Skip to main content
Log in

Intrinsic Response Towards Physiologic Stiffness is Cell-Type Dependent

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the continuous search for better tissue engineering scaffolds it has become increasingly clear that the substrate properties dramatically affect cell responses. Here we compared cells from a physiologically stiff tissue, melanoma, to cells isolated from a physiologically soft tissue, brain. We measured the cell line responses to laminin immobilized onto glass or polyacrylamide hydrogels tuned to have a Young’s modulus ranging from 1 to 390 kPa. Single cells were analyzed for spreading area, shape, total actin content, actin-based morphological features and modification of immobilized laminin. Both cell types exhibited stiffness- and laminin concentration-dependent responses on polyacrylamide and glass. Melanoma cells exhibited very little spreading and were rounded on soft (1, 5, and 15 kPa) hydrogels while cells on stiff (40, 100, and 390 kPa) hydrogels were spread and had a polarized cell shape with large lamellipodia. On rigid glass surfaces, spreading and actin-based morphological features were not observed until laminin concentration was much higher. Similarly, increased microglia cell spreading and presence of actin-based structures were observed on stiff hydrogels. However, responses on rigid glass surfaces were much different. Microglia cells had large spreading areas and elongated shapes on glass compared to hydrogels even when immobilized laminin density was consistent on all gels. While cell spreading and shape varied with Young’s modulus of the hydrogel, the concentration of f-actin was constant. A decrease in laminin immunofluorescence was associated with melanoma and microglia cell spreading on glass with high coating concentration of laminin, indicating modification of immobilized laminin triggered by supraphysiologic stiffness and high ligand density. These results suggest that some cell lines are more sensitive to mechanical properties matching their native tissue environment while other cell lines may require stiffness and extracellular ligand density well above physiologic tissue before saturation in cell spreading, elongation and cytoskeletal re-organization are reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  2. Tilghman, R. W., Cowan, C. R., Mih, J. D., Koryakina, Y., Gioeli, D., & Slack-Davis, J. K., et al. (2010). Matrix rigidity regulates cancer cell growth and cellular phenotype. PloS ONE, 5, e12905.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Engler, A. J., Griffin, M. A., Sen, S., Bönnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness pathological implications for soft or stiff microenvironments. The Journal of Cell Biology, 166, 877–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mih, J. D., Sharif, A. S., Liu, F., Marinkovic, A., Symer, M. M., & Tschumperlin, D. J. (2011). A multiwell platform for studying stiffness-dependent cell biology. PloS ONE, 6, e19929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engler, A. J., Carag-Krieger, C., Johnson, C. P., Raab, M., Tang, H.-Y., & Speicher, D. W., et al. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of Cell Science, 121, 3794–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leach, J. B., Brown, X. Q., Jacot, J. G., DiMilla, P. A., & Wong, J. Y. (2007). Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. Journal of Neural Engineering, 4, 26.

    Article  PubMed  Google Scholar 

  7. Lo, C.-M., Wang, H.-B., Dembo, M., & Wang, Y.-l (2000). Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79, 144–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reilly, G. C., & Engler, A. J. (2010). Intrinsic extracellular matrix properties regulate stem cell differentiation. Journal of Biomechanics, 43, 55–62.

    Article  PubMed  Google Scholar 

  9. Kloxin, A. M., Benton, J. A., & Anseth, K. S. (2010). In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials, 31, 1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., & Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.

    Article  CAS  PubMed  Google Scholar 

  11. Carson, D., Hnilova, M., Yang, X., Nemeth, C. L., Tsui, J. H., & Smith, A. S., et al. (2016). Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS Applied Materials & Interfaces, 8, 21923–21932.

    Article  CAS  Google Scholar 

  12. Tokuda, E. Y., Leight, J. L., & Anseth, K. S. (2014). Modulation of matrix elasticity with PEG hydrogels to study melanoma drug responsiveness. Biomaterials, 35, 4310–4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prauzner-Bechcicki, S., Raczkowska, J., Madej, E., Pabijan, J., Lukes, J., & Sepitka, J., et al. (2015). PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. Journal of the Mechanical Behavior of Biomedical Materials, 41, 13–22.

    Article  PubMed  Google Scholar 

  14. Agache, P., Monneur, C., Leveque, J., & De Rigal, J. (1980). Mechanical properties and Young’s modulus of human skin in vivo. Archives of Dermatological Research, 269, 221–232.

    Article  CAS  PubMed  Google Scholar 

  15. Pailler-Mattei, C., Bec, S., & Zahouani, H. (2008). In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical Engineering & Physics, 30, 599–606.

