bone-related genetic disorder “Pycnodysostosis”. In the present study, we have characterized in vitro Arg → Trp mutant of hCTSK and the same mutant of hCTSL. The R → W mutant of hCTSK revealed that this mutation leads to an unstable zymogen that is spontaneously activated and auto-proteolytically degraded rapidly. In contrast, the same mutant of hCTSL is sufficiently stable and has proteolytic activity almost like its wild-type counterpart; however it shows an altered zymogen activation condition in terms of pH, temperature and time. Far and near UV circular dichroism and intrinsic tryptophan fluorescence experiments have revealed that the mutation has minimal effect on structure of the protease hCTSL. Molecular modeling studies shows that the mutated Trp31 in hCTSL forms an aromatic cluster with Tyr23 and Trp30 leading to a local stabilization of pro-domain and supplements the loss of salt-bridge interaction mediated by Arg31 in wild-type. In hCTSK-R31W mutant, due to presence of a non-aromatic Ser30 residue such interaction is not possible and may be responsible for local instability. These differences may cause detrimental effects of R31W mutation on the regulation of hCTSK auto-activation process compared to altered activation process in hCTSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

hCTSL:

Human cathepsin L

hCTSK:

Human cathepsin K

SDS:

Sodium dodecylsulfate

PEG:

Polyethylene glycol

MW:

Molecular weight

CD:

Circular dichroism

WT:

Wild type

RT:

Room temperature

IPTG:

Isopropyl-β-d-thiogalactopyranoside

References

  1. Rawlings, N. D., Barrett, A. J., & Bateman, A. (2012). MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 40, D343–D350.

    Article  CAS  PubMed  Google Scholar 

  2. Otto, H. H., & Schirmeister, T. (1997). Cysteine proteases and their inhibitors. Chemical Reviews, 97, 133–172.

    Article  CAS  PubMed  Google Scholar 

  3. Rossi, A., Deveraux, Q., Turk, B., & Sali, A. (2004). Comprehensive search for cysteine cathepsins in the human genome. Biological Chemistry, 385, 363–372.

    Article  CAS  PubMed  Google Scholar 

  4. Lecaille, F., Brömme, D., & Lalmanach, G. (2008). Biochemical properties and regulation of cathepsin K activity. Biochimie, 90, 208–226.

    Article  CAS  PubMed  Google Scholar 

  5. McGrath, M. E. (1999). The lysosomal cysteine proteases. Annual Review of Biophysics and Biomolecular Structure, 28, 181–204.

    Article  CAS  PubMed  Google Scholar 

  6. Honey, K., & Rudensky, A. Y. (2003). Lysosomal cysteine proteases regulate antigen presentation. Nature Reviews Immunology, 6, 472–482.

    Article  Google Scholar 

  7. Brömme, D., & Wilson, S. (2011). Role of cysteine cathepsins in extracellular proteolysis. Extracellular Matrix Degradation, 2, 23–51.

    Article  Google Scholar 

  8. Marko, F., & Turk, B. (2014). Cysteine cathepsins and extracellular matrix degradation. Biochimica et Biophysica Acta, 1840, 2560–2570.

    Article  Google Scholar 

  9. Turk, D., & Guncar, G. (2003). Lysosomal cysteine proteases (cathepsins): Promising drug targets. Acta Crystallographica Section D, 59, 203–213.

    Article  Google Scholar 

  10. Saftig, P., & Klumperman, J. (2009). Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nature Reviews Molecular Cell Biology, 10, 623–635.

    Article  CAS  PubMed  Google Scholar 

  11. Dutta, S., Choudhury, D., Roy, S., Dattagupta, J. K., & Biswas, S. (2016). Mutation in the pro-peptide region of a cysteine protease leads to altered activity and specificity—a structural and biochemical approach. Plosad- One, 11, e0158024.

    Article  Google Scholar 

  12. Wiederanders, B., Kaulmann, G., & Schilling, K. (2003). Functions of propeptide parts in cysteine proteases. Current Protein & Peptide Science, 4, 309–326.

    Article  CAS  Google Scholar 

  13. Dardenne, L. E., Werneck, A. S., de Oliveira Neto, M., & Bisch, P. M. (2003). Electrostatic properties in the catalytic site of papain: A possible regulatory mechanism for the reactivity of the ion pair. Proteins, 52, 236–253.

