Skip to main content

Advertisement

Log in

Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions between the intestinal microbiota, colonic epithelial barrier, and host immune system, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Izzo, A. A., Aviello, G., Petrosino, S., Orlando, P., Marsicano, G., Lutz, B., et al. (2008). Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. Journal of Molecular Medicine (Berlin), 86, 89–98.

    Article  CAS  Google Scholar 

  2. Terzic, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and colon cancer. Gastroenterology, 138(2101–2114), e2105.

    Google Scholar 

  3. Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. A Cancer Journal for Clinicians, 55, 74–108.

    Article  Google Scholar 

  4. Jawad, N., Direkze, N., & Leedham, S. J. (2011). Inflammatory bowel disease and colon cancer. Inflammation and Gastrointestinal Cancers, 2011, 99–115.

    Article  Google Scholar 

  5. Vaish, V., & Sanyal, S. N. (2012). Role of Sulindac and Celecoxib in the regulation of angiogenesis during the early neoplasm of colon: Exploring PI3-K/PTEN/Akt pathway to the canonical Wnt/beta-catenin signaling. Biomedicine and Pharmacotherapy, 66, 354–367.

    Article  CAS  PubMed  Google Scholar 

  6. Davidson, N. O. (2007). Genetic testing in colorectal cancer: Who, when, how and why. Keio Journal of Medicine, 2007(56), 14–20.

    Article  Google Scholar 

  7. Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis, 30, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  8. Motilva, V., García-Mauriño, S., Talero, E., & Illanes, M. (2011). New paradigms in chronic intestinal inflammation and colon cancer: Role of melatonin. Journal of Pineal Research, 51, 44–60.

    Article  CAS  PubMed  Google Scholar 

  9. Davis, C. D., & Milner, J. A. (2009). Gastrointestinal microflora, food components and colon cancer prevention. Journal of Nutritional Biochemistry, 2009(20), 743–752.

    Article  Google Scholar 

  10. Corazziari, E. S. (2009). Intestinal mucus barrier in normal and inflamed colon. Journal of Pediatric Gastroenterology and Nutrition, 48(Suppl 2), S54–55.

    Article  PubMed  Google Scholar 

  11. Kelly, D., Conway, S., & Aminov, R. (2005). Commensal gut bacteria: Mechanisms of immune modulation. Trends in Immunology, 26, 326–333.

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt, C., Bielecki, C., Felber, J., & Stallmach, A. (2010). Surveillance strategies in inflammatory bowel disease. Minerva Gastroenterologica e Dietologica, 56, 189–201.

    CAS  PubMed  Google Scholar 

  13. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140, 883–899.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Blumberg, R. S. (2009). Inflammation in the intestinal tract: Pathogenesis and treatment. Digestive Diseases, 2009(27), 455–464.

    Article  Google Scholar 

  15. O’Connor, P. M., Lapointe, T. K., Beck, P. L., & Buret, A. G. (2010). Mechanisms by which inflammation may increase intestinal cancer risk in inflammatory bowel disease. Inflammatory Bowel Diseases, 16, 1411–1420.

    Article  PubMed  Google Scholar 

  16. Luo, J. L., Kamata, H., & Karin, M. (2005). IKK/NF-kappaB signaling: Balancing life and death—a new approach to cancer therapy. Journal of Clinical Investigation, 115, 2625–2632.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Richmond, A. (2002). Nf-kappa B, chemokine gene transcription and tumour growth. Nature Reviews Immunology, 2, 664–674.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Grivennikov, S. I., Kuprash, D. V., Liu, Z. G., & Nedospasov, S. A. (2006). Intracellular signals and events activated by cytokines of the tumor necrosis factor superfamily: From simple paradigms to complex mechanisms. International Review of Cytology, 252, 129–161.

    Article  CAS  PubMed  Google Scholar 

  19. Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer, 4, 11–22.

