Skip to main content
Log in

Metabolic Transition of Milk Lactose Synthesis and Up-regulation by AKT1 in Sows from Late Pregnancy to Lactation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lactose plays a crucial role in controlling milk volume by inducing water toward into the mammary secretory vesicles from the mammary epithelial cell cytoplasm, thereby maintaining osmolality. In current study, we determined the expression of several lactose synthesis related genes, including glucose transporters (glucose transporter 1, glucose transporter 8, sodium-glucose cotransporter 1, sodium-glucose cotransporter 3, and sodium-glucose cotransporter 5), lactose synthases (α-lactalbumin and β1,4-galactosyltransferase), and hexokinases (hexokinase-1 and hexokinase-2) in sow mammary gland tissue at day 17 before delivery, on the 1st day of lactation and at peak lactation. The data showed that glucose transporter 1 was the dominant glucose transporter within sow mammary gland and that expression of each glucose transporter 1, sodium-glucose cotransporter 1, hexokinase-1, hexokinase-2, α-lactalbumin, and β1,4-galactosyltransferase were increased (p < 0.05) when the sows transited from late pregnancy to peak lactation. AKT1 over-expressed mammary epithelial cells were then constructed, and the results indicated that AKT1 increases (p < 0.01) the expression of hexokinase-1 and glucose transporter 1. In summary, lactose synthesis was significantly elevated with the increase of milk production and AKT1 could positively regulate lactose synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adam, A. C., Rubio-Texeira, M., & Polaina, J. (2004). Lactose: The milk sugar from a biotechnological perspective. Critical Reviews in Food Science and Nutrition, 44, 553–557.

    Article  CAS  PubMed  Google Scholar 

  2. Rigout, S., Lemosquet, S., van Eys, J. E., Blum, J. W., & Rulquin, H. (2002). Duodenal glucose increases glucose fluxes and lactose synthesis in grass silage-fed dairy cows. Journal of Dairy Science, 85, 595–606.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, H., Zhao, K., & Liu, J. (2013). Effects of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in bovine mammary epithelial cells. PLoS One, 8, e66092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hansen, A. V., Strathe, A. B., Kebreab, E., France, J., & Theil, P. K. (2012). Predicting milk yield and composition in lactating sows: A Bayesian approach. Journal of Animal Science, 90, 2285–2298.

    Article  CAS  PubMed  Google Scholar 

  5. Shu, D. P., Chen, B. L., Hong, J., Liu, P. P., Hou, D. X., & Huang, X., et al. (2012). Global transcriptional profiling in porcine mammary glands from late pregnancy to peak lactation. Omics: A Journal of Integrative Biology, 16, 123–137.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, F., Hao, Y., Piao, X. S., Ma, X., Wu, G. Y., & Qiao, S. Y., et al. (2011). Soybean-derived beta-conglycinin affects proteome expression in pig intestinal cells in vivo and in vitro. Journal of Animal Science, 89, 743–753.

    Article  CAS  PubMed  Google Scholar 

  7. Li, C. M., Yan, H. C., Fu, H. L., Xu, G. F., & Wang, X. Q. (2014). Molecular cloning, sequence analysis, and function of the intestinal epithelial stem cell marker Bmi1 in pig intestinal epithelial cells. Journal of Animal Science, 92, 85–94.

    Article  CAS  PubMed  Google Scholar 

  8. Threadgold, L. C., & Kuhn, N. J. (1979). Glucose-6-phosphate hydrolysis by lactating rat mammary gland. The International Journal of Biochemistry, 10, 683–685.

    Article  CAS  PubMed  Google Scholar 

  9. Kronfeld, D. S. (1982). Major metabolic determinants of milk volume, mammary efficiency, and spontaneous ketosis in dairy cows. Journal of Dairy Science, 65, 2204–2212.

    Article  CAS  PubMed  Google Scholar 

  10. Davis, S. R., & Collier, R. J. (1985). Mammary blood flow and regulation of substrate supply for milk synthesis. Journal of Dairy Science, 68, 1041–1058.

    Article  CAS  PubMed  Google Scholar 

  11. Scheepers, A., Joost, H. G., & Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function. Jpen-Journal of Parenteral and Enteral Nutrition, 28, 364–371.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, F. Q. (2014). Biology of glucose transport in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 19, 3–17.