    Article  CAS  PubMed  Google Scholar 

  14. Roy, S., Choudhury, D., Aich, P., Dattagupta, J. K., & Biswas, S. (2012). The structure of a thermostable mutant of pro-papain reveals its activation mechanism. Acta Crystallographica Section D, 68, 1591–1603.

    Article  CAS  Google Scholar 

  15. Cygler, M., & Mort, J. S. (1997). Proregion structure of members of the papain superfamily. Mode of inhibition of enzymatic activity. Biochimie, 79, 645–652.

    Article  CAS  PubMed  Google Scholar 

  16. Coulombe, R., Grochulski, P., Sivaraman, J., Ménard, R., Mort, J. S., & Cygler, M. (1996). Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. The EMBO Journal, 15, 5492–5503.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Groves, M. R., Coulombe, R., Jenkins, J., & Cygler, M. (1998). Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Proteins: Structure, Function and Genetics, 32, 504–514.

    Article  CAS  Google Scholar 

  18. Verma, S., Dixit, R., & Pandey, K. C. (2016). Cysteine proteases: modes of activation and future prospects as pharmacological targets. Frontiers in Pharmacology, 7, 107.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khan, A. R., & James, M. N. G. (1998). Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Science, 7, 815–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schroder, B. A., Wrocklage, C., Hasilik, A., & Saftig, P. (2010). The proteome of lysosomes. Proteomics, 10, 4053–4076.

    Article  PubMed  Google Scholar 

  21. Roy, S., Choudhury, D., Chakrabarti, C., Biswas, S., & Dattagupta, J. K. (2011). Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain. Acta Crystallographica Section F, 67, 634–636.

    CAS  Google Scholar 

  22. Vernet, T., Berti, P. J., de Montigny, C., Musil, R., Tessier, D. C., Ménard, R., Magny, M. C., Storer, A. C., & Thomas, D. Y. (1995). Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. The Journal of Biological Chemistry, 270, 10838–10846.

    Article  CAS  PubMed  Google Scholar 

  23. Choudhury, D., Roy, S., Chakrabarti, C., Biswas, S., & Dattagupta, J. K. (2009). Production and recovery of recombinant propapain with high yield. Phytochemistry, 70, 465–472.

    Article  CAS  PubMed  Google Scholar 

  24. Gelb, B. D., Shi, G. P., Chapman, H. A., & Desnick, R. J. (1996). Pycnodysostosis, a lysosomal disease due to cathepsin K deficiency. Science, 273, 1137–1139.

    Article  Google Scholar 

  25. Roy, S., Dattagupta, J. K., & Biswas, S. (2012). Expression of recombinant human cathepsin K is enhanced by codon optimization. Process Biochemistry, 47, 1944–1947.

    Article  CAS  Google Scholar 

  26. Nick Pace, C., Grimsley, G. R., & Martin Scholtz, J. (2009). Protein ionizable groups: pK values and their contribution to protein stability and solubility. The Journal of Biological Chemistry, 284, 13285–13289.

    Article  PubMed  Google Scholar 

  27. Choudhury, D., Biswas, S., Roy, S., & Dattagupta, J. K. (2010). Improving thermostability of papain through structure-based protein engineering. Protein Engineering, Design & Selection, 23, 457–467.

    Article  CAS  Google Scholar 

  28. Dutta, S., Choudhury, D., Dattagupta, J. K., & Biswas, S. (2011). C-terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism. The FEBS Journal, 278, 3012–3024.

    Article  CAS  PubMed  Google Scholar 

  29. Barrett, A. J., Kembhavi, A. A., Brown, M. A., Kirschke, H., Knight, C. G., Tamai, M., & Hanada, K. (1982). L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. The Biochemical Journal, 201, 189–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32, 668–673.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by institutional grant (MSACR project) and funding from DBT, Govt. of India (BT/PR13895/BRB/10/789/2010 dt. 15-06-2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Biswas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aich, P., Biswas, S. Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L. Cell Biochem Biophys 76, 219–229 (2018). https://doi.org/10.1007/s12013-017-0838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0838-x

Keywords

Navigation