Skip to main content
Log in

Understanding the Molecular Dynamics of Type-2 Diabetes Drug Target DPP-4 and its Interaction with Sitagliptin and Inhibitor Diprotin-A

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The occurrence of type 2 diabetes (T2D) accounts for 90–95 % of all diabetes. Intestine hormone glucagon-like peptide-1 (GLP-1) has an antidiabetic role that enhances insulin secretion and pancreatic β-cell proliferation. GLP-1 is degraded by the enzyme dipeptidyl peptidase-4 (DPP-4) rapidly. Hence, the DPP-4 inhibition has been preferred not only for the treatment but also as a major drug target. Sitagliptin and Diprotin-A are antihyperglycemic agents for the treatment of T2D. However, little is known on the molecular dynamics of DPP-4 and the interaction properties with its ligands, namely Sitagliptin and Diprotin-A. This study has used the latest bioinformatic tools to understand the molecular dynamics and its interaction properties of DPP-4. This study has explored the number of α helices, β strands, β hairpins, Ψ loop, β bulges, β turns, and ϒ turns and they were 19, 46, 25, 1, 14, 70, and 4, respectively. The highest number of H-bonds was recorded in α helix of domain-1, and the lowest number H-bonds were noted in α helix of domain-2. During interaction between residues, in A- and B-chain, 47 and 48 residues are involved for interaction, and interaction interface area was more in A-Chain (2176 Å2). From DPP-4 and Sitagliptin interaction, three residues in active sites such as Try226, Glu205, and Glu206 were involved in three H-bond formation, while 10 other amino acids (Try547, Try667, Asn710, Val711, His740, Ser630, Ser209, Arg358, Phe357, and Val207) were involved in hydrophobic interactions. In this review, we have shown the importance of bioinformatics as an excellent tool for a rapid method to assess the molecular dynamics and its interaction properties of DPP-4. Our predictions highlighted in this review will help researchers to understand the interaction properties and recognition of interactive sites to design more DPP-4 inhibitors for the treatment of T2D and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zimmet, P. (2000). Globalization, coca-colonization and the chronic disease epidemic: Can the doomsday scenario be averted? Journal of Internal Medicine, 247, 301–310.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmet, P., Alberti, K. G., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414, 782–787.

    Article  PubMed  CAS  Google Scholar 

  3. World Diabetes Population Hits 366 Million. (http://www.mydiabetes.in/news/2011/Sep/world-diabetes-population-hits-366-million-91552382.html)

  4. Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311–321.

    Article  PubMed  Google Scholar 

  5. Moller, D. E. (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 414(6865), 821–827.

    Article  PubMed  CAS  Google Scholar 

  6. Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global preference of diabetes. Diabetes Care, 27, 1047–1053.

    Article  PubMed  Google Scholar 

  7. Alberti, K. G., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine, 15, 539–553.

    Article  PubMed  CAS  Google Scholar 

  8. Choy, M., & Lam, S. (2007). Sitagliptin: A novel drug for the treatment of type 2 diabetes. Cardiology Reviews, 15, 264–271.

    Article  Google Scholar 

  9. FDA Approves New Treatment for Diabetes (Press release, 2006, October 17). U.S. Food and Drug Administration (FDA). Retrieved October 17, 2006

  10. Herman, G. A., Stevens, C., Van Dyck, K., Bergman, A., Yi, B., et al. (2005). Pharmacokinetics and pharmacodynamics of single doses of sitagliptin, an inhibitor of dipeptidyl peptidase-IV, in healthy subjects. Clinical Pharmacology & Therapeutics, 78, 675–688.

    Article  CAS  Google Scholar 

  11. Daniel, D., Chris, E., & Peter, K. (2007). Fresh from the Pipeline: Sitagliptin. Nature Reviews Drug Discovery, 6, 109–110.

    Article  Google Scholar 

  12. Herman, G. A., Stevens, C., & Van Dyck, K. (2005). Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clinical Pharmacology and Therapeutics, 78, 675–688.

    Article  PubMed  CAS  Google Scholar 

  13. Raz, I., Hanefeld, M., Xu, L., Caria, C., Williams-Herman, D., et al. (2006). Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia, 49, 2564–2571.

