Skip to main content
Log in

Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the field of medicinal chemistry there is increasing focus on identifying key proteins whose biochemical functions can firmly be linked to serious diseases. Such proteins become targets for drug or inhibitor molecules that could treat or halt the disease through therapeutic action or by blocking the protein function respectively. The protein must be targeted at the relevant biologically active site for drug or inhibitor binding to be effective. As insufficient experimental data is available to confirm the biologically active binding site for novel protein targets, researchers often rely on computational prediction methods to identify binding sites. Presented herein is a short review on structure-based computational methods that (i) predict putative binding sites and (ii) assess the druggability of predicted binding sites on protein targets. This review briefly covers the principles upon which these methods are based, where they can be accessed and their reliability in identifying the correct binding site on a protein target. Based on this review, we believe that these methods are useful in predicting putative binding sites, but as they do not account for the dynamic nature of protein–ligand binding interactions, they cannot definitively identify the correct site from a ranked list of putative sites. To overcome this shortcoming, we strongly recommend using molecular docking to predict the most likely protein–ligand binding site(s) and mode(s), followed by molecular dynamics simulations and binding thermodynamics calculations to validate the docking results. This protocol provides a valuable platform for experimental and computational efforts to design novel drugs and inhibitors that target disease-related proteins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PDB:

Protein data bank

SBDD:

Structure-based drug design

MD:

Molecular dynamics

3D:

Three-dimensional

MM-PBSA/GBSA:

Molecular Mechanics-Poisson Boltzmann Surface Area/Generalised Born Surface Area

HIV:

Human immunodeficiency virus

LIE:

Linear interaction energy

FEP:

Free energy perturbation

TI:

Thermodynamic integration

ns:

Nanoseconds

References

  1. Zheng, X., Gan, L., Wang, E., & Wang, J. (2012). Pocket-based drug design: exploring pocket space. The AAPS Journal, 15(1), 228–241.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature Reviews Drug Discovery, 1, 727–730.

    Article  CAS  PubMed  Google Scholar 

  3. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25.

    Article  CAS  Google Scholar 

  4. Krivák, R., & Hoksza, D. (2015). Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. Journal of Cheminformatics, 7, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Databank. Nucleic Acids Research, 28, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capra, J. A., & Singh, M. (2007). Predicting functionally important residues from sequence conservation. Bioinformatics (Oxford, England), 23(15), 1875–1882.

    Article  CAS  Google Scholar 

  7. Ghersi, D., & Sanchez, R. (2011). Beyond structural genomics: computational approaches for the identification of ligand binding sites in protein structures. Journal of Structural and Functional Genomics, 12, 109–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coleman, R. G., Salzberg, A. C., & Cheng, A. C. (2006). Structure-based identification of small molecule binding sites using a free energy model. Journal of Chemical Information and Modeling, 46(6), 2631–2637.

    Article  CAS  PubMed  Google Scholar 

  9. Landon, M. R., Lancia, D. R., Yu, J., Thiel, S. C., & Vajda, S. (2007). Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. Journal of Medicinal Chemistry, 50(6), 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  10. Fukunishi, Y., & Nakamura, H. (2011). Prediction of ligand-binding sites of proteins by molecular docking calculation for a random ligand library. Protein Science, 20(1), 95–106.

    Article  CAS  PubMed  Google Scholar 

  11. Heo, L., Shin, W. H., Lee, M. S., & Seok, C. (2014). GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Research, 42, W210–W214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Komiyama, Y., Banno, M., Ueki, K., Saad, G., & Shimizu, K. (2016). Data and text mining. Automatic generation of bioinformatics tools for predicting protein—ligand binding sites. Bioinformatics (Oxford, England), 32(6), 901–907.

    Article  CAS  Google Scholar 

  13. Wang, K., Gao, J., Shen, S., Tuszynski, J. A., Ruan, J., & Hu, G. (2013). An accurate method for prediction of protein-ligand binding site on protein surface using SVM and statistical depth function. BioMed Research International, 2013, 409658.