    Article  PubMed  Google Scholar 

  13. Zhao, F. Q., Glimm, D. R., & Kennelly, J. J. (1993). Distribution of mammalian facilitative glucose transporter messenger RNA in bovine tissues. The International Journal of Biochemistry, 25, 1897–1903.

    Article  CAS  PubMed  Google Scholar 

  14. Alo, P. L., Visca, P., Botti, C., Galati, G. M., Sebastiani, V., & Andreano, T., et al. (2001). Immunohistochemical expression of human erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas and adjacent typical/atypical hyperplastic or normal breast tissue. American Journal of Clinical Pathology, 116, 129–134.

    Article  CAS  PubMed  Google Scholar 

  15. Macheda, M. L., Williams, E. D., Best, J. D., Wlodek, M. E., & Rogers, S. (2003). Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland. Cell and Tissue Research, 311, 91–97.

    Article  CAS  PubMed  Google Scholar 

  16. Davis, A. J., Fleet, I. R., Goode, J. A., Hamon, M. H., Walker, F. M., & Peaker, M. (1979). Changes in mammary function at the onset of lactation in the goat: Correlation with hormonal changes. The Journal of Physiology, 288, 33–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nielsen, M. O., Madsen, T. G., & Hedeboe, A. M. (2001). Regulation of mammary glucose uptake in goats: Role of mammary gland supply, insulin, IGF-1 and synthetic capacity. The Journal of Dairy Research, 68, 337–349.

    Article  CAS  PubMed  Google Scholar 

  18. Ramakrishnan, B., & Qasba, P. K. (2001). Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. Journal of Molecular Biology, 310, 205–218.

    Article  CAS  PubMed  Google Scholar 

  19. Ramakrishnan, B., Shah, P. S., & Qasba, P. K. (2001). Alpha-Lactalbumin (LA) stimulates milk beta-1,4-galactosyltransferase I (beta 4Gal-T1) to transfer glucose from UDP-glucose to N-acetylglucosamine. Crystal structure of beta 4Gal-T1 x LA complex with UDP-Glc. The Journal of Biological Chemistry, 276, 37665–37671.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, K., Liu, H. Y., Wang, H. F., Zhou, M. M., & Liu, J. X. (2012). Effect of glucose availability on glucose transport in bovine mammary epithelial cells. Animal, 6, 488–493.

    Article  CAS  PubMed  Google Scholar 

  21. Vilotte, J. L., & Laude, H. (2002). Transgenesis applied to transmissible spongiform encephalopathies. Transgenic Research, 11, 547–564.

    Article  CAS  PubMed  Google Scholar 

  22. Maroulakou, I. G., Oemler, W., Naber, S. P., Klebba, I., Kuperwasser, C., & Tsichlis, P. N. (2008). Distinct roles of the three Akt isoforms in lactogenic differentiation and involution. Journal of Cellular Physiology, 217, 468–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dillon, R. L., & Muller, W. J. (2010). Distinct biological roles for the akt family in mammary tumor progression. Cancer Research, 70, 4260–4264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boxer, R. B., Stairs, D. B., Dugan, K. D., Notarfrancesco, K. L., Portocarrero, C. P., & Keister, B. A., et al. (2006). Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metabolism, 4, 475–490.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, C. C., Boxer, R. B., Stairs, D. B., Portocarrero, C. P., Horton, R. H., & Alvarez, J. V., et al. (2010). Akt is required for Stat5 activation and mammary differentiation. Breast Cancer Research: BCR, 12, R72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Strange, R., Metcalfe, T., Thackray, L., & Dang, M. (2001). Apoptosis in normal and neoplastic mammary gland development. Microscopy Research and Technique, 52, 171–181.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (no. 31402082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wutai Guan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Chen, B., Guan, W. et al. Metabolic Transition of Milk Lactose Synthesis and Up-regulation by AKT1 in Sows from Late Pregnancy to Lactation. Cell Biochem Biophys 75, 131–138 (2017). https://doi.org/10.1007/s12013-016-0778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0778-x

Keywords

Navigation