    Article  CAS  PubMed  Google Scholar 

  20. Gao, Y., Xu, P., Chen, L., & Li, Y. (2010). Prostaglandin E1 encapsulated into lipid nanoparticles improves its anti-inflammatory effect with low side-effect. International Journal of Pharmaceutics, 387, 263–271.

    Article  CAS  PubMed  Google Scholar 

  21. Han, S., Shen, J. Q., Gan, Y., Geng, H. M., Zhang, X. X., Zhu, C. L., & Gan, L. (2010). Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacologica Sinica, 31, 990–998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Takahashi, A., Suzuki, S., Kawasaki, N., Kubo, W., Miyazaki, S., Loebenberg, R., et al. (2002). Percutaneous absorption of non-steroidal anti-inflammatory drugs from in situ gelling xyloglucan formulations in rats. International Journal of Pharmaceutics, 246, 179–186.

    Article  CAS  PubMed  Google Scholar 

  23. Souto, E. B., Doktorovova, S., Gonzalez-Mira, E., Egea, M. A., & Garcia, M. L. (2010). Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Current Eye Research, 35, 537–552.

    Article  CAS  PubMed  Google Scholar 

  24. Arend, W. P. (2002). The balance between IL-1 and IL-1Ra in disease. Cytokine and Growth Factor Reviews, 2002(13), 323.

    Article  Google Scholar 

  25. Dinarello, C. A. (2000). The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. The New England Journal of Medicine, 2000(343), 732–734.

    Article  Google Scholar 

  26. Mariathasan, S., & Monack, D. M. (2007). Inflammasome adaptors and sensors: Intracellular regulators of infection and inflammation. Nature Reviews Immunology, 7, 31–40.

    Article  CAS  PubMed  Google Scholar 

  27. Golab, J., & Zagozdzon, R. (1999). Antitumor effects of interleukin-12 in pre-clinical and early clinical studies (Review). International Journal of Molecular Medicine, 3, 537–544.

    CAS  PubMed  Google Scholar 

  28. Watanabe, K., Kawamori, T., Nakatsugi, S., Ohta, T., Ohuchida, S., Yamamoto, H., et al. (1999). Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Research, 59, 5093–5096.

    CAS  PubMed  Google Scholar 

  29. Rakhmilevich, A. L., Janssen, K., Turner, J., Culp, J., & Yang, N. S. (1997). Cytokine gene therapy of cancer using gene gun technology: Superior antitumor activity of interleukin-12. Human Gene Therapy, 8, 1303–1311.

    Article  CAS  PubMed  Google Scholar 

  30. Farrar, M. A., & Schreiber, R. D. (1993). The molecular cell biology of interferon-gamma and its receptor. Annual Review of Immunology, 1993(11), 571–611.

    Article  Google Scholar 

  31. Dupuis, S., Doffinger, R., Picard, C., Fieschi, C., Altare, F., Jouanguy, E., et al. (2000). Human interferon-gamma-mediated immunity is a genetically controlled continuous trait that determines the outcome of mycobacterial invasion. Immunological Reviews, 178, 129–137.

    Article  CAS  PubMed  Google Scholar 

  32. Nakano, H., Kishida, T., Asada, H., Shin-Ya, M., Shinomiya, T., Imanishi, J., et al. (2006). Interleukin-21 triggers both cellular and humoral immune responses leading to therapeutic antitumor effects against head and neck squamous cell carcinoma. The Journal of Gene Medicine, 8, 90–99.

    Article  CAS  PubMed  Google Scholar 

  33. Ugai, S., Shimozato, O., Kawamura, K., Wang, Y. Q., Yamaguchi, T., Saisho, H., et al. (2003). Expression of the interleukin-21 gene in murine colon carcinoma cells generates systemic immunity in the inoculated hosts. Cancer Gene Therapy, 10, 187–192.