    PubMed  PubMed Central  Google Scholar 

  14. Ivetac, A., & McCammon, J. A. (2012). A molecular dynamics ensemble-based approach for the mapping of druggable binding sites. Methods in Molecular Biology, 819, 3–12.

    Article  CAS  PubMed  Google Scholar 

  15. Seco, J., Luque, F. J., & Barril, X. (2009). Binding site detection and druggability index from first principles. Journal of Medicinal Chemistry, 52(8), 2363–2371.

    Article  CAS  PubMed  Google Scholar 

  16. Skolnick, J., & Brylinski, M. (2009). FINDSITE: a combined evolution/structure-based approach to protein function prediction. Briefings in Bioinformatics, 10(4), 378–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wass, M. N., Kelley, L. A., & Sternberg, M. J. E. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Research, 38(Suppl 2), W469–W473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, J., Liu, Q., Kang, H., Cao, Z., & Zhu, R. (2012). Comparison of different ranking methods in protein-ligand binding site prediction. International Journal of Molecular Sciences, 13(7), 8752–8761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fauman, E. B., Rai, B. K., & Huang, E. S. (2011). Structure-based druggability assessment-identifying suitable targets for small molecule therapeutics. Current Opinion in Chemical Biology, 15, 463–468.

    Article  CAS  PubMed  Google Scholar 

  20. Bryliński, M., Prymula, K., Jurkowski, W., Kochańczyk, M., Stawowczyk, E., Konieczny, L., & Roterman, I. (2007). Prediction of functional sites based on the fuzzy oil drop model. PLoS Computational Biology, 3(5), 909–923.

    Google Scholar 

  21. Oda, A. (2011). Development and validation of programs for ligand-binding-pocket search. Yakugaku Zasshi, 131(10), 1429–1435.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Z., Li, Y., Lin, B., Schroeder, M., & Huang, B. (2011). Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics, 27(15), 2083–2088.

    Article  CAS  PubMed  Google Scholar 

  23. Henrich, S., Salo-Ahen, O. M. H., Huang, B., Rippmann, F., Cruciani, G., & Wade, R. C. (2010). Computational approaches to identifying and characterizing protein binding sites for ligand design. Journal of Molecular Recognition, 23(2), 209–219.

    CAS  PubMed  Google Scholar 

  24. Leis, S., Schneider, S., & Zacharias, M. (2010). In silico prediction of binding sites on proteins. Current Medicinal Chemistry, 17(15), 1550–1562.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan, Y., Pei, J., & Lai, L. (2013). Binding site detection and druggability prediction of protein targets for structure-based drug design. Current Pharmaceutical Design, 19(12), 2326–2333.

    Article  CAS  PubMed  Google Scholar 

  26. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira, S. H. P., Ferraz, F. A. N., Honorato, R. V., Xavier-Neto, J., Sobreira, T. J. P., & de Oliveira, P. S. L. (2014). KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinformatics, 15, 197.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu, H., & Pisabarro, M. T. (2011). MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets. Bioinformatics, 27, 351–358.

    Article  CAS  PubMed  Google Scholar 

  29. Ghersi, D., & Sanchez, R. (2009). EasyMIFs and SiteHound: a toolkit for the identification of ligand-binding sites in protein structures. Bioinformatics, 25, 3185–3186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laurie, A. T. R., & Jackson, R. M. (2005). Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics, 21, 1908–1916.

    Article  CAS  PubMed  Google Scholar 

  31. Schmidtke, P., & Barril, X. (2010). Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. Journal of Medicinal Chemistry, 53, 5858–5867.

    Article  CAS  PubMed  Google Scholar 

  32. Nisius, B., Sha, F., & Gohlke, H. (2012). Structure-based computational analysis of protein binding sites for function and druggability prediction. Journal of Biotechnology, 159, 123–134.

    Article  CAS  PubMed  Google Scholar 

  33. Trosset, J. Y., & Vodovar, N. (2013). Structure-based target druggability assessment. Methods in Molecular Biology, 986, 141–164.

