Skip to main content

Advertisement

Log in

Effects of Adaptive Support Ventilation and Synchronized Intermittent Mandatory Ventilation on Peripheral Circulation and Blood Gas Markers of COPD Patients with Respiratory Failure

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The objective of the study was to investigate the effects of adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) on peripheral circulation of chronic obstructive pulmonary disease (COPD) patients with respiratory failure. 86 COPD patients with respiratory failure were recruited in this study. Self-control method was used to compare the effect of ASV and SIMV on the parameters of ventilation machine, heart rate, blood pressure, central venous pressure (CVP), and blood gas markers. When the patients in ASV and SIMV groups were compared, respiratory rate, tidal volume, and peak airway pressure (PIP) showed significant difference. When minute ventilation (MV) was compared, no significant difference was shown. When peripheral circulation parameters were compared, peripheral circulation heart rate, SBP, DBP, and CVP showed significant difference. Compared with SIMV group, PaO2, pH, and SaO2 values were remarkably increased (P < 0.01) while no significant difference was found for partial pressure of carbon dioxide (pCO2) when two groups were compared. In conclusion, when mechanical ventilation was used in COPD patients with respiratory failure, ASV can significantly improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli, M., Azoulay, E., Bonten, M., Chastre, J., Citerio, G., Conti, G., et al. (2009). Year in review in intensive care medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation. Intensive Care Medicine, 35(2), 215–231. doi:10.1007/s00134-008-1380-5.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Sulzer, C. F., Chiolero, R., Chassot, P. G., Mueller, X. M., & Revelly, J. P. (2001). Adaptive support ventilation for fast tracheal extubation after cardiac surgery: A randomized controlled study. Anesthesiology, 95(6), 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  3. Petter, A. H., Chiolero, R. L., Cassina, T., Chassot, P. G., Muller, X. M., & Revelly, J. P. (2003). Automatic “respirator/weaning” with adaptive support ventilation: The effect on duration of endotracheal intubation and patient management. Anesthesia and Analgesia, 97(6), 1743–1750.

    Article  PubMed  Google Scholar 

  4. Tassaux, D., Dalmas, E., Gratadour, P., & Jolliet, P. (2002). Patient-ventilator interactions during partial ventilatory support: A preliminary study comparing the effects of adaptive support ventilation with synchronized intermittent mandatory ventilation plus inspiratory pressure support. Critical Care Medicine, 30(4), 801–807.

    Article  PubMed  Google Scholar 

  5. Dongelmans, D. A., Veelo, D. P., Paulus, F., de Mol, B. A., Korevaar, J. C., Kudoga, A., et al. (2009). Weaning automation with adaptive support ventilation: A randomized controlled trial in cardiothoracic surgery patients. Anesthesia and Analgesia, 108(2), 565–571. doi:10.1213/ane.0b013e318190c49f.

    Article  PubMed  Google Scholar 

  6. Gruber, P. C., Gomersall, C. D., Leung, P., Joynt, G. M., Ng, S. K., Ho, K. M., et al. (2008). Randomized controlled trial comparing adaptive-support ventilation with pressure-regulated volume-controlled ventilation with automode in weaning patients after cardiac surgery. Anesthesiology, 109(1), 81–87. doi:10.1097/ALN.0b013e31817881fc.

    Article  PubMed  Google Scholar 

  7. Ortiz, G., Frutos-Vivar, F., Ferguson, N. D., Esteban, A., Raymondos, K., Apezteguia, C., et al. (2010). Outcomes of patients ventilated with synchronized intermittent mandatory ventilation with pressure support: A comparative propensity score study. Chest, 137(6), 1265–1277. doi:10.1378/chest.09-2131.

    Article  PubMed  Google Scholar 

  8. Wang, Y., Sun, N., Cheng, Z., & Tong, L. (2014). Optimal time to use low molecular weight heparin on prethrombotic state of rat chronic obstructive pulmonary disease model. Chinese Medical Journal, 127(3), 518–521.

    CAS  PubMed  Google Scholar 

  9. Breteler, K. B., Rentenaar, R. J., Verkaart, G., & Sturm, P. D. (2011). Performance and clinical significance of direct antimicrobial susceptibility testing on urine from hospitalized patients. Scandinavian Journal of Infectious Diseases, 43(10), 771–776. doi:10.3109/00365548.2011.588609.

    Article  PubMed  Google Scholar 

  10. Shefali-Patel, D., Murthy, V., Hannam, S., Lee, S., Rafferty, G. F., & Greenough, A. (2012). Randomised weaning trial comparing assist control to pressure support ventilation. Archives of Disease in Childhood. Fetal and Neonatal Edition, 97(6), F429–F433. doi:10.1136/archdischild-2011-300974.

    PubMed  Google Scholar 

  11. Azim, H. A, Jr, de Azambuja, E., Colozza, M., Bines, J., & Piccart, M. J. (2011). Long-term toxic effects of adjuvant chemotherapy in breast cancer. Annals of oncology: Official Journal of the European Society for Medical Oncology/ESMO, 22(9), 1939–1947. doi:10.1093/annonc/mdq683.

    Article  Google Scholar 

  12. Oki, Y., McLaughlin, P., Pro, B., Hagemeister, F. B., Bleyer, A., Loyer, E., et al. (2005). Phase II study of oxaliplatin in patients with recurrent or refractory non-Hodgkin lymphoma. Cancer, 104(4), 781–787. doi:10.1002/cncr.21219.

    Article  CAS  PubMed  Google Scholar 

  13. Pro, B., Younes, A., Albitar, M., Dang, N. H., Samaniego, F., Romaguera, J., et al. (2004). Thalidomide for patients with recurrent lymphoma. Cancer, 100(6), 1186–1189. doi:10.1002/cncr.20070.

    Article  CAS  PubMed  Google Scholar 

  14. Terblanche, M., Kruger, P., di Gangi, S., Gearay, S., Gilfeather, L., Ferguson, N. D., et al. (2012). Risk factors for acute organ failure in intensive care unit patients who receive respiratory support in the absence of non-respiratory organ failure: An international prospective cohort study. Critical Care, 16(2), R61. doi:10.1186/cc11306.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mauri, T., Bellani, G., Grasselli, G., Confalonieri, A., Rona, R., Patroniti, N., et al. (2013). Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: A novel approach based on diaphragm electrical activity. Intensive Care Medicine, 39(2), 282–291. doi:10.1007/s00134-012-2755-1.

    Article  PubMed  Google Scholar 

  16. Xu, W., Li, J. Y., Qian, S. X., Wu, H. X., Lu, H., Chen, L. J., et al. (2008). Outcome of treatment with hyper-CVAD regimen in Chinese patients with acute lymphocytic leukemia. Leukemia Research, 32(6), 930–935. doi:10.1016/j.leukres.2007.10.019.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Wang, Y., Gan, Y. et al. Effects of Adaptive Support Ventilation and Synchronized Intermittent Mandatory Ventilation on Peripheral Circulation and Blood Gas Markers of COPD Patients with Respiratory Failure. Cell Biochem Biophys 70, 481–484 (2014). https://doi.org/10.1007/s12013-014-9944-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9944-1

Keywords

Navigation