    Article  PubMed  CAS  Google Scholar 

  14. Aschner, P., Kipnes, M. S., Lunceford, J. K., Sanchez, M., Mickel, C., Williams-Herman, D. E., et al. (2006). Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care, 29, 2632–2637.

    Article  PubMed  CAS  Google Scholar 

  15. Charbonnel, B., Karasik, A., Liu, J., Wu, M., Meininger, G., et al. (2006). Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care, 29, 2638–2643.

    Article  PubMed  CAS  Google Scholar 

  16. Rosenstock, J., Brazg, R., Andryuk, P. J., Lu, K., Stein, P., et al. (2006). Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: A 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clinical Therapeutics, 28, 1556–1568.

    Article  PubMed  CAS  Google Scholar 

  17. Rahfeld, J., Schierhorn, M., Hartrodt, B., Neubert, K., & Heins, J. (1991). Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV? Biochimica et Biophysica Acta, 1076, 314–316.

    Article  PubMed  CAS  Google Scholar 

  18. Alponti, R. F., Frezzatti, R., Barone, J. M., Alegre, V. S., & Silveiraa, P. F. (2011). Dipeptidyl peptidase IV in the hypothalamus and hippocampus of monosodium glutamate obese and food-deprived rats. Metabolism, 60, 234–242.

    Article  PubMed  CAS  Google Scholar 

  19. Hiramatsu, H., Yamamoto, A., Kyono, K., Higashiyama, Y., Fukushima, C., Shima, H., et al. (2004). The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Journal of Biological Chemistry, 385, 561–564.

    CAS  Google Scholar 

  20. Deacon, C. F., Ahrén, B., & Holst, J. J. (2004). Inhibitors of dipeptidyl peptidase IV: A novel approach for the prevention and treatment of Type 2 diabetes? Expert Opinion on Investigational Drugs, 13, 1091–1102.

    Article  PubMed  CAS  Google Scholar 

  21. Ahrén, B. (2005). Inhibition of dipeptidyl peptidase-4 (DPP-4)—A novel approach to treat type 2 diabetes. Current Enzyme Inhibition, 1, 65–73.

    Article  Google Scholar 

  22. Drucker, D. J. (2006). The biology of incretin hormones. Cell Metabolism, 3, 153–165.

    Article  PubMed  CAS  Google Scholar 

  23. Baggio, L. L., & Drucker, D. J. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology, 132, 2131–2157.

    Article  PubMed  CAS  Google Scholar 

  24. Misumi, Y., Hayashi, Y., Arakawa, F., & Ikehara, Y. (1992). Molecular cloning and sequence analysis of human dipeptidyl peptidase IV, a serine proteinase on the cell surface. Biochimica et Biophysica Acta, 1131, 333–336.

    Article  PubMed  CAS  Google Scholar 

  25. Abbott, C. A., Baker, E., Sutherland, G. R., & McCaughan, G. W. (1994). Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics, 40, 331–338.

    Article  PubMed  CAS  Google Scholar 

  26. Hong, W., & Doyle, D. J. (1990). Molecular dissection of the NH2-terminal signal/anchor sequence of rat dipeptidyl peptidase IV. Cell Biology, 111, 323–338.

    Article  CAS  Google Scholar 

  27. Ludwig, K., Yan, S., Fan, H., Reutter, W., & Bottcher, C. (2003). The 3D structure of rat DPPIV/CD26 as obtained by cryo-TEM and single particle analysis. Biochemical and Biophysical Research Communications, 304, 73–77.

    Article  PubMed  CAS  Google Scholar 

  28. Ogata, S., Misumi, Y., Tsuji, E., Takami, N., Oda, K., & Ikehara, Y. (1992). Identification of the active site residues in dipeptidyl peptidase IV by affinity labeling and site-directed mutagenesis. Biochemistry, 31, 2582–2587.

