Skip to main content

Advertisement

Log in

IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets for future studies to modulate atherosclerosis and restenosis after vascular interventional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yajima, N., Takahashi, M., & Morimoto, H. (2008). Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation, 117(24), 3079–3087.

    Article  CAS  PubMed  Google Scholar 

  2. Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han, D. K., Haudenschild, C. C., & Hong, M. K. (1995). Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. The American Journal of Pathology, 147(2), 267–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, E. Y., Lee, Z. H., & Song, Y. W. (2009). CXCL10 and autoimmune diseases. Autoimmunity Reviews, 8(5), 379–383.

    Article  CAS  PubMed  Google Scholar 

  5. Luster, A. D., Unkeless, J. C., & Ravetch, J. V. (1985). Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature, 315(6021), 672–676.

    Article  CAS  PubMed  Google Scholar 

  6. Lasagni, L., Francalanci, M., & Annunziato, F. (2003). An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. The Journal of Experimental Medicine, 197(11), 1537–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, X., Yue, T. L., Ohlstein, E. H., Sung, C. P., & Feuerstein, G. Z. (1996). Interferon-inducible protein-10 involves vascular smooth muscle cell migration, proliferation, and inflammatory response. The Journal of Biological Chemistry, 271(39), 24286–24293.

    Article  CAS  PubMed  Google Scholar 

  8. Zuojun, H., Lingyu, H., & Wei, H. (2012). Interference of IP-10 expression inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in carotid artery: A new insight in the prevention of restenosis. Cell Biochemistry and Biophysics, 62(1), 125–135.

    Article  PubMed  Google Scholar 

  9. Lin, J., Zhou, S., Zhao, T., Ju, T., & Zhang, L. (2016). TRPM7 channel regulates ox-LDL-induced proliferation and migration of vascular smooth muscle cells via MEK-ERK pathways. FEBS Letters, 590(4), 520–532.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Q. F., Yu, H. W., & Sun, L. L. (2015). Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways. Biochemical and Biophysical Research Communications, 468(4), 617–621.

    Article  CAS  PubMed  Google Scholar 

  11. Alonso, N., Diaz, N. A., & Monczor, F. (2016). PI3K pathway is involved in ERK signaling cascade activation by histamine H2R agonist in HEK293T cells. Biochimica et Biophysica Acta, 1860(9), 1998–2007.

    Article  CAS  PubMed  Google Scholar 

  12. Xing, J., Ginty, D. D., & Greenberg, M. E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science, 273(5277), 959–963.

    Article  CAS  PubMed  Google Scholar 

  13. Tokunou, T., Ichiki, T., & Takeda, K. (2001). cAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(11), 1764–1769.

    Article  CAS  PubMed  Google Scholar 

  14. Weng, Y., Siciliano, S. J., & Waldburger, K. E. (1998). Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. The Journal of Biological Chemistry, 273(29), 18288–18291.

    Article  CAS  PubMed  Google Scholar 

  15. Schulthess, F. T., Paroni, F., & Sauter, N. S. (2009). CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metabolism, 9(2), 125–139.

    Article  CAS  PubMed  Google Scholar 

  16. Hodges-Garcia, Y. K., Madigan, N., & Horwitz, L. D. (1998). Primary human vascular smooth muscle cell culture enhanced by human umbilical cord serum. In Vitro Cellular & Developmental Biology. Animal, 34(5), 364–366.

    Article  CAS  Google Scholar 

  17. Bonacchi, A., Romagnani, P., & Romanelli, R. G. (2001). Signal transduction by the chemokine receptor CXCR3: Activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. The Journal of Biological Chemistry, 276(13), 9945–9954.

    Article  CAS  PubMed  Google Scholar 

  18. Shen, Q., Zhang, R., & Bhat, N. R. (2006). MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Research, 1086(1), 9–16.

    Article  CAS  PubMed  Google Scholar 

  19. Ji, R., Lee, C. M., & Gonzales, L. W. (2008). Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294(6), L1187–L1196.

    Article  CAS  PubMed  Google Scholar 

  20. Jinquan, T., Jing, C., & Jacobi, H. H. (2000). CXCR3 expression and activation of eosinophils: Role of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. Journal of Immunology, 165(3), 1548–1556.

    Article  CAS  Google Scholar 

  21. Sahin, H., Borkham-Kamphorst, E., & Do, O. N. (2013). Proapoptotic effects of the chemokine, CXCL 10 are mediated by the noncognate receptor TLR4 in hepatocytes. Hepatology, 57(2), 797–805.

    Article  CAS  PubMed  Google Scholar 

  22. Luster, A. D., & Ravetch, J. V. (1987). Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). The Journal of Experimental Medicine, 166(4), 1084–1097.

    Article  CAS  PubMed  Google Scholar 

  23. Taub, D. D., Longo, D. L., & Murphy, W. J. (1996). Human interferon-inducible protein-10 induces mononuclear cell infiltration in mice and promotes the migration of human T lymphocytes into the peripheral tissues and human peripheral blood lymphocytes-SCID mice. Blood, 87(4), 1423–1431.

    CAS  PubMed  Google Scholar 

  24. Taub, D. D., Lloyd, A. R., & Conlon, K. (1993). Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. The Journal of Experimental Medicine, 177(6), 1809–1814.

    Article  CAS  PubMed  Google Scholar 

  25. Heller, E. A., Liu, E., & Tager, A. M. (2006). Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation, 113(19), 2301–2312.

    Article  CAS  PubMed  Google Scholar 

  26. Moon, Y., Yang, H., & Kim, Y. B. (2007). Up-regulation of early growth response gene 1 (EGR-1) via ERK1/2 signals attenuates sulindac sulfide-mediated cytotoxicity in the human intestinal epithelial cells. Toxicology and Applied Pharmacology, 223(2), 155–163.

    Article  CAS  PubMed  Google Scholar 

  27. Shen, Y. J., Zhu, X. X., & Yang, X. (2014). Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation. Journal of Natural Medicines, 68(3), 623–629.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J. Y., Kim, K. H., & Lee, W. R. (2015). Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway. Vascular Pharmacology, 70(4), 8–14.

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez, G. A., & Montminy, M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell, 59(4), 675–680.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz, J. B., Langwieser, N., & Langwieser, N. N. (2009). Novel role of the CXC chemokine receptor 3 in inflammatory response to arterial injury: Involvement of mTORC1. Circulation Research, 104(2), 189–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant # 31271459); National 863 plans projects of China (Grant # 2013AA032203); Natural Science Foundation of Guangdong Province (Grant # S201201008687); Key Induction Project of Science and Technology, Guangdong Province (Grants # 2010B031600055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-jun Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Hui-jin Wang, Yu Zhou and Rui-ming Liu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hj., Zhou, Y., Liu, Rm. et al. IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway. Cell Biochem Biophys 75, 139–147 (2017). https://doi.org/10.1007/s12013-017-0782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0782-9

Keywords

Navigation