    Article  CAS  PubMed  Google Scholar 

  34. Hinrichs, C. S., Spolski, R., Paulos, C. M., Gattinoni, L., Kerstann, K. W., Palmer, D. C., et al. (2008). Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood, 111, 5326–5333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ugai, S., Shimozato, O., Yu, L., Wang, Y. Q., Kawamura, K., Yamamoto, H., et al. (2003). Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and -independent antitumor effects. Cancer Gene Therapy, 10, 771–778.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, C. X., Fisk, B. C., Wadehra, M., Su, H., & Braun, J. (2000). Overexpression of murine fizzy-related (fzr) increases natural killer cell-mediated cell death and suppresses tumor growth. Blood, 96, 259–263.

    CAS  PubMed  Google Scholar 

  37. Ma, H. L., Whitters, M. J., Konz, R. F., Senices, M., Young, D. A., Grusby, M. J., et al. (2003). IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-gamma. Journal of Immunology, 171, 608–615.

    Article  CAS  Google Scholar 

  38. Abbas, A. K., Lichtman, A. H., Pillai, S. (2011). Cellular and Molecular Immunology: With STUDENT CONSULT Online Access, Saunders.

  39. Bhavsar, M. D., & Amiji, M. M. (2008). Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Therapy, 2008(15), 1200–1209.

    Article  Google Scholar 

  40. Schreiber, S., Fedorak, R. N., Nielsen, O. H., Wild, G., Williams, C. N., Nikolaus, S., et al. (2000). Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology, 119, 1461–1472.

    Article  CAS  PubMed  Google Scholar 

  41. Charmandari, E., Kino, T., Ichijo, T., & Chrousos, G. P. (2008). Generalized glucocorticoid resistance: Clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. Journal of Clinical Endocrinology and Metabolism, 93, 1563–1572.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Chrousos, G. P., Detera-Wadleigh, S. D., & Karl, M. (1993). Syndromes of glucocorticoid resistance. Annals of Internal Medicine, 119, 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka, A., Araki, H., Komoike, Y., Hase, S., & Takeuchi, K. (2001). Inhibition of both COX-1 and COX-2 is required for development of gastric damage in response to nonsteroidal antiinflammatory drugs. Journal of Physiology Paris, 95, 21–27.

    Article  CAS  Google Scholar 

  44. Meyskens, F. L., McLaren, C. E., Pelot, D., Fujikawa-Brooks, S., Carpenter, P. M., Hawk, E., et al. (2008). Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, double-blind trial. Cancer Prevention Research, 1, 32–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mahmood, A., Petrie, M., Wong, C., Davie, A., Manoharan, D., Conway, B., Masle, S., Strachan, M., Price, J., Swift, E., et al. (2012). GEMS–RCPSG: Is Academic Medicine for Me?’National Conference 2011 19 November 2011 (Online Abstracts—abstracts). Scottish Medical Journal. 57, 121–121.

  46. Liao, X., Lochhead, P., Nishihara, R., Morikawa, T., Kuchiba, A., Yamauchi, M., et al. (2012). Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. New England Journal of Medicine, 367, 1596–1606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Prasit, P., Wang, Z., Brideau, C., Chan, C. C., Charleson, S., Cromlish, W., et al. (1999). The discovery of rofecoxib, [MK 966, Vioxx, 4-(4′-methylsulfonylphenyl)-3-phenyl-2(5H)-furanone], an orally active cyclooxygenase-2-inhibitor. Bioorganic and Medicinal Chemistry Letters, 9, 1773–1778.

    Article  CAS  PubMed  Google Scholar 

  48. Blobaum, A. L., & Marnett, L. J. (2007). Molecular determinants for the selective inhibition of cyclooxygenase-2 by lumiracoxib. Journal of Biological Chemistry, 2007(282), 16379–16390.

    Article  Google Scholar 

  49. Traversa, G., Walker, A. M., Ippolito, F. M., Caffari, B., Capurso, L., Dezi, A., et al. (1995). Gastroduodenal toxicity of different nonsteroidal antiinflammatory drugs. Epidemiology, 6, 49–54.