    Article  CAS  PubMed  Google Scholar 

  34. Hussein, H. A., Borrel, A., Geneix, C., Petitjean, M., Regad, L., & Camproux, A. C. (2015). PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Research, 43, 436–442.

    Article  Google Scholar 

  35. Volkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). Dogsitescorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics, 28, 2074–2075.

    Article  CAS  PubMed  Google Scholar 

  36. Bento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, F. A., Light, Y., Mak, L., McGlinchey, S., Nowotka, M., Papadatos, G., Santos, R., & Overington, J. P. (2014). The ChEMBL bioactivity database: an update. Nucleic Acids Research, 42, D1083–D1090.

    Article  CAS  PubMed  Google Scholar 

  37. Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49, 377–389.

    Article  CAS  PubMed  Google Scholar 

  38. Krasowski, A., Muthas, D., Sarkar, A., Schmitt, S., & Brenk, R. (2011). DrugPred: a structure-based approach to predict protein druggability developed using an extensive nonredundant data set. Journal of Chemical Information and Modeling, 51, 2829–2842.

    Article  CAS  PubMed  Google Scholar 

  39. Sheridan, R. P., Maiorov, V. N., Holloway, M. K., Cornell, W. D., & Gao, Y. D. (2010). Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the protein data bank. Journal of Chemical Information and Modeling, 50, 2029–2040.

    Article  CAS  PubMed  Google Scholar 

  40. Nayal, M., & Honig, B. (2006). On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins Structure Function and Genetics, 63, 892–906.

    Article  CAS  Google Scholar 

  41. Cheng, A. C., Coleman, R. G., Smyth, K. T., Cao, Q., Soulard, P., Caffrey, D. R., Salzberg, A. C., & Huang, E. S. (2007). Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology, 25, 71–75.

    Article  PubMed  Google Scholar 

  42. Chen, K., Mizianty, M. J., Gao, J., & Kurgan, L. (2011). A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds. Structure, 19(5), 613–621.

    Article  PubMed  Google Scholar 

  43. Elokely, K. M., & Doerksen, R. J. (2013). Docking challenge: protein sampling and molecular docking performance. Journal of Chemical Information and Modeling, 53, 1934–1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sousa, S. F., Ribeiro, A. J. M., Coimbra, J. T. S., Neves, R. P. P., Martins, S. A., Moorthy, N. S. H. N., Fernandes, P. A., & Ramos, M. J. (2013). Protein-ligand docking in the new millennium–a retrospective of 10 years in the field. Current Medicinal Chemistry, 20, 2296–2314.

    Article  CAS  PubMed  Google Scholar 

  45. Grinter, S. Z., & Zou, X. (2014). Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules, 19, 10150–10176.

    Article  PubMed  Google Scholar 

  46. Ferreira, L., dos Santos, R., Oliva, G., & Andricopulo, A. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20, 13384–13421.

    Article  CAS  PubMed  Google Scholar 

  47. Chen, Y. C. (2015). Beware of docking!. Trends in Pharmacological Sciences, 36, 78–95.

    Article  PubMed  Google Scholar 

  48. Hamelberg, D., Mongan, J., & McCammon, J. A. (2004). Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. Journal of Chemical Physics, 120(24), 11919–11929.

    Article  CAS  PubMed  Google Scholar 

  49. Pierce, L. C. T., Salomon-Ferrer, R., Augusto, F., De Oliveira, C., McCammon, J. A., & Walker, R. C. (2012). Routine access to millisecond time scale events with accelerated molecular dynamics. Journal of Chemical Theory and Computation, 8(9), 2997–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9, 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beveridge, D. L., & DiCapua, F. M. (1989). Free energy via molecular simulation: applications to chemical and biomolecular systems. Annual Review of Biophysics and Biophysical Chemistry, 18, 431–492.

    Article  CAS  PubMed  Google Scholar 

  52. Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2016). Accurate calculation of the absolute free energy of binding for drug molecules. Chemical Science, 7(1), 207–218.