    Article  CAS  Google Scholar 

  16. Budday, S., Nay, R., de Rooij, R., Steinmann, P., Wyrobek, T., & Ovaert, T. C., et al. (2015). Mechanical properties of gray and white matter brain tissue by indentation. Journal of the Mechanical Behavior of Biomedical Materials, 46, 318–330.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., & Discher, D. (2004). Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 86, 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi, J. S., & Harley, B. A. (2012). The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials, 33, 4460–4468.

    Article  CAS  PubMed  Google Scholar 

  19. Jucker, M., Tian, M., & Ingram, D. K. (1996). Laminins in the adult and aged brain. Molecular and Chemical Neuropathology, 28, 209–218.

    Article  CAS  PubMed  Google Scholar 

  20. Ishikawa, T., Wondimu, Z., Oikawa, Y., Gentilcore, G., Kiessling, R., & Brage, S. E., et al. (2014). Laminins 411 and 421 differentially promote tumor cell migration via α6β1 integrin and MCAM (CD146). Matrix Biology, 38, 69–83.

    Article  CAS  PubMed  Google Scholar 

  21. Makishima, A., & Mackenzie, J. (1973). Direct calculation of Young’s moidulus of glass. Journal of Non-Crystalline Solids, 12, 35–45.

    Article  CAS  Google Scholar 

  22. Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., & Kettenmann, H. (1992). An immortalized cell line expresses properties of activated microglial cells. Journal of Neuroscience Research, 31, 616–621.

    Article  CAS  PubMed  Google Scholar 

  23. Le Clainche, C., & Carlier, M. F. (2008). Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiological Reviews, 88, 489–513.

    Article  PubMed  Google Scholar 

  24. Flanagan, L. A., Ju, Y.-E., Marg, B., Osterfield, M., & Janmey, P. A. (2002). Neurite branching on deformable substrates. Neuroreport, 13, 2411.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buxboim, A., Rajagopal, K., Andre’EX, B., & Discher, D. E. (2010). How deeply cells feel: methods for thin gels. Journal of Physics: Condensed Matter, 22, 194116.

    PubMed  PubMed Central  Google Scholar 

  26. Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., & Funaki, M., et al. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60, 24–34.

    Article  PubMed  Google Scholar 

  27. Nakamura, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K., & Kunitomo, M. (2002). Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sciences, 70, 791–798.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, K., Fu, X., Dorantes-Gonzalez, D. J., Lu, Z., Li, T., & Li, Y., et al. (2014). Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves. Journal of Biomedical Optics, 19, 077007.

    Article  PubMed  Google Scholar 

  29. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., & Bistoni, F. (1990). Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. Journal of Neuroimmunology, 27, 229–237.

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S. A., & Weaver, J. C., et al. (2016). Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15, 326–334.

    Article  CAS  PubMed  Google Scholar 

  31. Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., & Salanga, M., et al. (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysical Journal, 90, 3762–3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guilluy, C., Garcia-Mata, R., & Burridge, K. (2011). Rho protein crosstalk: another social network? Trends in Cell Biology, 21, 718–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bangasser, B. L., Shamsan, G. A., Chan, C. E., Opoku, K. N., Tuzel, E., & Schlichtmann, B. W., et al. (2017). Shifting the optimal stiffness for cell migration. Nature Communications, 8, 15313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maity, G., Sen, T., & Chatterjee, A. (2011). Laminin induces matrix metalloproteinase-9 expression and activation in human cervical cancer cell line (SiHa). Journal of Cancer Research and Clinical Oncology, 137, 347–357.

    Article  CAS  PubMed  Google Scholar 

  35. Haage, A., & Schneider, I. C. (2014). Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB Journal, 28, 3589–3599.

    Article  CAS  PubMed  Google Scholar 

  36. Fligiel, S. E., Laybourn, K. A., Peters, B. P., Ruddon, R. W., Hiserodt, J. C., & Varani, J. (1986). Laminin production by murine melanoma cells: possible involvement in cell motility. Clinical & Experimental Metastasis, 4, 259–272.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a Research Grant from the Southern Illinois University Edwardsville School of Pharmacy and by start-up funds awarded to Dr. Zustiak by Saint Louis University. Michael Reimer was funded by the Research Grants for Graduate Students program at Southern Illinois University Edwardsville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Martin Schober.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimer, M., Petrova Zustiak, S., Sheth, S. et al. Intrinsic Response Towards Physiologic Stiffness is Cell-Type Dependent. Cell Biochem Biophys 76, 197–208 (2018). https://doi.org/10.1007/s12013-017-0834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0834-1

Keywords

Navigation