    Article  CAS  PubMed  Google Scholar 

  50. Bao, F., John, S. M., Chen, Y., Mathison, R. D., & Weaver, L. C. (2006). The tripeptide phenylalanine-(d) glutamate-(d) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord. Neuroscience, 140, 1011–1022.

    Article  CAS  PubMed  Google Scholar 

  51. Wallace, J. L., Ignarro, L. J., & Fiorucci, S. (2002). Potential cardioprotective actions of no-releasing aspirin. Nature Reviews Drug Discovery, 1, 375–382.

    Article  CAS  PubMed  Google Scholar 

  52. Mitchell, J. A., & Warner, T. D. (2006). COX isoforms in the cardiovascular system: Understanding the activities of non-steroidal anti-inflammatory drugs. Nature Reviews Drug Discovery, 2006(5), 75–86.

    Article  Google Scholar 

  53. Velazquez, C. A., Chen, Q. H., Citro, M. L., Keefer, L. K., & Knaus, E. E. (2008). Second-generation aspirin and indomethacin prodrugs possessing an O(2)-(acetoxymethyl)-1-(2-carboxypyrrolidin-1-yl)diazenium-1,2-diolate nitric oxide donor moiety: Design, synthesis, biological evaluation, and nitric oxide release studies. Journal of Medicinal Chemistry, 51, 1954–1961.

    Article  CAS  PubMed  Google Scholar 

  54. Charlier, C., & Michaux, C. (2003). Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. European Journal of Medicinal Chemistry, 38, 645–659.

    Article  CAS  PubMed  Google Scholar 

  55. Reddy, M. V., Billa, V. K., Pallela, V. R., Mallireddigari, M. R., Boominathan, R., Gabriel, J. L., & Reddy, E. P. (2008). Design, synthesis, and biological evaluation of 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines as cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) inhibitors. Bioorganic and Medicinal Chemistry, 16, 3907–3916.

    Article  CAS  PubMed  Google Scholar 

  56. Geronikaki, A. A., Lagunin, A. A., Hadjipavlou-Litina, D. I., Eleftheriou, P. T., Filimonov, D. A., Poroikov, V. V., et al. (2008). Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. Journal of Medicinal Chemistry, 51, 1601–1609.

    Article  CAS  PubMed  Google Scholar 

  57. Elias, E. J., Anil, S., Ahmad, S., & Daud, A. (2010). Colon targeted curcumin delivery using guar gum. Natural Products Communications, 5, 915–918.

    CAS  Google Scholar 

  58. Watson, J. L., Hill, R., Yaffe, P. B., Greenshields, A., Walsh, M., Lee, P. W., et al. (2010). Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells. Cancer Letters, 297, 1–8.

    Article  CAS  PubMed  Google Scholar 

  59. Shimizu, M., Fukutomi, Y., Ninomiya, M., Nagura, K., Kato, T., Araki, H., et al. (2008). Green tea extracts for the prevention of metachronous colorectal adenomas: A pilot study. Cancer Epidemiol Biomarkers and Prevention, 17, 3020–3025.

    Article  CAS  Google Scholar 

  60. Norwood, A. A., Tucci, M., & Benghuzzi, H. (2007). A comparison of 5-fluorouracil and natural chemotherapeutic agents, EGCG and thymoquinone, delivered by sustained drug delivery on colon cancer cells. Biomedical Sciences Instrumentation, 43, 272–277.

    CAS  PubMed  Google Scholar 

  61. Boehm, K., Borrelli, F., Ernst, E., Habacher, G., Hung, S. K., Milazzo, S., & Horneber, M. (2009). Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database System Review , CD005004.

  62. Williams, D., Verghese, M., Walker, L. T., Boateng, J., Shackelford, L., & Chawan, C. B. (2007). Flax seed oil and flax seed meal reduce the formation of aberrant crypt foci (ACF) in azoxymethane-induced colon cancer in Fisher 344 male rats. Food and Chemical Toxicology, 45, 153–159.

