Skip to main content
Log in

oxLDL-Induced Lipid Accumulation in Glomerular Podocytes: Role of IFN-γ, CXCL16, and ADAM10

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Previous studies have shown that lipid accumulation plays an important role in the pathogenesis and development of glomerular sclerosis. oxLDL caused damage in renal mesangial cells, endothelial cells, and podocytes, and podocytes might be the major victim of oxLDL insult. However, the regulatory mechanism of how oxLDL induces the damage of podocytes remains to be elucidated. In this study, oil red staining was used to investigate the lipid accumulation in podocytes. Moreover, the effects of CXCL16 antibody, IFN-γ, and ADAM10 inhibitor on oxLDL intake and CXCL16 expression were also explored to elucidate the regulatory factors of lipid accumulation in podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moorhead, J. F., et al. (1982). Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet, 2(8311), 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  2. Moorhead, J. F., Brunton, C., & Varghese, Z. (1997). Glomerular atherosclerosis. Mineral and Electrolyte Metabolism, 23(3–6), 287–290.

    CAS  PubMed  Google Scholar 

  3. Xin Wang, D. S. (2008). Progress in the mechanism of hyperlipidemia in glomerular injury. Journal of Practical Medicine, 24(7), 2.

    Google Scholar 

  4. Joles, J. A., et al. (2000). Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. Journal of the American Society of Nephrology, 11(4), 669–683.

    CAS  PubMed  Google Scholar 

  5. Wiley, A., et al. (2006). Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer, 107(2), 299–308.

    Article  CAS  PubMed  Google Scholar 

  6. Weiguo Li, Y. L. (2012). Podocytes response to injury. Journal of Clinical Pediatrics, 30(11), 4.

    Google Scholar 

  7. Bussolati, B., et al. (2005). Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. Journal of the American Society of Nephrology, 16(7), 1936–1947.

    Article  CAS  PubMed  Google Scholar 

  8. Gutwein, P., et al. (2009). CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. American Journal of Pathology, 174(6), 2061–2072.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mundel, P., & Shankland, S. J. (2002). Podocyte biology and response to injury. Journal of the American Society of Nephrology, 13(12), 3005–3015.

    Article  PubMed  Google Scholar 

  10. Nosadini, R., & Tonolo, G. (2011). Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutrition, Metabolism & Cardiovascular Diseases, 21(2), 79–85.

    Article  CAS  Google Scholar 

  11. Stitt-Cavanagh, E., MacLeod, L., & Kennedy, C. (2009). The podocyte in diabetic kidney disease. Scientific World Journal, 9, 1127–1139.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng, Q. Z. X. (2011). Advances in understanding of podocyte function. Medical Review, 17(19), 4.

    Google Scholar 

  13. Gutwein, P., et al. (2009). CXCL16 and oxLDL are induced in the onset of diabetic nephropathy. Journal of Cellular and Molecular Medicine, 13(9B), 3809–3825.

    Article  PubMed  Google Scholar 

  14. Wiggins, R. C. (2007). The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney International, 71(12), 1205–1214.

    Article  CAS  PubMed  Google Scholar 

  15. Mundel, P., et al. (1997). Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines. Experimental Cell Research, 236(1), 248–258.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, D. L. H. (2012). Oxidized low-density lipoprotein and glomerular sclerosis. China in Integrative Medicine, 13(12), 2.

    Google Scholar 

  17. Wang, H. C. Z. T. Y. (2006). Lipid effects of mouse kidney podocyte proliferation. Journal of Medical Research, 35(8), 4.

    CAS  Google Scholar 

  18. Hu, Y., & Zhihua Quan, Y. W. (2010). Chemokine CXCL16 New Progress. Medical Review, 16(8), 4.

    Google Scholar 

  19. Ruixia Xu, J. L. (2012). Oxidized low-density lipoprotein cholesterol and atherosclerosis. Chinese Circulation Journal, 27(3), 5.

    Google Scholar 

  20. Qing Lin, Y. S., & Zhu, X. (2013). IFN-γ-induced tubular epithelial cells CXCL9, CXCL10 and CXCL11 expression. Journal of Cellular & Molecular Immunology, 29(2), 4.

    Google Scholar 

  21. Wuttge, D. M., et al. (2004). CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(4), 750–755.

    Article  CAS  PubMed  Google Scholar 

  22. Ting Yang, Z. Q. (2008). Interferon smooth muscle cells of the murine CXC Ligand 16 Expression and intracellular lipid accumulation effects. Chinese Journal of Arteriosclerosis, 16(3), 4.

    Google Scholar 

  23. Leon, M. L., & Zuckerman, S. H. (2005). Gamma interferon: a central mediator in atherosclerosis. Inflammation Research, 54(10), 395–411.

    Article  CAS  PubMed  Google Scholar 

  24. Gough, P. J., et al. (2004). A disintegrin and metalloproteinase 10-mediated cleavage and shedding regulates the cell surface expression of CXC chemokine ligand 16. Journal of Immunology, 172(6), 3678–3685.

    Article  CAS  Google Scholar 

  25. Ludwig, A., et al. (2005). Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Combinatorial Chemistry & High Throughput Screening, 8(2), 161–171.

    Article  CAS  Google Scholar 

  26. Abel, S., et al. (2004). The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. Journal of Immunology, 172(10), 6362–6372.

    Article  CAS  Google Scholar 

  27. Shimaoka, T., et al. (2004). Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells. Journal of Leukocyte Biology, 75(2), 267–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Shandong Province Natural Science Foundation (No. ZR2010HM110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sun, S., Zhou, A. et al. oxLDL-Induced Lipid Accumulation in Glomerular Podocytes: Role of IFN-γ, CXCL16, and ADAM10. Cell Biochem Biophys 70, 529–538 (2014). https://doi.org/10.1007/s12013-014-9952-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9952-1

Keywords

Navigation