    Article  CAS  PubMed  Google Scholar 

  53. Shirts, M. R., Mobley, D. L., & Chodera, J. D. (2007). Chapter 4 Alchemical free energy calculations: ready for prime time?. Annual Reports in Computational Chemistry, 3, 41–59.

    Article  CAS  Google Scholar 

  54. Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409.

    Article  CAS  Google Scholar 

  55. Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897.

    Article  CAS  PubMed  Google Scholar 

  56. Aqvist, J., Medina, C., & Samuelsson, J. E. (1994). A new method for predicting binding affinity in computer-aided drug design. Protein Engineering, 7, 385–391.

    Article  CAS  PubMed  Google Scholar 

  57. Lill, M. A., & Thompson, J. J. (2011). Solvent interaction energy calculations on molecular dynamics trajectories: increasing the efficiency using systematic frame selection. Journal of Chemical Information and Modeling, 51(10), 2680–2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Srivastava, H. K., Chourasia, M., Kumar, D., & Sastry, G. N. (2011). Comparison of computational methods to model DNA minor groove binders. Journal of Chemical Information and Modeling, 51(3), 558–571.

    Article  CAS  PubMed  Google Scholar 

  60. Srivastava, H. K., & Sastry, G. N. (2013). Efficient estimation of MMGBSA-based BEs for DNA and aromatic furan amidino derivatives. Journal of Biomolecular Structure & Dynamics, 31(5), 522–537.

    Article  CAS  Google Scholar 

  61. Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Molecular Informatics, 31(2), 114–122.

    Article  CAS  PubMed  Google Scholar 

  62. Hou, T., Wang, J., Li, Y., & Wang, W. (2010). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. the accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51, 69–82.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Genheden, S., Mikulskis, P., Hu, L., Kongsted, J., Söderhjelm, P., & Ryde, U. (2011). Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Journal of the American Chemical Society, 133(33), 13081–13092.

    Article  CAS  PubMed  Google Scholar 

  64. Genheden, S., & Ryde, U. (2010). How to obtain statistically converged MM/GBSA results. Journal of Computational Chemistry, 31, 837–846.

    CAS  PubMed  Google Scholar 

  65. Genheden, S., & Ryde, U. (2012). Will molecular dynamics simulations of proteins ever reach equilibrium?. Physical Chemistry Chemical Physics, 14, 8662–8677.

    Article  CAS  PubMed  Google Scholar 

  66. Henriksen, N. M., Hayatshahi, H. S., Davis, D. R., & Cheatham, T. E. (2014). Structural and energetic analysis of 2-aminobenzimidazole inhibitors in complex with the hepatitis C virus IRES RNA using molecular dynamics simulations. Journal of Chemical Information and Modeling, 54(6), 1758–1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics, 16, 16719–16729.

    Article  CAS  PubMed  Google Scholar 

  68. Srivastava, H. K., & Sastry, G. N. (2012). Molecular dynamics investigation on a series of HIV protease inhibitors: assessing the performance of MM-PBSA and MM-GBSA approaches. Journal of Chemical Information and Modeling, 52(11), 3088–3098.

    Article  CAS  PubMed  Google Scholar 

  69. Chetty, S., & Soliman, M. E. S. (2015). Possible allosteric binding site on Gyrase B , a key target for novel anti-TB drugs : homology modelling and binding site identification using molecular dynamics simulation and binding free energy calculations. Medicinal Chemistry Research, 24, 2055–2074.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge The School of Health Sciences, University of KwaZulu-Natal, Westville campus for providing the infrastructure for this work. Neal K. Broomhead would like to acknowledge the National Research Foundation of South Africa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. Soliman.

Ethics declarations

Conflict of Interest

The authors declare that they have no financial or intellectual conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broomhead, N.K., Soliman, M.E. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites. Cell Biochem Biophys 75, 15–23 (2017). https://doi.org/10.1007/s12013-016-0769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0769-y

Keywords

Navigation