    Article  CAS  PubMed  Google Scholar 

  63. Bommareddy, A., Arasada, B. L., Mathees, D. P., & Dwivedi, C. (2006). Chemopreventive effects of dietary flaxseed on colon tumor development. Nutrition and Cancer, 54, 216–222.

    Article  CAS  PubMed  Google Scholar 

  64. El-Bayoumy, K., Sinha, R., Pinto, J. T., & Rivlin, R. S. (2006). Cancer chemoprevention by garlic and garlic-containing sulfur and selenium compounds. Journal of Nutrition, 136, 864S–869S.

    CAS  PubMed  Google Scholar 

  65. Hosono, T., Hosono-Fukao, T., Inada, K., Tanaka, R., Yamada, H., Iitsuka, Y., et al. (2008). Alkenyl group is responsible for the disruption of microtubule network formation in human colon cancer cell line HT-29 cells. Carcinogenesis, 29, 1400–1406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ross, S. A., Finley, J. W., & Milner, J. A. (2006). Allyl sulfur compounds from garlic modulate aberrant crypt formation. Journal of Nutrition, 136, 852S–854S.

    CAS  PubMed  Google Scholar 

  67. Fleischauer, A. T., Poole, C., & Arab, L. (2000). Garlic consumption and cancer prevention: Meta-analyses of colorectal and stomach cancers. American Journal of Clinical Nutrition, 72, 1047–1052.

    CAS  PubMed  Google Scholar 

  68. Galdeano, C. M., & Perdigon, G. (2006). The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clinical and Vaccine Immunology, 2006(13), 219–226.

    Article  Google Scholar 

  69. McIntosh, G. H., Royle, P. J., & Playne, M. J. (1999). A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague–Dawley rats. Nutrition and Cancer, 35, 153–159.

    Article  CAS  PubMed  Google Scholar 

  70. Perdigon, G., de Macias, M. E., Alvarez, S., Oliver, G., & de Ruiz Holgado, A. P. (1988). Systemic augmentation of the immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology, 63, 17–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Perdigon, G., Fuller, R., & Raya, R. (2001). Lactic acid bacteria and their effect on the immune system. Current Issues in Intestinal Microbiology, 2, 27–42.

    CAS  PubMed  Google Scholar 

  72. Vinderola, C. G., Duarte, J., Thangavel, D., Perdigon, G., Farnworth, E., & Matar, C. (2005). Immunomodulating capacity of kefir. Journal of Dairy Research, 72, 195–202.

    Article  CAS  PubMed  Google Scholar 

  73. Vinderola, G., Perdigon, G., Duarte, J., Thangavel, D., Farnworth, E., & Matar, C. (2006). Effects of kefir fractions on innate immunity. Immunobiology, 211, 149–156.

    Article  CAS  PubMed  Google Scholar 

  74. Thoreux, K., & Schmucker, D. L. (2001). Kefir milk enhances intestinal immunity in young but not old rats. Journal of Nutrition, 131, 807–812.

    CAS  PubMed  Google Scholar 

  75. Ballongue, J., Schumann, C., & Quignon, P. (1997). Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scandinavian Journal of Gastroenterology Supplement, 222, 41–44.

    CAS  PubMed  Google Scholar 

  76. Kampman, E., Goldbohm, R. A., van den Brandt, P. A., & van’t Veer, P. (1994). Fermented dairy products, calcium, and colorectal cancer in The Netherlands Cohort Study. Cancer Research, 54, 3186–3190.

    CAS  PubMed  Google Scholar 

  77. Kearney, J., Giovannucci, E., Rimm, E. B., Ascherio, A., Stampfer, M. J., Colditz, G. A., et al. (1996). Calcium, vitamin D, and dairy foods and the occurrence of colon cancer in men. American Journal of Epidemiology, 143, 907–917.

    Article  CAS  PubMed  Google Scholar 

  78. Galdeano, C. M., & Perdigon, G. (2004). Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. Journal of Applied Microbiology, 2004(97), 673–681.