    Article  PubMed  CAS  Google Scholar 

  29. Fletcher, S., & Hamilton, A. D. (2006). Targeting protein–protein interactions by rational design: Mimicry of protein surfaces. Journal of the Royal Society, Interface, 3, 215–233.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chakravarty, S., Yadava, V. S., Kumar, V. K., & Kannan, K. (1985). Drug protein interaction at the molecular level: A study of sulphonamide carbonic anhydrase complexes. Journal of Biosciences, 8, 491–498.

    Article  CAS  Google Scholar 

  31. Bienstock, R. J. (2012). Computational drug design targeting protein–protein interactions. Current Pharmaceutical Design, 18, 1240–1254.

    Article  PubMed  CAS  Google Scholar 

  32. Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., et al. (2011). Database resources of the national center for biotechnology information. Nucleic Acids Research, 39, D38–D51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Laskowski, R. A. (2001). PDBsum, summaries and analyses of PDB structures. Nucleic Acids Research, 29, 221–222.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Laskowski, R. A., Chistyakov, V. V., & Thornton, J. M. (2005). PDBsum more, new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Research, 33, D266–D268.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Brendel, V., Bucher, P., Nourbakhsh, I., Blaisdell, B. E., & Karlin, S. (1992). Methods and algorithms for statistical analysis of protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 89, 2002–2006.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH, a protein structure and structural feature prediction server. Nucleic Acids Research, 33, W72–W76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Laskowsk, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37, D355–D359.

    Article  Google Scholar 

  39. Hutchinson, E. G., & Thornton, J. M. (1990). HERA, a program to draw schematic diagrams of protein secondary structures. Proteins, 8, 203–212.

    Article  PubMed  CAS  Google Scholar 

  40. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38, W529–W533.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., et al. (2003). ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics, 19, 163–164.

    Article  PubMed  CAS  Google Scholar 

  42. Merritt, E. A., & Bacon, D. J. (1997). Raster3D photorealistic molecular graphics. Methods in Enzymology, 277, 505–524.

    Article  PubMed  CAS  Google Scholar 

  43. Hamby, S. E., & Hirst, J. D. (2008). Prediction of glycosylation sites using random forests. BMC Bioinformatics, 9, 500. doi:10.1186/1471-2105-9-500.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Julenius, K., Mølgaard, A., Gupta, R., & Brunak, S. (2005). Prediction, conservation, analysis, and structural characterization of mammalian mucin-type Oglycosylation sites. Glycobiology, 15, 153–164.

    Article  PubMed  CAS  Google Scholar 

  45. Xue, Y., Liu, Z., Cao, J., Ma, Q., Gao, X., Wang, Q., et al. (2010). GPS 2.1: Enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Engineering, Design & Selection, 24, 255–260.

    Article  Google Scholar 

  46. Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., et al. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34, D668–D672.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Wishart, D. S. (2008). Identifying putative drug targets and potential drug leads: Starting points for virtual screening and docking. Methods in Molecular Biology, 443, 333–351.

    Article  PubMed  CAS  Google Scholar 

  48. Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8, 127–134.

    Article  PubMed  CAS  Google Scholar 

  49. Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.

    Article  PubMed  CAS  Google Scholar 

  50. Fleming, P. J., Gong, H., & Rose, G. D. (2006). Secondary structure determines protein topology. Protein Science, 15, 1829–1834.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Taylor, W. R., May, A. C. W., Brown, N. P., & Aszodi, A. (2001). Protein structure: Geometry, topology and classification. Reports on Progress in Physics, 64, 517–590.

    Article  CAS  Google Scholar 

  52. Figueiredo, A. M., Moore, G. R., & Whittaker, S. B. (2012). Understanding how small helical proteins fold: Conformational dynamics of Im proteins relevant to their folding landscapes. Biochemical Society Transactions, 40, 424–428.

    Article  PubMed  CAS  Google Scholar 

  53. Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., & Tramontano, A. (2009). Critical assessment of methods of protein structure prediction: Round VIII. Proteins, 77, 1–4.

    Article  PubMed  CAS  Google Scholar 

  54. Samish, I., MacDermaid, C. M., Perez-Aguilar, J. M., & Saven, J. G. (2011). Theoretical and computational protein design. Annual Review of Physical Chemistry, 62, 129–149.