    Article  Google Scholar 

  79. Pool-Zobel, B. L., Bertram, B., Knoll, M., Lambertz, R., Neudecker, C., Schillinger, U., et al. (1993). Antigenotoxic properties of lactic acid bacteria in vivo in the gastrointestinal tract of rats. Nutrition and Cancer, 20, 271–281.

    Article  CAS  PubMed  Google Scholar 

  80. Pool-Zobel, B. L., Neudecker, C., Domizlaff, I., Ji, S., Schillinger, U., Rumney, C., et al. (1996). Lactobacillus- and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutrition and Cancer, 26, 365–380.

    Article  CAS  PubMed  Google Scholar 

  81. Benno, Y., & Mitsuoka, T. (1992). Impact of Bifidobacterium longum on human fecal microflora. Microbiology and Immunology, 36, 683–694.

    Article  CAS  PubMed  Google Scholar 

  82. Bouhnik, Y., Flourie, B., Andrieux, C., Bisetti, N., Briet, F., & Rambaud, J. C. (1996). Effects of Bifidobacterium sp fermented milk ingested with or without inulin on colonic bifidobacteria and enzymatic activities in healthy humans. European Journal of Clinical Nutrition, 50, 269–273.

    CAS  PubMed  Google Scholar 

  83. Loos, M., Remaut, E., Rottiers, P., & De Creus, A. (2009). Genetically engineered Lactococcus lactis secreting murine IL-10 modulates the functions of bone marrow-derived dendritic cells in the presence of LPS. Scandinavian Journal of Immunology, 69, 130–139.

    Article  CAS  PubMed  Google Scholar 

  84. Vandenbroucke, K., de Haard, H., Beirnaert, E., Dreier, T., Lauwereys, M., Huyck, L., et al. (2010). Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunology, 3, 49–56.

    Article  CAS  PubMed  Google Scholar 

  85. Vandenbroucke, K., Hans, W., Van Huysse, J., Neirynck, S., Demetter, P., Remaut, E., et al. (2004). Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology, 127, 502–513.

    Article  CAS  PubMed  Google Scholar 

  86. Foligne, B., Dessein, R., Marceau, M., Poiret, S., Chamaillard, M., Pot, B., et al. (2007). Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology, 133, 862–874.

    Article  CAS  PubMed  Google Scholar 

  87. Cheong, I., Huang, X., Thornton, K., Diaz, L. A, Jr, & Zhou, S. (2007). Targeting cancer with bugs and liposomes: Ready, aim, fire. Cancer Research, 67, 9605–9608.

    Article  CAS  PubMed  Google Scholar 

  88. LeBlanc, J. G., del Carmen, S., Miyoshi, A., Azevedo, V., Sesma, F., Langella, P., et al. (2011). Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. Journal of Biotechnology, 151, 287–293.

    Article  CAS  PubMed  Google Scholar 

  89. Sheil, B., Shanahan, F., & O’Mahony, L. (2007). Probiotic effects on inflammatory bowel disease. Journal of Nutrition, 137, 819S–824S.

    CAS  PubMed  Google Scholar 

  90. de LeBlanc, A. M., del Carmen, S., Zurita-Turk, M., Rocha, C. S., van de Guchte, M., Azevedo, V., et al. (2011). Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases. ISRN Gastroenterology, 2011, 2011.

    Google Scholar 

  91. Tan, W., Lu, J., Huang, M., Li, Y., Chen, M., Wu, G., et al. (2011). Anti-cancer natural products isolated from chinese medicinal herbs. Chinese Medicine, 6, 27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Marston, A. (2011). Natural products as a source of protein kinase activators and inhibitors. Current Topics in Medicinal Chemistry, 11, 1333–1339.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Prakash.

Additional information

Aleksandra Malgorzata Urbanska and Xiaoying Zhang contributed equally to this study and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbanska, A.M., Zhang, X. & Prakash, S. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents. Cell Biochem Biophys 72, 757–769 (2015). https://doi.org/10.1007/s12013-015-0528-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0528-5

Keywords

Navigation