    Article  PubMed  CAS  Google Scholar 

  55. Magis, C., Gasparini, D., Lecoq, A., Le Du, M. H., Stura, E., et al. (2006). Structure-based secondary structure-independent approach to design protein ligands: Application to the design of Kv1.2 potassium channel blockers. Journal of the American Chemical Society, 128, 16190–16205.

    Article  PubMed  CAS  Google Scholar 

  56. Chakraborty, C., & Agrawal, A. (2013). Computational analysis of C-reactive protein for assessment of molecular dynamics and interaction properties. Cell Biochemistry and Biophysics,. doi:10.1007/s12013-013-9553-4.

    PubMed Central  Google Scholar 

  57. Aertgeerts, K., Ye, S., Tennant, M. G., Kraus, M. L., Rogers, J., Sang, B. C., et al. (2004). Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Science, 13, 412–421.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Ma, B., Elkayam, T., Wolfson, H., & Nussinov, R. (2003). Protein-protein interactions, structurally conserved residues distinguish between binding sites and exposed protein surfaces. PNAS USA, 100, 5772–5777.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Shah, Z., Kampfrath, T., Deiuliis, J. A., Zhong, J., Pineda, C., et al. (2011). Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation, 124, 2338–2349.

    Article  PubMed  CAS  Google Scholar 

  60. Dong, R. P., Tachibana, K., Hegen, M., Munakata, Y., Cho, D., Schlossman, S. F., et al. (1997). Determination of adenosine deaminase binding domain on CD26 and its immunoregulatory effect on T cell activation. Journal of Immunology, 159, 6070–6076.

    CAS  Google Scholar 

  61. Abbott, C. A., McCaughan, G. W., Levy, M. T., Church, W. B., & Gorell, M. D. (1999). Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted β propeller domain. European Journal of Biochemistry, 266, 798–810.

    Article  PubMed  CAS  Google Scholar 

  62. Takano, K., Yamagata, Y., Funahashi, J., Hioki, Y., Kuramitsu, S., & Yutani, K. (1999). Contribution of intra- and intermolecular hydrogen bonds to the conformational stability of human lysozyme. Biochemistry, 38, 12698–12708.

    Article  PubMed  CAS  Google Scholar 

  63. Royer, W. E, Jr, Strand, K., van Heel, M., & Hendrickson, W. A. (2000). Structural hierarchy in erythrocruorin, the giant respiratory assemblage of annelids. Proceedings of the National Academy of Sciences of the United States of America, 97, 7107–7111.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Knight, J. D., & Miranker, A. D. (2004). Phospholipid catalysis of diabetic amyloid assembly. Journal of Molecular Biology, 341, 1175–1187.

    Article  PubMed  CAS  Google Scholar 

  65. Bourgeas, R., Basse, M. J., Morelli, X., & Roche, P. (2010). Atomic analysis of protein–protein interfaces with known inhibitors, the 2P2I database. PLoS ONE, 5, e9598.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gromiha, M. M., & Selvaraj, S. (2004). Inter-residue interactions in protein folding and stability. Progress in Biophysics and Molecular Biology, 86, 235–277.

    Article  PubMed  CAS  Google Scholar 

  67. Shakhnovich, E., Abkevich, V., & Ptitsyn, O. (1996). Conserved residues and the mechanism of protein folding. Nature, 379, 96–98.

    Article  PubMed  CAS  Google Scholar 

  68. Teichmann, S. A., Murzin, A. G., & Chothia, C. (2001). Determination of protein function, evolution and interactions by structural genomics. Current Opinion in Structural Biology, 11, 354–363.

    Article  PubMed  CAS  Google Scholar 

  69. Abbott, C. A., McCaughan, G. W., & Gorrell, M. D. (1999). Two highly conserved glutamic acid residues in the predicted β propeller domain of dipeptidyl dipeptidyl peptidase IV are required for its enzyme activity. FEBS Letters, 458, 278–284.

    Article  PubMed  CAS  Google Scholar 

  70. Walsh, C. T., Garneau-Tsodikova, S., & Gatto, J. R. (2005). Protein posttranslational modifications: The chemistry of proteome diversifications. Angewandte Chemie (International ed. in English), 44, 7342–7372.

    Article  CAS  Google Scholar 

  71. Aertgeerts, K., Ye, S., Shi, L., Prasad, S. G., Witmer, D., et al. (2004). N-linked glycosylation of dipeptidyl peptidase IV (CD26): Effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein Science, 13, 145–154.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Pei, Z. (2007). From the bench to the bedside: Dipeptidyl peptidase IV inhibitors, a new class of oral antihyperglycemic agents. Current Opinion in Drug Discovery & Development, 11, 515–532.

    Google Scholar 

  73. Schweizer, A., Dejager, S., Foley, J. E., Shao, Q., & Kothny, W. (2011). Clinical experience with vildagliptin in the management of type 2 diabetes in a patient population ≥75 years: A pooled analysis from a database of clinical trials. Diabetes, Obesity & Metabolism, 13, 55–64.

    Article  CAS  Google Scholar 

  74. Gross, J. L., Rogers, J., Polhamus, D., Gillespie, W., Friedrich, C., Gong, Y., et al. (2013). A novel model-based meta-analysis to indirectly estimate the comparative efficacy of two medications: An example using DPP-4 inhibitors, sitagliptin and linagliptin, in treatment of type 2 diabetes mellitus. BMJ Open, 3, e001844.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li, J., Klemm, K., O’Farrell, A. M., Guler, H. P., Cherrington, J. M., Schwartz, S., et al. (2010). Evaluation of the potential for pharmacokinetic and pharmacodynamic interactions between dutogliptin, a novel DPP4 inhibitor, and metformin, in type 2 diabetic patients. Current Medical Research and Opinion, 26, 2003–2010.

    Article  PubMed  CAS  Google Scholar 

  76. Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., et al. (2003). The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proceedings of National Academy of Sciences, 100, 5063–5068.

    Article  CAS  Google Scholar 

  77. Oefner, C., D’Arcy, A., Mac Sweeney, A., Pierau, S., Gardiner, R., & Dale, G. E. (2003). High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[([2-[(5-iodopyridin-2-yl)amino]-ethyl] amino)-acetyl]-2-cyano-(S)-pyrrolidine. Acta Crystallographica Section D: Biological Crystallography, 59, 1206–1212.

    Article  Google Scholar 

  78. Goodarzi, M. O., & Bryer-Ash, M. (2005). Metformin revisited: Reevaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes, Obesity & Metabolism, 7, 654–665.

    Article  CAS  Google Scholar 

  79. Gillies, P. S., & Dunn, C. J. (2000). Pioglitazone. Drugs, 60(2), 333–343.

    Article  PubMed  CAS  Google Scholar 

  80. Glandt, M., & Raz, I. (2011). Present and future: Pharmacologic treatment of obesity. Journal of Obesity, 2011, 636181.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Deacon, C. F., Pridal, L., Olesen, M., Klarskov, L., & Holst, J. J. (1996). Dipeptidyl peptidase IV inhibition influences GLP-1 metabolism in vivo (Abstract). Regulatory Peptides, 64, 30.

    Google Scholar 

  82. Janjusevic, R., Quezada, C. M., Small, J., & Stebbins, C. E. (2013). Structure of the HopA1(21-102)-ShcA chaperone-effector complex of Pseudomonas syringae reveals conservation of a virulence factor binding motif from animal to plant pathogens. Journal of Bacteriology, 195(4), 658–664.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Nagpal, I., Raj, I., Subbarao, N., & Gourinath, S. (2012). Virtual screening, identification and in vitro testing of novel inhibitors of O-acetyl-l-serine sulfhydrylase of Entamoeba histolytica. PLoS ONE, 7, e30305.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindasamy Agoramoorthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, C., Hsu, M.J. & Agoramoorthy, G. Understanding the Molecular Dynamics of Type-2 Diabetes Drug Target DPP-4 and its Interaction with Sitagliptin and Inhibitor Diprotin-A. Cell Biochem Biophys 70, 907–922 (2014). https://doi.org/10.1007/s12013-014-9998-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9998-0

Keywords

Navigation